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Abstract

Attention is increasingly being turned towards an investigation of extreme hydrometeorological events within the context of

land-atmosphere coupling in the wider hydrological cycle, particularly with respect to the identification of compound and seesaw

events. To examine these events, accurate soil moisture data are essential. Here, soil moisture from three reanalysis products

(ERA5-Land, BARRA and ERA5) are compared to station observations from 12 sites across New Zealand for an average

timespan of 18 years. Soil moisture data from all three reanalyses were subsequently used to investigate land-atmosphere

coupling with gridded (observational) precipitation and temperature. Finally, compound (co-occurrence of hot and dry) and

seesaw (transitions from dry to wet) periods were identified and examined. No best performing reanalysis dataset for soil

moisture is evident (min r = 0.78, max r = 0.80). All datasets successfully capture the seasonal and residual component of soil

moisture, but not the observed soil moisture trends at each location. Strong coupling between soil moisture and temperature

occurs across the predominately energy-limited regions of the lower North Island and entire South Island. Consequently, these

regions reveal a high frequency of compound period occurrence and potential shifts in land states to a water limited phase during

compound months. A series of seesaw events are also detected for the first time in New Zealand (terminating an average of 17%

of droughts), with particularly high frequency of seesaw event occurrence detected in previously identified areas of atmospheric

river (AR) activity, indicating the likely wider significance of ARs for drought termination.
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Key Points: 9 

• Reanalysis soil moisture captures seasonal and residual components of observed soil 10 
moisture 11 

• Compound events highlight potential changing in land states in wet, energy limited 12 
climates 13 

• Seesaw events (one month accumulation) terminate an average of 17% of droughts14 
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ABSTRACT 15 

Attention is increasingly being turned towards an investigation of extreme hydrometeorological 16 

events within the context of land-atmosphere coupling in the wider hydrological cycle, particularly 17 

with respect to the identification of compound and seesaw events. To examine these events, 18 

accurate soil moisture data are essential. Here, soil moisture from three reanalysis products 19 

(ERA5-Land, BARRA and ERA5) are compared to station observations from 12 sites across New 20 

Zealand for an average timespan of 18 years. Soil moisture data from all three reanalyses were 21 

subsequently used to investigate land-atmosphere coupling with gridded (observational) 22 

precipitation and temperature. Finally, compound (co-occurrence of hot and dry) and seesaw 23 

(transitions from dry to wet) periods were identified and examined. No best performing reanalysis 24 

dataset for soil moisture is evident (min r = 0.78, max r = 0.80). All datasets successfully capture 25 

the seasonal and residual component of soil moisture, but not the observed soil moisture trends 26 

at each location. Strong coupling between soil moisture and temperature occurs across the 27 

predominately energy-limited regions of the lower North Island and entire South Island. 28 

Consequently, these regions reveal a high frequency of compound period occurrence and 29 

potential shifts in land states to a water limited phase during compound months. A series of 30 

seesaw events are also detected for the first time in New Zealand (terminating an average of 17% 31 

of droughts), with particularly high frequency of seesaw event occurrence detected in previously 32 

identified areas of atmospheric river (AR) activity, indicating the likely wider significance of ARs for 33 

drought termination. 34 

KEYWORDS:  Land-Atmosphere, Coupling, Compound Event, Seesaw Event, New Zealand 35 
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Plain Language Summary 36 

Extreme hydrometeorological events are very damaging, with two examples being compound and 37 

seesaw events. Compound events include examples such as droughts and heat waves which occur 38 

at the same time, while seesaw events represent shifts from dry (drought) periods to wet (flood) 39 

periods. Understanding how these events start, operate and stop can therefore be extremely 40 

helpful to help us prepare for them, and reduce their effects. Soil moisture is an essential variable 41 

to examine when trying to improve our understanding of these events, as it can help us to 42 

understand the interactions between the land (soil) and atmosphere (precipitation and 43 

temperature) which occur. Therefore, having accurate soil moisture data is an important goal. This 44 

study investigates how well soil moisture is represented across New Zealand from three products, 45 

revealing all products to be similar in their performance. The study then investigates the land-46 

atmosphere interactions across New Zealand, revealing widespread declines in soil moisture 47 

during the summers between 1990 and 2018. Compound events show a high occurrence in 48 

traditionally wet environments, indicating changes in the land state during drought phases. Rapid 49 

transitions from dry to wet are revealed in areas previously identified as being exposed to extreme 50 

rainfall.  51 
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1. Introduction  52 

Extreme hydrometeorological events can be very damaging. For instance, summer heatwaves 53 

throughout Europe during 2018 caused many fatalities, including an estimated 2363 across France 54 

and the United Kingdom (Moravec et al., 2021), while the 2017-2019 multiyear drought across 55 

New South Wales in Australia was estimated to have had an economic impact of $53 billion 56 

(Wittwer and Waschil, 2021). Correspondingly, improved characterisation of the drivers of these 57 

events (including climate change) is a critical research goal. While research on uni variate 58 

extreme hydrometeorological events is widespread (e.g. Donat et al., 2016; Perkins-Kirkpatrick 59 

and Lewis, 2020; Spinoni et al., 2020), increasingly attention is being turned towards a more 60 

holistic investigation of extreme hydrometeorological events, examining them as part of the 61 

wider hydrological cycle to which they belong (Dirmeyer et al., 2021). Two examples of these 62 

are compound (Zscheischler et al., 2020) and seesaw (or whiplash) (Ficklin et al., 2022) events.  63 

Compound events represent the co-occurrence of multiple dependent hazards whose effects may 64 

be greater than the sum of their parts. (Zscheischler et al., 2018). For example, Manning et al. 65 

(2019) identified an increased probability of compounding dry and hot events throughout Europe, 66 

driven by rising temperatures in the region. In contrast, seesaw events represent dramatic swings 67 

from drought (dry) to pluvial (wet) conditions. This rapid hydrometeorological switch can pose 68 

substantial risk to water management practices (e.g. the Oroville Dam crisis in California (Wang et 69 

al., 2017)). The turn in focus to examining the hydrological cycle collectively is required to 70 

understand the complex interactions which drive these events i.e. the role of soil moisture during 71 

the development of hot and dry compound events (Dirmeyer et al., 2021) or as a measure of 72 

propagation of drought termination through the hydrological cycle during seesaw events (He and 73 

Sheffield, 2020).  74 

In exploring this more holistic approach to extreme hydrometeorological events, the role of 75 

soil moisture emerges as a key component due to the feedback loops present in the interaction 76 

between land and atmosphere (Seneviratne et al., 2010), requiring data which accurately portrays 77 

this process. Similarly, an important first step in investigating extreme hydrometeorological 78 

events is to first gain a broader understanding of the land-atmosphere interactions (i.e. coupling) 79 

and dependence structure between hydrometeorological variables (e.g. soil moisture and 80 

temperature / precipitation) across the study area (Tootoonchi et al., 2022). In doing so, a more 81 
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refined focus is able to be developed to target specific event types i.e. compounding and 82 

seesaw behaviour. 83 

Representation of soil moisture on large spatial scales is often performed via satellite imaging, 84 

which are typically on a coarse resolution (Gruber et al., 2020), and as such lack the fine 85 

resolution required for heterogeneous landscapes such as those found in New Zealand. With 86 

the improved spatial resolution offered by current generation reanalysis products, the 87 

representation of soil moisture within these models is of key interest (Gevaert et al., 2018). 88 

Greater accuracy in soil moisture representation has been highlighted in the current 89 

generation reanalysis datasets across large spatial scales (Ling et al., 2021; Muñoz-Sabater et 90 

al., 2021). However, Li et al. (2020) identified a need for more regional performance 91 

assessments involving fine scales and diverse topography. New Zealand, displaying a complex 92 

topography and varied climate (Macara, 2018), is an ideal candidate for such an assessment. 93 

The primary and most commonly employed dataset for soil moisture analysis in New Zealand 94 

involves a simple water balance approach (Porteous et al., 1994) driven by a high-resolution 95 

precipitation and potential evapotranspiration (PET) dataset based on statistical interpolation 96 

of station observations (the Virtual Climate Station Network (VCSN; Tait et al., 2012; Tait and 97 

Woods, 2007)). Such an approach, while computationally simple and available on a fine 98 

resolution, cannot accurately mimic the soil-vegetation-atmosphere coupling represented in 99 

climate model simulations of the terrestrial water cycle (Berg and Sheffield, 2018). For example, 100 

PET becomes increasingly misrepresentative of actual evapotranspiration (AET) under a warming 101 

atmosphere due to the physiological effects of CO2 on plant water needs (Swann et al., 2016). As a 102 

result, Berg and Sheffield (2018) recommended the use of model outputs rather than offline 103 

proxy metrics for analysis of soil moisture. Therefore, despite the apparent greater accuracy in 104 

the representation of driving variables for soil moisture within the VCSN dataset (Tait et al., 105 

2012; Tait and Woods, 2007), the resultant soil moisture dataset may be inappropriate for 106 

examination of extreme hydrometeorological events across the country, particularly under a 107 

changing climate (Berg and Sheffield, 2018). 108 

With new evidence highlighting agreeable performance in the most recent generation of 109 

reanalysis datasets in the presentation of precipitation and temperature (Pirooz et al., 2021), 110 

accurate representation of soil moisture within the same datasets may allow for a focused 111 
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examination on the land-atmosphere coupling in locations such as New Zealand. As noted by 112 

Dirmeyer et al. (2021), land-atmosphere coupling has been shown to exacerbate both heat waves 113 

and droughts via widespread soil water declines and subsequent dominance of sensible heat in 114 

surface flux partitioning in similar climates to New Zealand. Understanding the role this land-115 

atmosphere coupling has on the severity of high temperature extremes is therefore critical within 116 

the context of a warming climate, while focusing research on the role land-atmosphere coupling 117 

plays during extreme hydrometeorological events could provide new key findings on both heat 118 

waves and drought. Similarly, the rapid transition of land states from dry to wet (or vice versa) is 119 

governed by hydrological persistence, itself controlled by land-atmosphere coupling via the 120 

partitioning of surface fluxes (Ferguson and Wood, 2011; He and Sheffield, 2020). Thus, an 121 

examination of land-atmosphere coupling may also provide insight into these damaging 122 

oscillations in hydrological states by revealing key drivers during the transitional phase. 123 

For New Zealand, the role of land-atmosphere coupling is poorly understood, with no country-124 

wide study yet performed, despite continued research into drought, heat wave and extreme 125 

precipitation events across the country (e.g. Bennet and Kingston, 2022; Reid et al., 2021; Salinger 126 

et al., 2019). For example, Salinger et al. (2019) identified high temperatures across New Zealand 127 

during the 2017/2018 summer which were coupled to sea surface temperatures. However, the 128 

role that land-atmosphere coupling played in either exacerbating the high temperatures or which 129 

resulted in rapid surface drying remains unexplored. With New Zealand covering multiple climate 130 

zones, understanding the characteristics and variation of extreme hydrometeorological events 131 

across this mosaic of climates is vital.  132 

Here, land-atmosphere coupling is investigated using soil moisture as a proxy, given the controlling 133 

nature of soil moisture and its role as a critical variable in land-atmosphere exchanges, with the 134 

strength of coupling defined by the correlation between soil moisture (land) and precipitation / 135 

temperature (atmosphere). The primary aim of this study is to examine the land-atmosphere 136 

coupling across New Zealand, and its role during compound and seesaw events. In doing so, the 137 

role of soil moisture and land-atmosphere coupling during these compound and seesaw events 138 

would, for the first time, be able to be explored in a New Zealand context. Within this primary aim, 139 

the relative performance of soil moisture simulation in the current generation reanalysis products 140 
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will be compared, including an examination of the skill in replicating observed soil moisture within 141 

these reanalysis products.  142 

The findings will thus provide new insight into land-atmosphere coupling for New Zealand, as well 143 

as provide a first look at compound and seesaw events for the country. With the wide 144 

climatological diversity across New Zealand, the findings will be informative more widely, 145 

particularly those concerned with the representation of these interactions at a fine resolution. The 146 

relative performance of reanalysis datasets in representing these interactions, and on the 147 

representation of soil moisture across the varied climate and topography, is expected to also be 148 

informative for the ongoing development of reanalysis products both locally, regionally and 149 

internationally. 150 

2. Data and Methods 151 

2.1. Datasets 152 

2.1.1. Reanalysis Datasets 153 

Hourly soil moisture data were obtained from the European Reanalysis 5th Generation (ERA5; 154 

Hersbach et al., 2020), European Reanalysis 5th Generation Land Component (ERA5-Land; Muñoz-155 

Sabater et al., 2021) and the Bureau of Meteorology (BOM) Atmospheric High-resolution Regional 156 

Reanalysis for Australia (BARRA-R; Su et al., 2019), for the period 1 January 1990 to 31 December 157 

2018. Hourly data were first aggregated into daily and then monthly means, before conversion to 158 

mm of water. 159 

ERA5 is available at a 0.25°x0.25° resolution at hourly intervals (Hersbach et al., 2020), while ERA5-160 

Land available at a resolution of 0.1°x0.1° and at an hourly temporal resolution (Table 1). In 161 

contrast to ERA5 and ERA5-Land , BARRA assimilates additional land-surface observations for New 162 

Zealand from the National Climate Database (CliFlo; NIWA, 2021), with the resulting model output 163 

from BARRA performing better for precipitation and temperature than both ERA5-Land and ERA5 164 

(Pirooz et al., 2021). BARRA is available on a 0.12°x0.12° resolution at 10 minute to hourly intervals 165 

(Su et al., 2019).  166 
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Table 1. Information on reanalysis and gridded climate products used in the study 167 

Dataset Description Period 
Available 

Spatial 
Resolution 

(Horizontal) 

Land Model Soil Layer 
Depths 

(cm) 

Coordinates  
(lat (min, max) /  
lon (min, max)) 

Reference 

VCSN Gridded, 
interpolate 

station 
observations 

1 Jan 1972 
– Present 

0.05°x0.05° NA 
(Interpolated) 

Unknown 166.475, 178.475 /  
-47.275, -34.425 

Tait and 
Turner 
(2005) 

ERA5-Land HTESSEL 
driven by 

downscaled 
ERA5 

1 Jan 1950 
– Present 

0.10°x0.10° HTESSEL 7, 28, 100, 
289 

166.30, 178.70 /  
-47.50, -34.30 

Muñoz-
Sabater et 
al. (2021) 

BARRA UM, initiated 
by ERA-
Interim 

1 Jan 1990 
– 28 Feb 

2019 

0.12°x0.12° JULES 10, 35, 100, 
300 

166.42, 178.63 /  
-47.29, -34.42 

Su et al. 
(2019) 

ERA5 IFS Cycle 41r2 1 Jan 1979 - 
Present 

0.25°x0.25° HTESSEL 7, 28, 100, 
289 

166.50, 178.75 /  
-47.25, -34.25 

Hersbach et 
al. (2020) 

 168 

2.1.2. Soil Moisture Standardisation 169 

A graphical illustration of the methodological framework employed in the present study is 170 

contained in Fig. S2. To describe: ERA5-Land and ERA5 both contain soil moisture at four depths 171 

(0-7, 7-28, 28-100 and 100-289 cm), while the BARRA dataset similarly contains soil moisture at 172 

four different depths (0-10, 10-35, 35-100 and 100-300 cm). For comparative purposes, only the 173 

first two depths were accessed for each dataset, as observations (Section 2.1.4) are taken at a 20 174 

cm profile depth. For the BARRA dataset, conversion to fractional volumetric soil moisture (m3 m-3) 175 

was first required before applying the procedure of Li et al. (2005) (Equations 1 and 2). Equation 1 176 

denotes the procedure for ERA5-Land and ERA5, while Equation 2 denotes the procedure for 177 

BARRA. 178 

 𝑊 = 200(0.35 × 𝜃 + 0.65 × 𝜃 ) (1) 

 𝑊 = 200(0.5 × (𝜃 /100) + 0.5 × (𝜃 /250)) (2) 

 179 

where W represents the soil moisture (mm) in the top 20 cm of soil, 𝜃  represents the 180 

volumetric soil moisture for layer one (0-7 cm, ERA5-Land and ERA5; 0-10 cm, BARRA) and 𝜃  the 181 

volumetric soil moisture for layer two (7-28 cm, ERA5-Land and ERA5; 10-35 cm, BARRA) (adapted 182 

from Li et al. (2005)). 183 

2.1.3. Precipitation and Temperature Gridded Datasets 184 



manuscript submitted to the Journal of Geophysical Research: Atmospheres 
 

9 
 

The Virtual Climate Station Network (VCSN), complied and hosted by the National Institute of 185 

Water and Atmospheric Research (NIWA), was selected to provide precipitation and temperature 186 

data. VCSN provides daily estimates of climatic data on a 5km grid covering New Zealand (Tait and 187 

Turner, 2005). 188 

VCSN data were accessed for 1 January 1990 to 31 December 2018. Daily estimates are produced 189 

based on the daily interpolation of actual data observations made at climate stations located 190 

across the country (Tait and Turner, 2005). Temperature was available as daily minimum and 191 

maximum values. Monthly means of both minimum and maximum temperature were first 192 

calculated, before monthly mean temperature was obtained as the average of the monthly 193 

minimum and maximum temperature. Daily precipitation data were summed across each month. 194 

Due to the different grid cell resolutions of the reanalysis products, VCSN monthly total 195 

precipitation and mean temperature were regridded (aggregated) to the native resolution of each 196 

reanalysis dataset (Table 1.1). Aggregation was performed using the nearest neighbour method. 197 

As analysis was performed on a monthly time step, the ability to capture the statistical properties 198 

at fine resolutions was not a dominating consideration (Rajulapati et al., 2021). 199 

2.1.4. Station Observations 200 

To enable comparisons against specific locations, ground station observations of soil moisture 201 

were obtained from the NIWA Automatic Weather Station (AWS) network (CliFlo climate 202 

database; NIWA, 2021). Mean monthly soil moisture was used. Soil moisture measurements taken 203 

at all locations are at a standard depth of 20 cm (NIWA, 2021). 204 

Twelve locations were selected as ground station observations (Fig. 1), to best represent the 205 

complex and varied climate across New Zealand. Locations were first selected based on the seven 206 

station temperature series (7SS) of Mullan et al. (2010), originally designed to sample from most 207 

parts of New Zealand and which is often used as basis for understanding the national temperature 208 

response to climate change. Reefton replaced the Hokitika 7SS location, Paraparaumu replaced 209 

Wellington, Martinborough replaced Masterton and Hamilton replaced Auckland, all due to the 210 

lack of consistent soil moisture data at the original locations. Additional stations have been added 211 

to capture greater variety of climatic regions throughout New Zealand (Kaitāia, Gisborne, 212 

Stratford, Invercargill and Lauder) (Fig. 1). The longest station record was Kaitāia (November 213 
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1999), with the shortest at Hamilton (December 2005), with an average length of record across all 214 

12 sites of 18 years / 212 months (n = 2539) (Table S1). 215 

 216 

Fig. 1 Observational site locations and grid cell locations from each reanalysis dataset (boundaries 217 

as represented by colouration) used for statistical analysis. Elevation is represented by grey scale. 218 

A missing monthly value is outputted from CliFlo if there are more than 10 (or 5 consecutive) 219 

missing daily observations within a selected month, which numbered n = 34 (1.34%) in the current 220 

work. For missing values, the average monthly value for the month concerned was taken across 221 

the entire time series of that selected station (i.e. a mean of all January’s for the relevant station 222 

across the entire time series). The CliFlo database returns soil moisture as a percentage of the 223 

total soil volume (soil profile depth of 20 cm), with conversion to mm of water being performed by 224 

multiplying the percentage of total soil volume by the soil profile depth. 225 
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2.2. Analysis of Soil Moisture Observations to Reanalysis Datasets 226 

The closest grid cell at each observation location was identified from each reanalysis dataset (Fig. 227 

1). Subsequent analysis was then performed between these ground station measurements and 228 

grid cell values, with the time series length stipulated by the length of the station record (Table 229 

S1). 230 

Annual cycles at each location were calculated as the mean of each month for all datasets 231 

(observations, ERA5-Land, BARRA and ERA5), thereby creating a 12 station series of soil moisture 232 

for New Zealand. A single time series for each dataset was also constructed by integrating the data 233 

across all 12 locations (i.e. mean of all locations; 12 stations), with standard deviations also shown. 234 

These dataset mean time series were then further analysed by performing seasonal trend 235 

decomposition, to reveal the underlying trend, seasonal and residual components of the original 236 

time series. Seasonal trend decomposition was performed using the Seasonal and Trend 237 

decomposition using Loess method (STL; Cleveland et al., 1990), following the best practice 238 

recommended by Gruber et al. (2020). These underlying components were analysed using Root 239 

Mean Square Error (RMSE) and correlation (Pearson’s r; Pearson, 1895), with the trend 240 

component further analysed by applying ordinary least square regression on each dataset. 241 

At each location, a range of statistical analyses were conducted. Pearson’s correlation coefficients 242 

were calculated between the observational data and the corresponding reanalysis grid cells. 243 

Pearson correlation coefficient was used as a measure of temporal variability, with its use 244 

insensitive to the inherent scale discrepancy between comparing in situ measurements and model 245 

grid cells (Gruber et al., 2020). Standard deviation was calculated within each dataset at each 246 

location, while the trend in the data at each site (as expressed by each 11atasett) was calculated 247 

as the linear trend using ordinary least square. 248 

2.3. Soil Moisture and Precipitation / Temperature Coupling 249 

The representation of land-atmosphere coupling across New Zealand was also investigated, via a 250 

simple correlation (Kendall’s 𝜏; Kendall, 1938) between monthly mean soil moisture and total 251 

precipitation/mean temperature. While correlation cannot demonstrate causality, it can provide 252 

an indication of possible physical relationships, especially where causality has already been 253 

established (Seneviratne et al., 2010), and has been used successfully to evaluate land-atmosphere 254 
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coupling (Knist et al., 2017, Li et al., 2017). Monthly total precipitation and mean temperature 255 

data from the VCSN (Tait and Turner 2005) were aggregated to the native resolution of each 256 

individual reanalysis soil moisture dataset (ERA5-Land, BARRA and ERA5). The VCSN dataset was 257 

selected to set a consistent representation of precipitation and temperature, allowing any 258 

differences in land-atmosphere coupling to then be attributed to the representation of soil 259 

moisture within each dataset. 260 

Insightful understanding of land-atmosphere coupling can be gained from investigating across 261 

spatial and temporal lengths wider than those allowed by observation data (Gentine et al., 2019). 262 

The removal of observational data from this part of the analysis allowed the study period to be 263 

extended back to the length of the shortest reanalysis dataset (1990 – BARRA; see Table 1). These 264 

extended time series were again decomposed to exclude the seasonal component using STL 265 

(Cleveland et al., 1990), before restricting the datasets to the growing season, herein defined as 266 

November – March (Salinger, 1987). The focus on growing season was made because of the 267 

stronger land-atmosphere coupling typically experienced during the period (Chen and Dirmeyer, 268 

2020). Seasonality was removed to enable more rigorous evaluation of the coupling in mean soil 269 

moisture and total precipitation / mean temperature (Li et al., 2020), on the knowledge that 270 

seasonal cycles are well captured in reanalysis products (Jiao et al., 2021). 271 

Trends in total precipitation and mean temperature were calculated at the grid cell level in the 272 

deseasoned, growing season time series from 1990-2018, using least square regression. Trends 273 

were also calculated for mean soil moisture from each reanalysis dataset. Deseasoned mean soil 274 

moisture for the growing seasons from 1990 to 2018 from each of the reanalysis datasets was 275 

compared to the aggregated, deseasoned total precipitation and mean temperature for the 276 

growing seasons from 1990 to 2018, using the Kendall’s 𝜏 correlation metric. 277 

The aggregated, deseasoned total precipitation, mean temperature and mean soil moisture (from 278 

each reanalysis product), was interrogated for the entire time period; January 1990 to December 279 

2018 (i.e. no growing season restriction). The data were first filtered into dry and wet periods, 280 

representing the lowest/highest third of monthly mean soil moisture (n = 116). Monthly soil 281 

moisture from each dataset were first ranked from highest to lowest, before selecting the top and 282 

bottom third to represent the wet and dry periods. Total precipitation and mean temperature 283 
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were then also restricted to these same monthly dates and coupling strength (Soil Moisture-284 

Precipitation (SM-P); Soil Moisture-Temperature (SM-T)) then calculated using Kendall’s 𝜏. 285 

2.4. Compound and Seesaw Events 286 

Accurate representation of soil moisture is equally important for the study of individual extreme 287 

hydrometeorological events (Fischer et al., 2007; Sheffield et al., 2004; Sivapalan et al., 2005), and 288 

when investigating compound and seesaw event behaviour (He and Sheffield 2020; Whan et al., 289 

2015). Here, the raw monthly total precipitation and monthly maximum temperature, for each 290 

aggregated VCSN dataset, was first standardised to a normal distribution, with a mean of zero and 291 

standard deviation of one. A one-month accumulation period was utilised, while 12 distributions 292 

were fitted (i.e. one for each month) to account for seasonal differences (Kao and Govindaraju, 293 

2010). Standardisation was achieved via the Gamma distribution (precipitation; Standardised 294 

Precipitation Index, SPI) (McKee et al., 1993), the normal distribution (temperature; Standardised 295 

Temperature Index, STI) (Zscheischler et al., 2014), and the Beta distribution (Standardised Soil 296 

Moisture Index; SSMI) (Hao and AghaKouchak, 2014; Sheffield  et al. 2004). 297 

After transformation to the standard normal distribution, compound events were defined as the 298 

co-occurrence of soil moisture (SSMI) below -1, and maximum temperature (STI) above 1 (i.e. 299 

bottom/top 32%) at each grid cell to describe the joint dry (soil moisture) and hot (temperature) 300 

conditions. This co-occurrence of extremes was examined both as counts of the number of 301 

occurrences (months) across the time series (1990-2018), and by applying a Mann-Kendall test 302 

(Mann, 1945) at each grid cell to identify any trend in the co-occurrences of hot and dry conditions 303 

(Feng et al., 2021). This process was repeated for each reanalysis dataset. 304 

Seesaw events were defined and examined using the procedure of He and Sheffield (2020): an 305 

Event Coincidence Analysis (ECA) (Siegmund et al., 2017) was undertaken to identify how 306 

frequently droughts (dry periods) are followed by pluvials (wet periods), with a mutual delay of 1 307 

month to capture rapid transitions in hydrometeorological states. The use of a 1 month delay 308 

differs to that of He and Sheffield (2020) who employed a 3 month delay to capture seasonal scale 309 

transitions. In simple terms, the 1 month delay reflects a change from drought conditions to 310 

pluvial conditions during the following month, thus capturing abrupt endings to dry phases. 311 

Poisson based significance tests were also applied to each land grid cell to identify if the estimated 312 
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seesaw event occurrence was significant or not. Further in-depth details of the process are 313 

contained in the work of He and Sheffield (2020) and Siegmund et al. (2017). For seesaw events, 314 

droughts were defined as any month below the -1 threshold in the SSMI dataset, with pluvials 315 

identified as those months above the +1 threshold in the SPI. The occurrence of both droughts and 316 

pluvials, defined by exceedance of precipitation at the -1/1 level (SPI) was also performed. This 317 

process was again repeated for each reanalysis dataset. 318 

3. Results 319 

3.1.  Soil Moisture Comparison  320 

Observational data shows a clear seasonal cycle at all sites (Fig. 2). Peaks in soil moisture occur in 321 

late winter (July/August), with the lowest values recorded in late summer or early autumn 322 

(February/March). The highest average soil moisture is recorded at Nelson (123 mm), while the 323 

lowest average soil moisture is recorded at Paraparaumu (17 mm). Annual cycles at each site show 324 

varying degrees of performance across the reanalysis datasets, with no one dataset emerging as 325 

better performing (median correlation of 0.79). Martinborough (ERA5-Land; range of 1 mm and 326 

BARRA; range of 4 mm) and Stratford (ERA5; range of 5 mm) show the smallest deviation in annual 327 

cycles to observations, while Nelson shows the largest (all reanalysis datasets; average range of 48 328 

mm). 329 
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smaller magnitude than observational data. Observational data reveals a statistically significant 339 

increasing trend in soil moisture (0.57 mm yr-1). No reanalysis dataset is able to capture the 340 

statistically significant increasing trend seen in the observations. Correlation in the trend 341 

components (after STL decomposition) is strongest with observations and ERA5 (0.80), while 342 

weakest with ERA5-Land (0.67), while RMSE is largest between ERA5 and observations (18.22), and 343 

smallest with BARRA (6.80). 344 
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Table 2. Statistics of seasonal trend decomposition (performed using STL) of the reanalysis 351 
datasets soil moisture and observational soil moisture (see Figure 3). 352 

Statistic Category ERA5 Land BARRA ERA5 
Standard Deviation (15.35 for Obs)  8.96 7.73 7.64 
Correlation Coefficients Time Series 0.91 0.89 0.92 
(Reanalysis and Observations) Trends 0.67 0.68 0.80 
 Seasonal 0.98 0.97 0.99 
 Residual 0.79 0.78 0.84 
Root Mean Square Error Time Series 14.01 16.62 19.35 
(Reanalysis and Observations) Trends 6.97 6.80 18.22 
 Seasonal 58.98 63.53 50.98 
 Residual 1309.20 1721.50 1423.83 
Linear Trend (0.56 mm yr-1 for Obs)  0.09 0.02 0.12 

 353 

Correlations between the seasonal component of the integrated time series demonstrates ERA5 as 354 

the best performing (0.99), followed by ERA5-Land (0.98) and then BARRA (0.97) (Fig. 3; Table 2). 355 

ERA5, ERA5-Land and then BARRA show decreasing ability in capturing the residual range, 356 

although a smaller RMSE is present between the residuals of ERA5-Land and the observations 357 

(1309.20). All reanalysis datasets capture anomalous conditions present in the observational 358 

dataset, such as the summers of 1999/2000 and 2017/2018.  359 

All reanalysis datasets show a frequent underestimation of high values and overestimation of low 360 

values when compared to observations (Fig. 4). The smallest mean differences between reanalysis 361 

datasets and observations are found at Dunedin (ERA5-Land; 3 mm), Hamilton (BARRA; 1 mm) and 362 

Invercargill (ERA5; 2 mm), while the largest occur at Paraparaumu (ERA5-Land; 25 mm and BARRA; 363 

32 mm) and Nelson (ERA5; 57 mm). Paraparaumu reveals a consistent overestimation in ERA5-364 

Land and BARRA, while only ERA5 shows this overestimation at low values. A consistent 365 

underestimation of observational data by ERA5 is found at Nelson and Gisborne. Similar 366 

distributions are seen across all three reanalysis datasets at Stratford, with Hamilton revealing the 367 

largest differences in the representing of soil moisture to observations across all three reanalysis 368 

datasets. 369 
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datasets show similar standard deviations at all sites, with similar median scores (range of 0.88). 379 

The largest difference in standard deviations between observations and datasets occurs at Nelson 380 

(ERA5; 23.44), while ERA5-Land shows the smallest difference to observational standard deviation 381 

at Martinborough (0.08).  382 
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Table 3. Summary statistics of soil moisture (correlation, standard deviation and trend) at each 383 
location, between observations and the corresponding grid cell from each reanalysis dataset. 384 
Statistical significance (p=0.05) is indicated by yellow highlighting.  385 

Statistics Location Observations ERA5 Land BARRA ERA5 
Correlation Invercargill - 0.60 0.60 0.57 
 Dunedin - 0.77 0.68 0.75 
 Lauder - 0.75 0.74 0.78 
 Lincoln - 0.91 0.86 0.85 
 Reefton - 0.41 0.32 0.39 
 Nelson - 0.82 0.86 0.85 
 Martinborough - 0.84 0.84 0.83 
 Paraparaumu - 0.73 0.76 0.83 
 Stratford - 0.61 0.62 0.62 
 Gisborne - 0.92 0.81 0.92 
 Hamilton - 0.82 0.83 0.83 
 Kaitāia - 0.79 0.79 0.78 
 Median - 0.78 0.78 0.80 
Standard Deviation Invercargill 24.63 7.75 7.38 6.16 
 Dunedin 13.88 9.51 6.10 10.86 
 Lauder 27.90 9.57 13.66 9.01 
 Lincoln 16.83 13.48 12.40 10.92 
 Reefton 17.10 4.03 3.74 3.72 
 Nelson 26.81 6.40 8.39 3.37 
 Martinborough 14.04 13.96 12.79 9.54 
 Paraparaumu 12.82 8.95 10.19 5.25 
 Stratford 17.06 11.87 7.05 11.56 
 Gisborne 17.16 14.76 30.72 10.37 
 Hamilton 18.64 14.17 11.13 14.24 
 Kaitāia 20.01 10.77 8.11 9.50 
 Median 17.13 10.17 9.29 9.52 
Trend (mm yr-1) Invercargill 0.97 -0.02 0.02 -0.04 
 Dunedin 0.79 0.17 0.12 0.19 
 Lauder 1.01 -0.03 0.14 0.05 
 Lincoln 0.07 0.37 0.03 0.29 
 Reefton 0.09 0.00 -0.03 0.00 
 Nelson 0.52 0.10 0.03 0.05 
 Martinborough -0.57 0.27 0.03 0.27 
 Paraparaumu 0.54 0.20 0.06 0.18 
 Stratford 2.19 -0.06 0.01 -0.04 
 Gisborne 0.80 0.04 -0.08 0.06 
 Hamilton 0.76 0.33 0.20 0.33 
 Kaitāia 0.60 0.03 0.03 0.06 
 Median 0.68 0.07 0.03 0.06 

 386 
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All datasets fail to adequately capture the range of trends in observational data at each station 387 

(Table 3), with an observed median trend of 0.68 mm yr-1 and a median trend range of 0.04 mm yr-388 
1 across the three reanalysis datasets. Statistically significant trends are found in observational 389 

data at all locations apart from Lincoln, Reefton, Nelson and Hamilton. BARRA does not capture 390 

any statistically significant trends. While observational data show no statistically significant trend 391 

at Lincoln, both ERA5-Land and ERA5 do. ERA5 records a statistically significant trend at 392 

Paraparaumu (albeit weaker than that in the observed data at this site), but registers a significant 393 

positive trend at Martinborough when the observations show a significant negative trend. The 394 

largest difference in trend occurs at Stratford (ERA5-Land; 2.25 mm yr-1), with the smallest 395 

difference occur at Lincoln (BARRA; 0.04 mm yr-1). Lincoln also has the largest range in trends (0.34 396 

mm yr-1) across the reanalysis datasets, with Reefton and Kaitāia having the smallest spread in 397 

trend (0.03 mm yr-1). 398 

3.2. Land-Atmosphere Coupling 399 

Statistically significant declines in precipitation (VCSN; country wide average of -0.61 mm per 400 

growing season) are found across the lower North Island, north-west South Island and parts of the 401 

Southern Alps, while the highest elevation regions of the Southern Alps show significant increases 402 

(Fig. 5). Statistically significant temperature (VCSN) increases occur across most of the country 403 

(country wide increase of 0.04 °C per growing season), with the exception of inner montane 404 

regions in the middle of the South Island and northeastern areas of both islands. 405 
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Soil moisture trends show agreement across all datasets, with declines throughout much of the 413 

country (Fig. 5; average country wide declines of 0.13 mm per growing season). Significant 414 

declines occur throughout the lower inner montane regions of the South Island and parts of the 415 

bottom of the country, while both BARRA and ERA5-Land reveal further significant declines 416 

throughout the north east and west of the South Island and the lower southeast and parts of the 417 

west coast of the North Island, which are strongest within the BARRA dataset. Broad agreement 418 

across datasets occurs with increased soil moisture across the upper North Island (not significant). 419 

ERA5-Land and ERA5 both reveal similar spatial patterns to changes in soil moisture, while BARRA 420 

indicates opposite signs of soil moisture patterns throughout the bottom and upper east coast of 421 

the North Island (decrease/increase in BARRA, increase/decrease in ERA5-Land and ERA5). 422 

SM-P correlation (Kendall’s 𝜏) shows good agreement across all reanalysis datasets, with 423 

statistically significant positive correlations across the entire country (Fig. 6; country average of 424 

0.42 across all three reanalysis datasets). SM-T correlation also shows broad agreement between 425 

datasets (country wide average of -0.24 across all three reanalysis datasets). Significant negative 426 

correlations are found across all reanalysis datasets for much of the South Island and the lower 427 

North Island. The strongest coupling is found throughout the lower inner montane regions of the 428 

South Island, similar across all reanalysis datasets. The upper North Island displays positive 429 

correlation between soil moisture and temperature (significant in BARRA), represented across all 430 

reanalysis datasets, while this positive correlation extends into the middle reaches of the North 431 

Island within the BARRA dataset. 432 
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Good agreement in correlation strength is found amongst the datasets for both the dry and wet 439 

seasons. SM-P correlation during dry seasons shows widespread significant coupling across the 440 

entire country (country average of 0.32 across all three reanalysis datasets), with the strongest 441 

correlations across the south and west coast of the South Island (ERA5 and ERA5-Land) and lower 442 

east coast of the North Island (Fig. 7). Such a pattern is similarly replicated during the wet season 443 

(Fig. 8; country average of 0.30 across all three reanalysis datasets). Significant negative SM-T 444 

correlations are again present across much of the country during both the dry and wet seasons 445 

(country of average of -0.10/-0.08 across all three reanalysis datasets for dry/wet seasons), with 446 

the exception of the upper South Island and most of the top half of the North Island, similar across 447 

all reanalysis datasets. BARRA highlights positive SM-T correlation across these areas during the 448 

dry season. The emergence of these regions with positive SM-T correlations is stronger (and in 449 

agreement across all datasets) during the wet season, excluding the upper South Island. 450 
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with regards to decreasing trends in hot and dry months in the north east regions of both islands, 484 

although this is not statistically significant for BARRA across the north east of the South Island. 485 

Agreement in the representation of seesaw events (droughts which are followed by pluvials within 486 

one month; as a percentage) is present across all reanalysis datasets in the lower east coast 487 

regions of the South Island (25%-35%) and the Southern Alps (15%-25%) during the summer 488 

period, while during the winter period agreement is present throughout the lower South Island 489 

(25%-35%). Significant event occurrence (Poisson-based) across the upper east coast of the South 490 

Island agrees across all datasets during winter, although this is weaker in BARRA, with ERA5 and 491 

ERA5-Land also being significant during summer and the full time series. The middle reaches of the 492 

North Island contain significant event occurrences throughout all datasets and periods (15%-35%), 493 

except for the ERA5 full time series. 494 
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In comparison to seesaw events defined by SSMI droughts, seesaw events defined by SPI droughts 503 

show agreement across the south and north east of the South Island during winter periods. In 504 

contrast, the south of the South Island reveals significant seesaw event occurrence when droughts 505 

are defined using the SPI during summer periods and across the full time series, which is not 506 

present with SSMI defined droughts. During winter, the west coast of the North Island reveals a 507 

similar contrast between SSMI and SPI defined droughts.  508 

4. Discussion 509 

4.1.  Comparison to Soil Moisture Observations 510 

No substantial differences are detected between the three reanalysis soil moisture datasets 511 

(ERA5-Land, BARRA and ERA5). In particular, no dataset offers a better performance when 512 

compared to station observations (median correlation range of 0.02), nor does any spatial 513 

agreement become apparent (Fig. 4; Table 3). The similar performance of BARRA to both ERA5-514 

Land and ERA5 indicates that the assimilation of local station observations into the model does not 515 

result in significant improvements in the representation of soil moisture, despite the greater 516 

accuracy in the representation of both precipitation and temperature for New Zealand within 517 

BARRA (Pirooz et al., 2021) and the good skill in soil moisture representation within the underlying 518 

JULES land surface model (Yang et al., 2014). This absence of any significant improvement in 519 

BARRA indicates that the performance increases seen in ERA5 Land (increased resolution) and 520 

ERA5 (satellite assimilation) may be of more significance to increased soil moisture representation 521 

skill than assimilation of primary variables from local station observations. 522 

Minor improvements in the representation of ERA5 soil moisture compared to observations (mean 523 

of all locations) across New Zealand are apparent, particularly relating to the ability to capture the 524 

temporal trends and anomalies (Table 2; correlations of 0.80 and 0.84 respectively). Within the 525 

ERA5 land-surface model, soil moisture is corrected via the use of assimilated satellite 526 

observations (de Rosnay et al., 2014), resulting in improvements compared to previous generation 527 

reanalysis products globally (Li et al., 2020). Of note, the ERA5-Land dataset does not benefit from 528 

this assimilation process (Beck et al., 2021).  529 

The lack of improvement between ERA5 and ERA5 Land for soil moisture representation in the 530 

current work stands in contrast to the improvements found between ERA5 and ERA5 Land that 531 
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was achieved via an increase in model resolution (Beck et al., 2021; Muñoz-Sabater et al., 2019), 532 

although the differences in skill are minor (Fig. 2; Table 2; average correlation difference of 0.05). 533 

The performance of ERA5-Land in capturing the complexity in soil moisture characteristics and 534 

terrain for New Zealand (Hewitt, 2010; Salinger and Mullan, 1999) when downscaled to a fine 535 

resolution, itself embedded within the uncertainties of comparing point based with grid scale 536 

measurements (Li et al., 2020), may explain these minor differences. Therefore, the improvements 537 

in soil moisture representation via assimilated satellite observations revealed here (Fig. 3; Table 2) 538 

provide important findings for the continued advances in regional scale reanalysis products (Su et 539 

al., 2021) and the proposed New Zealand Reanalysis (NZRA; Pirooz et al., 2021).  Advancements of 540 

regional and local reanalysis soil moisture products may therefore be further improved via the 541 

use of local climate data assimilation together with satellite assimilation of soil moisture 542 

observations. Despite the inability of the three reanalysis datasets to capture the observed soil 543 

moisture trend (0.56 mm yr-1), the accurate portrayal of extreme events and the seasonal cycle in 544 

soil moisture, emphasised as the true value in soil moisture representation by Koster et al. (2009), 545 

make all three reanalysis soil moisture datasets worthwhile additions to any investigation of 546 

extreme hydrometeorological events (Fig. 3; Table 2). 547 

4.2. Land-Atmosphere Coupling 548 

Trends in both growing season precipitation and temperature (1990-2018) are similar to those 549 

summer temperature and precipitation increases reported both nationally (Mullan et al., 2010) 550 

and internationally (IPCC, 2021), with a mean growing season (November-March) temperature 551 

increase (precipitation decrease) of 0.04°C (0.61 mm). Here, trends in soil moisture (1990-2018), 552 

ranging from -0.51 to +0.17 mm per growing season (mean -0.13 mm), are reported for the first 553 

time for New Zealand. The declines in soil moisture across much of the South Island and lower 554 

North Island (Fig. 5) closely resemble the widespread negative correlation between soil moisture 555 

and temperature (Fig. 6). The close spatial agreement between SM-T correlation and soil moisture 556 

declines, embedded within country-wide growing season temperature increases, reinforces the 557 

importance of soil moisture and land-atmosphere coupling, even for temperate/maritime climate 558 

zones. Meanwhile, the strong correlation between soil moisture and precipitation is typical of a 559 

maritime climate (Sehler et al., 2019).  560 



manuscript submitted to the Journal of Geophysical Research: Atmospheres 
 

34 
 

Areas of positive SM-T correlation exist across the upper North Island in the BARRA dataset (Fig. 7) 561 

while during the wet season these areas become significantly positively correlated (SM-T) within 562 

all datasets (Fig. 8), highlighting the regional differences in atmospheric drivers of soil moisture. 563 

With relatively minor precipitation changes across growing seasons, the emergence of soil 564 

moisture declines, together with the strong correlation within SM-T relationships, further 565 

evidences the importance of SM-T coupling for New Zealand. The strong SM-T coupling during the 566 

growing season indicates a phase change in land states for these typically wet regions during dry 567 

seasons, revealing potential “hot spot” areas of land-atmosphere coupling like that witnessed 568 

during the 2018 summer drought and heatwave across the wet, energy-limited regions of 569 

Northern Europe and the United Kingdom (Dirmeyer et al., 2021; Orth, 2021). 570 

As noted by Berg and Sheffield (2018), soil moisture proxy metrics (such as the Standardised 571 

Precipitation and Evapotranspiration Index (SPEI) and Potential Evapotranspiration Deficit (PED)) 572 

indicate dramatic increases in future global drought severity, in contrast to trends in the soil 573 

moisture outputs from modelled land-atmosphere systems. Berg and Sheffield (2018) suggest that 574 

the soil moisture-vegetation-atmosphere coupling, inherent in land-atmosphere models, explains 575 

this discrepancy via the representation of AET over PET, and calls for the assessment of droughts 576 

using these model outputs rather than offline proxy metrics.  577 

Importantly, the land-atmosphere coupling which Berg and Sheffield (2018) suggests may explain 578 

drought projection discrepancies (via complex soil moisture-energy flux feedbacks) exists in the 579 

current work (Fig. 6; Fig. 7; Fig. 8). Projections of drought risk for New Zealand indicate increased 580 

drought risk across the country under various Representative Concentration Pathway (RCP) 581 

scenarios (Mullan et al., 2018), while historical soil moisture changes have also highlighted 582 

increased drought risk (Ministry for the Environment and Statistics New Zealand, 2020; Porteous 583 

and Mullan, 2013).  These drought projections and investigations in a New Zealand context have 584 

involved offline projections using soil moisture proxy metrics such as the SPEI and PED, with 585 

reported soil moisture declines in excess of those present here (Porteous and Mullan, 2013). 586 

Therefore, previous assessments of drought across New Zealand would benefit from a careful re-587 

evaluation using coupled soil moisture products. 588 

4.3. Compound and Seesaw Events 589 



manuscript submitted to the Journal of Geophysical Research: Atmospheres 
 

35 
 

With the correlation between soil moisture and temperature during growing seasons in mind (Fig. 590 

6), the spatial agreement with compounding hot and dry months (Fig. 9) suggests soil moisture 591 

drought (dry) plays some combination of roles as a driver and/or outcome of heat wave 592 

occurrence (hot). An ever-growing body of research internationally (Hao et al., 2020; Zscheischler 593 

et al., 2018; Wu et al., 2021) indicates the substantial negative impact these co-occurring, or 594 

compounding, events can have. With the current work revealing such compounding effects are 595 

present throughout New Zealand (maximum occurrence of hot and dry conditions occurring 10% 596 

of the time between 1990-2018), further work is urgently required in exploring the role heat 597 

waves may play in the onset of flash droughts (Mo and Lettenmaier, 2015), or the role drought 598 

may play in priming the land surface for heat wave onset (Dirmeyer et al., 2021). 599 

While a relatively cool climate, heat waves in a New Zealand context have recently come under 600 

increased scrutiny, with developments highlighting the importance of relative heat (Harrington, 601 

2021) and the role of sea surface temperatures on atmospheric conditions (Salinger et al., 2019). 602 

In particular, heat wave risk has shown to have strong regional variation under temperature 603 

increases (Harrington and Frame, 2022). The low occurrence of compound hot and dry conditions 604 

across the upper north and northeast of the North Island (Fig. 9) sits in contrast to the increase in 605 

hot days found by Harrington (2021), while the high number of compounding months sits 606 

somewhat more in agreement spatially to hot day occurrence. The discrepancy suggests that soil 607 

moisture plays a less important role in compound event occurrence across the upper north and 608 

northeast of the North Island which results in a more stable land state during dry phases (Orth, 609 

2021), particularly when viewed collectively with the weak to positive covariation in SM-T 610 

throughout these typically wet or transitional regions (Fig. 6). 611 

Modest frequency of seesaw event occurrence (i.e. on average 17% of droughts are followed by 612 

pluvial activity the following month) is found in the present work, like that found globally by He 613 

and Sheffield (2020). This modest occurrence may in part reflect the approach of He and Sheffield 614 

(2020) in creating binary event occurrence for seesaw event detection, resulting in a loss of 615 

information as a result of the strict detection criteria. SPI-defined drought identify a greater 616 

occurrence of seesaw events than SSMI-defined drought throughout the west coast of the North 617 

Island (winter) and lower South Island (summer), due to the one-month accumulation period 618 

being unable to capture the persistent nature of soil moisture droughts (Hao and AghaKouchak, 619 
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2013). In contrast, the stronger seesaw event occurrence under SSMI droughts during winter in 620 

the north-east of the South Island indicates a strong persistence of drought conditions throughout 621 

the region that is not captured by the SPI, highlighting the complicated dynamics of regional 622 

differences in land surface interactions and the propagation of drought through the hydrological 623 

cycle. Investigating these seesaw event occurrences requires further exploration, particularly 624 

relating to an exploration of the temporal delay to capture seasonal cycles (He and Sheffield, 625 

2020). 626 

The rapid transition from dry to wet during seesaw events implies substantial and/or persistent 627 

precipitation events. In New Zealand, Reid et al. (2021) identified that eight (Christchurch and New 628 

Plymouth) and nine (Dunedin) of the top ten rainfall events were associated with an atmospheric 629 

river; narrow bands of intense water vapour transport (Newell et al., 1992) that have becoming 630 

increasingly associated with extreme precipitation and flooding across New Zealand (Prince et al., 631 

2021; Shu et al., 2021). These same sites (Christchurch, New Plymouth and Dunedin) 632 

simultaneously reveal high occurrence of seesaw events in the present work (Fig. 10). Further, 633 

Reid et al. (2021) identified a strong seasonal cycle in atmospheric river occurrence, with over 60% 634 

of events occurring during the warm period (January – April), with high seesaw event occurrence 635 

during the summer phase also revealed in the present work (Fig. 10). The presence of strong 636 

seesaw event occurrence in similar regions to those that experience frequent atmospheric rivers 637 

(Prince et al., 2021; Reid et al., 2021) suggests the possibility of “drought buster” behaviour 638 

associated with atmospheric rivers (Dettinger, 2013). While the present study indicates 639 

preliminary findings of seesaw event behaviour for New Zealand, a more focused investigation is 640 

needed, including understanding the role atmospheric rivers play during this transitional phase. 641 

5. Conclusion 642 

For regions with physically diverse landscapes such as New Zealand, the increased resolution of 643 

current generation reanalysis datasets makes them an increasingly attractive option for 644 

climatological and hydrological analysis. The ability of the reanalysis datasets here to capture the 645 

seasonal cycle and residual anomalies highlights the strong utility reanalysis soil moisture products 646 

have, particularly considering the real value in soil moisture data exists in its time variability rather 647 

than the representation of absolute magnitudes. With existing soil moisture data across New 648 

Zealand often employing as an offline proxy metric, the ability of the current generation products 649 
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to capture the soil moisture cycles and coupling regimes, is a key benefit. The results here indicate 650 

good agreement in the representation of soil moisture in the three investigated reanalysis 651 

datasets for the period 1999-2018 (ERA5 Land, BARRA and ERA5; correlation range of 0.03). While 652 

trends in soil moisture are unable to be adequately captured by reanalysis products (mean of 653 

0.08 mm yr-1 compared to 0.56 mm yr-1 in observations), the performance must be considered 654 

relative to the difficulties of comparing point based and grid cell data, while the agreement in 655 

seasonal cycle (correlations of 0.97-0.99) and ability to capture anomalies (correlations of 656 

0.79-0.84) of the reanalysis dataset are promising. For the extended period 1990-2018, mean 657 

(ERA5 Land, BARRA and ERA5), New Zealand wide declines in growing season soil moisture of 0.13 mm 658 

are reported for the first time. 659 

Land-atmosphere coupling in a New Zealand context is poorly understood, with land variation 660 

often assumed to be driven by precipitation interactions. While clearly playing a significant role, 661 

the interaction of SM-T correlations reveals key areas of the country where soil moisture responds 662 

strongly to temperature variation. Spatially, the increased strength of the correlation between soil 663 

moisture and temperature matches the reported temperature increase (0.04 °C per growing 664 

season), with important implications under projected temperature increases. Further work 665 

should be directed towards a detailed investigation involving heat and energy fluxes to unravel the 666 

role soil moisture plays on temperature in a New Zealand context. Examining changes in drought 667 

(via soil moisture) behaviour under a changing climate using these coupled products would be 668 

insightful, particularly when compared to the soil moisture proxy metrics traditionally employed in 669 

a New Zealand context. 670 

For the first time, compounding and seesaw events are examined in a New Zealand context, 671 

reflecting the turn in focus in the international research community. With regards to compound 672 

events, the present study highlights large portions of the country where compounding hot and dry 673 

conditions occur (maximum occurrence of 10% across the time period 1990-2018), including key 674 

agricultural areas where traditional energy-limited regimes appear to reveal a shift to a dry, water 675 

limited state. Taken collectively with the previously revealed SM-T relationship, the historical 676 

increase in these hot and dry conditions has important implications for the understanding of 677 

land responses to atmosphere changes under a continuing changing climate. The present work 678 

also indicates the potential role atmospheric river events may play during the seesaw phase of 679 
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New Zealand’s climate, with an average of 17% of droughts being followed by pluvial activity 680 

(1990-2018), highlighting a worthy new direction for atmospheric river research in New Zealand. 681 

Collectively, the present work has provided a preliminary look at compounding and seesaw event 682 

behaviour across New Zealand, revealing both areas to be a promising avenue for future research. 683 
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