Novel roles for pirin proteins and a 2-ketoglutarate:ferredoxin oxidoreductase ortholog in Bacteroides fragilis central metabolism and comparison of metabolic mutant susceptibility to metronidazole and amixicile

Edson Rocha¹, Andrea M. Gough¹, Anita C. Parker¹, Patricia J. O'Bryan², Terence R. Whitehead², Sourav Roy¹, Brandon Garcia¹, Paul S. Hoffman³, and C. Smith¹

¹East Carolina University Brody School of Medicine ²USDA-ARS National Center for Agricultural Utilization Research ³University of Virginia Division of Infectious Diseases and International Health

April 27, 2024

Abstract

The regulation of the central metabolism and fermentation pathways and its effect on antimicrobial susceptibility in the anaerobic pathogen Bacteroides fragilis is not completely understood. In this study, we show that B. fragilis encodes for two iron-dependent redox-sensitive regulatory pirin protein genes, pir1 and pir2, whose mRNA expression is upregulated following oxygen exposure and growth in iron-limiting conditions. Pir1 and Pir2 modulate short-chain fatty acids production and alter susceptibility to metronidazole (MTZ), and to amixicile (AMIX), a novel inhibitor of pyruvate:ferredoxin oxidoreductase (PFOR) in anaerobes. Consistent with this, we showed that Pir1 forms direct protein-protein interactions with PFOR as determined by two-hybrid system assays. In addition, AlphaFold2-based structural analysis predicts that Pir1 and Pir2 form stable interactions with several enzymes of the central metabolism including the 2-ketoglutarate:ferredoxin oxidoreductases Kor1AB and Kor2CDAEBG. A series of metabolic mutants and electron transport chain inhibitors were used to show a wide-ranging effect of bacterial metabolism on MTZ and AMIX susceptibility. Furthermore, we show that AMIX is an effective antimicrobial against B. fragilis in an experimental model of intra-abdominal infection. This investigation led to the discovery that the kor2AEBG genes are essential for growth, and we present evidence that kor2AEBG genes have dual functions including the reductive synthesis of 2-ketoglutarate via reverse TCA cycle. However, the metabolic activity that bypasses KorAEBG function remains to be defined. Collectively our investigation reveals new information on B. fragilis central metabolism and its modulatory control by pirin proteins which may be leveraged for the future development of new narrow-spectrum antimicrobials

Hosted file

pirin_paper.doc available at https://authorea.com/users/766573/articles/874774-novelroles-for-pirin-proteins-and-a-2-ketoglutarate-ferredoxin-oxidoreductase-orthologin-bacteroides-fragilis-central-metabolism-and-comparison-of-metabolic-mutantsusceptibility-to-metronidazole-and-amixicile

Strains	Genotype	References
B. fragilis 638R	clinical isolate, Rif ^r	Privitera et al., 1979
BER-2	638R ⊿furA∷cfxA, Rif ^r Cfx ^r	Robertson et al., 2006
BER-63	638R $\Delta ftnA::tetQ$, Rif ^r Tet ^r	Gauss et al., 2012
BER-74	638R <i>∆bfr::cfxA</i> , Rif ^r Cfx ^r	Gauss et al., 2012
BER-75	638R <i>ΔftnA::tetQ Δbfr::cfxA</i> , Rif ^r Tet ^r Cfx ^r	Gauss et al., 2012
BER-150	638R <i>∆fnrA::tetQ</i> , Rif ^r Tet ^r	This study
BER-156	638R <i>∆nrfA::tetQ</i> , Rif ^r Tet ^r	Lab strain
BER-164	638R <i>∆pir1::tetQ</i> , Rif ^r Tet ^r	This study
BER-165	638R ⊿ <i>pir2::cfxA</i> , Rif ^r Cfx ^r	This study
BER-166	638R <i>∆pir1::tetQ ∆pir2::cfxA</i> Rif ^r Tet ^r Cfx ^r	This study
BER-173	BER-164 carrying pER-287, <i>pir1</i> ⁺ , Rif ^r Tet ^r Erm ^r	This study
BER-174	BER-165 carrying pER-288, <i>pir2</i> ⁺ , Rif ^r Cfx ^r Erm ^r	This study
BER-175	BER-166 carrying pER-287, <i>pir1</i> ⁺ , Rif [*] Tet [*] Cfx [*] Erm [*]	This study
BER-176	BER-166 carrying pER-288, <i>pir2</i> ⁺ , Rif ¹ Tet ¹ Cfx ¹ Erm ¹	This study
BER-183	$638R \ \Delta t dk, \ Rif^{r} F U dR^{r}$	Parker et al., 2022
BER-231	638R Δ PFOR::tetQ, Rif ^r Tet ^r	This study
BER-282	638R <i>pyc</i> ::pFD516, Rif ⁴ Erm ⁴	This study
BER-285	638R made metronidazole resistant at 2 μ g/ml	This study
BER-286	638R made metronidazole resistant at 4 μ g/ml	This study
BER-287	638R made metronidazole resistant at 8 μg/ml	This study
BER-289	638R made metronidazole resistant at 16 μg/ml	This study
BER-293	638R made metronidazole resistant at 32 µg/ml	This study
BER-294	638R <i>∆kor1AB</i> , Rif ^r	This study
BER-295	638R <i>∆kor2ABG</i> , Rif ^r	This study
BER-296	638R <i>ДРFOR::tetQ Дkor1AB</i> , Rif ^r	This study
BER-298	638R ⊿poxB, Rif ^r	This study
BER-299	638R <i>ДРFOR::tetQ ДрохВ</i> , Rif ^r	This study
BER-300	638R <i>Дkor1AB ДрохВ</i> , Rif ^r	This study
BER-301	638R ДРFOR::tetQ Дкоr1AB ДрохВ, Rif ^r	This study
BER-302	638R <i>ΔPFOR::tetQ Δkor2ABG</i> , Rif ^r	This study
BER-303	638R ДРFOR::tetQ Дкоr1AB Дкоr2ABG, Rif ^r	This study
BER-308	638R <i>ΔcitS Δicd ΔacnA</i> , Rif ^r	This study
BER-309	638R Дкоr2ABG ДcitS Дicd ДаспА, Rif ^r	This study
BER-310	638R ΔPFOR::tetQ Δkor2ABG ΔcitS Δicd ΔacnA, Rif ^r	This study
BER-311	638R ΔPFOR::tetQ Δkor1AB Δkor2ABG ΔcitS Δicd	This study
	$\Delta acnA$, Rif ^r	
BER-323	BER-183 <i>∆fnrC ∆tdk</i> , Rif ^r FUdR ^r	This study
IB260	638R $\Delta katB::tetQ$, Rif ^r Tet ^r	Rocha et al., 1996
IB263	638R hydrogen peroxide resistant, hpr, Rif ^r	Rocha & Smith, 1998
IB274	638R <i>ahpCF</i> ::pFD516, Rif ^r Erm ^r	Rocha & Smith, 1999
IB276	638R <i>ahpF</i> :;pFD516, Rif ¹ Erm ¹	Rocha & Smith, 1999
IB336	$638 R \ \Delta dps::tetQ, \operatorname{Rif}^{\mathrm{r}} \operatorname{Tet}^{\mathrm{r}}$	Rocha & Smith, 2004
IB370	$638R \ \Delta trxB::cfxA, Rif^{r} Cfx^{r}$	Rocha et al., 2007
IB430	$638R \ \Delta ahpC::tetQ, \operatorname{Rif}^{\mathrm{r}} \operatorname{Tet}^{\mathrm{r}}$	Lab strain
IB500	IB483 $\Delta oxyR::tetQ$ Rif ^r Cfx ^r Tet ^r	Reott et al., 2009
IB542	IB336 <i>∆bfr∷cfxA</i> , Rif ^r Tet ^r Cfx ^r	Betteken et al., 2015

Table 1. Bacterial strains and plasmids used in this study.

IB567 IB573	IB542 pFD288:: bfr^+ , Rif ^r Tet ^r Cfx ^r Erm ^r bfr^+ IB542 pFD288:: dps^+ , Rif ^r Tet ^r Cfx ^r Erm ^r dps^+	Betteken et al., 2015 Betteken et al., 2015
ADB77 ADB247 ADB260 BER-274 BER-278 BER-283 IB483	638R isogenic $\Delta thyA$ Rif ^T Tp ^r ADB77 $\Delta frdC247$ reverted to $thyA^+$, Rif ^T ADB77 $\Delta frdB260 \Delta thyA$ Rif ^T Tp ^r ADB77 $\Delta relA \Delta spoT$ reverted to $thyA^+$, Rif ^T ADB247 carrying pER-364, $frdC^+$, Rif ^T Erm ^T ADB260 carrying pER-365, $frdB^+$, $\Delta thyA$ Rif ^T Tp ^T Erm ^T ADB77 reverted to $thyA^+$, $\Delta trxC \Delta trxD::cfxA \Delta trxE$ $\Delta trxF \Delta trxG$ Rif ^T Cfx ^T	Baughn & Malamy, 2002 Baughn & Malamy, 2002 Baughn & Malamy, 2002 Lab strain This study This study Reott et al., 2009
B. fragilis BF8 C. difficile P. gingivalis Pr. melaninogenica	chromosomal <i>nimB</i> Ni ^r ATCC 43255 ATCC 33277 ATCC 25845	Haggoud et al., 1994 ATCC ATCC ATCC ATCC
E. coli DH10B HB101::RK231 S17-1 λpir XL1-Blue MRF'	cloning host strain HB101 containing RK231, (Km ^r) (Tet ^r) (Str ^r) Strain with the RK2 <i>tra</i> genes for conjugative transfer integrated in the chromosome (<i>RP4-2-Tc::Mu-Km::Tn7</i> , <i>pro</i> , <i>res</i> ⁻ <i>mod</i> ⁺ , Tp ^r Sm ^r) λpir lysogen) $\Delta(mcrA)183 \Delta(mcrCB-hsdSMR-mrr)173$ endA1 supE44 thi-1 recA1 gyrA96 relA1 lac [F' proAB lacI ^q Z Δ M15 Tn5 (Kan ^r)].	Invitrogen Guiney et al., 1984 Simon et al., 1983 Stratagene
BacterioMatch II Reporter Stain	$\Delta(mcrA)$ 183 $\Delta(mcrCB-hsdSMR-mrr)$ 173 endA1 hisB supE44 thi-1 recA1 gyrA96 relA1 lac [F' lacI ^q HIS3 aadA Kan']	Stratagene
Plasmids pTRG	BacterioMatch II two-hybrid system target plasmid,	Stratagene
pBT	BacterioMatch II two-hybrid system bait plasmid,	Stratagene
pNBU2-bla-ermGb	NBU2 integrase (<i>intN2</i>) based genomic insertion vector derived from pKNOCK- <i>bla-ermGb</i> inserts into NBU2 <i>att1</i> or <i>att2</i> sites of tRNA ^{ser} (Amp ^r) Erm ^r	Koropatkin et al., 2008
pNBU2-bla-tetQb	NBU2 integrase (<i>intN</i> 2) based genomic insertion vector derived from pKNOCK- <i>bla-tetQb</i> inserts into NBU2 <i>attl</i> or <i>att</i> 2 sites of tRNA ^{ser} (Amp ^r) Tet ^r	Martens et al., 2008
pExchange- <i>tdk</i>	Derivative of pKNOCK- <i>bla-ermGb</i> carrying cloned <i>tdk</i> gene for counter-selection. (Amp ^r) Erm ^r	Koropatkin et al., 2008
pFD288	<i>Bacteroides-E. coli</i> shuttle vector, <i>oriT</i> , pUC19::pBI143 chimera, (Sp ^r) Erm ^r	Smith et al., 1995
pFD340	<i>Bacteroides-E. coli</i> expression shuttle vector. (Amp ^r) Erm ^r	Smith et al., 1992

pFD516	suicide vector, derived from deletion of pBI143 in pFD288. (Sp ^r) Erm ^r .	Smith et al., 1995
pLGB36	Suicide vector for allelic replacement in <i>Bacteroides</i> species including <i>B. fragilis</i> strain 638R, Erm ^r selection and aTC-inducible ss-Bfe3 counterselection.	Ito et al., 2020
pER-63	A 2.1 kb BamHI/EcoRI DNA fragment containing <i>cfxA</i> cassette gene was cloned into the BamHI/EcoRI sites of pFD516. (Sp ^r), Erm ^r .	This study
pER-65	A 2.4 kb BamHI/SacI DNA fragment containing $tetQ$ gene cassette was cloned into the BamHI/SacI sites of pFD516. (Sp ^r), Tet ^r .	This study
pER-283	A 1.9 bp N-terminal BgIII/BamHI and a 1.935 bp SstI C-terminal DNA fragments flanking BF638R_3039 gene was cloned, respectively, into BamHI and SacI sites of the suicide-vector pER-65 to construct $\Delta pir1::tetQ$ deletion mutant. (Sp ^r).	This study
pER-284	A 1.240 bp N-terminal BglII/BamHI and a 1.830 bp EcoRI C-terminal DNA fragments flanking BF638R_1469 gene was cloned, respectively, into the BamHI and EcoRI sites of the suicide-vector pER-63 to construct $\Delta pir2::cfxA$ deletion mutant (Sp ^r)	This study
pER-287	An 0.808 kb DNA fragment containing promoterless <i>pir1</i> gene was cloned into the BamHI/SacI sites of the expression vector pFD340. (Amp ^r) Erm ^r	This study
pER-288	A 0.746 kb kb DNA fragment containing promoterless <i>pir2</i> gene was cloned into the BamHI/SacI sites of the expression vector pFD340. (Amp ^r) Erm ^r	This study
pER-364	A 0.96 kb DNA fragment containing promoterless <i>frdC</i> gene was cloned into the BamHI/KpnI sites of the expression vector pFD340. (Amp ^r) Erm ^r	This study
pER-365	A 1.040 kb DNA fragment containing promoterless <i>frdB</i> gene was cloned into the BamHI/SacI sites of the expression vector pFD340. (Amp ^r) Erm ^r	This study
pER-372	A 2,461 DNA fragment containing 2,435 bp in-frame null deletion of <i>kor1AB</i> genes (BF638R_4321-4322) was cloned into the BamHI/SalI sites of pLGB36 vector. (Amp ^r) Erm ^r	This study
pER-373	A 2,040 DNA fragment containing 2,354 bp in-frame null deletion of <i>kor2ABG</i> genes (BF638R_1655-1658) 49	This study

	was cloned into the BamHI/XmaI sites of pLGB36 vector. (Amp ^r) Erm ^r	
pER-375	A 3,723 DNA fragment containing 1,350 bp in-frame null deletion of <i>poxB</i> gene (BF638R_3245) was cloned into the BamHI/SalI sites of pLGB36 vector. (Amp ^r) Erm ^r	This study
pFD1198	A 1 kb DNA fragment upstream and 1kb DNA fragment downstream of <i>fnrA</i> gene (BF638R_0432) were clone into the BamHI/SacI and SacI/EcoRI sites of pFD516. A 2.3 TetQ cassette was cloned into the SacI site to replace an internal 700 bp deleted DNA fragment (Spr) Erm ^r .	This study
pFD1245	An 802 bp insertional inactivation fragment of the <i>pyc</i> gene (BFR638R_1927) cloned into the BamHI/EcoRI sites of pFD516. (Sp ^r) Erm ^r	This study
pFD1277	A 2,243 bp DNA fragment containing 566 bp in-frame null deletion of <i>fnrC</i> gene (BF638R_1017) was cloned into the PstI/XbaI sites of pExchange- <i>tdk</i> vector. (Amp ^r) Erm ^r	This study
pFD1278	A 2.002 kb N-terminal SphI/BamHI and a 1.819 SacI DNA fragments flanking BF638R_3194 gene was cloned, into the SphI/BamHI and SacI sites of the suicide-vector pER-65 to construct $\triangle PFOR::tetQ$ deletion mutant. (Sp ^r).	This study

Erm^r: erythromycin resistance; Rif^r: rifampicin resistance; Tet^r: tetracycline resistance; Cfx^r: cefoxitin resistance; Ni^r: 5-nitroimidazole resistance; Tp^r: trimethoprim resistance; Amp^r: ampicillin resistance; Sp^r: spectinomycin resistance; Str: streptomycin resistance. FUdR^r: 5-fluor-2'-deoxyuridine resistance; Kan^r: kanamycin resistance. Parenthesis indicates antibiotic resistance expression in *E. coli*. ATCC: American Type Culture Collection.

Table2.Agar dilution determination of minimal inhibitory concentration (MIC μ g/ml) of metronidazole (MTZ) and amixicile (AMIX) for *Bacteroides species* and *B. fragilis* 638R mutant strains.

Strains	MTZ	MTZ O ₂	AMIX	AMIX O ₂
	Anaerobic	exposure	Anaerobic	exposure
BF638R	0.5	0.5	2	1
BF638R isolated at 2 μg/ml MTZ	4	2	2	1
BF638R isolated at 4 µg/ml MTZ	8	8	4	4
BF638R isolated at 8 μg/ml MTZ	16	16	4	4
BF638R isolated at 16 μg/ml MTZ	32	32	4	4
B. fragilis ADB77 ∆thyA (638R isogenic)	0.5	0.5	2	1
B. fragilis BF8	16	2	2	1
B. fragilis ATCC 25285	1	0.5	1	1
B. thetaiotaomicron VPI 5482	1	1	1	1
B. vulgatus ATCC 8482	1	0.5	1	0.0625
B. fragilis 638R mutant strains				
∆pir1::tetQ	0.5	0.5	2	1
∆pir2::cfxA	0.5	0.5	2	1
∆pir1::tetQ ∆pir2::cfxA	0.5	0.5	2	1
∆pir1::tetQ/pir1 ⁺	0.25	0.125	2	0.5
∆pir2::cfxA/pir2⁺	0.25	0.125	2	0.5
∆pir1::tetQ ∆pir2::cfxA/pir1 ⁺	0.25	0.125	2	0.5
∆pir1::tetQ ∆pir2::cfxA/pir2 ⁺	0.25	0.125	2	0.5
BF638R pir1 ⁺	0.5	0.0625	2	1
BF638R pir2 ⁺	0.5	0.0625	2	1
∆PFOR::tetQ	1	1	2	1
∆kor1AB	0.5	0.5	2	1
∆kor2ADBG	1	1	4	2
△PFOR::tetQ △kor1AB	1	1	2	2
∆рохВ	1	0.5	4	1
ΔPFOR::tetQ ΔpoxB	1	1	4	1
∆kor1AB ∆poxB	1	0.5	2	1
ΔPFOR::tetQ Δkor1AB ΔpoxB	1	1	2	2
ΔPFOR::tetQ Δkor2ADBG	1	1	2	2
ΔPFOR::tetQ Δkor1AB Δkor2ADBG	1	1	4	2
pyc::pFD516	0.5	0.5	1	1
∆frdC247	0.25	0.25	1	0.5
∆frdB260	0.25	0.0625	0.5	0.5
∆frdC/frdC⁺	0.5	0.25	2	1
∆frdB260/frdB⁺	0.5	0.25	1	1
ΔcitS Δicd ΔacnA	1	1	4	2
Δkor2ADBG ΔcitS Δicd ΔacnA	1	1	2	2
ΔPFOR::tetQ Δkor2ABG ΔcitS Δicd ΔacnA	4	2	2	1
ΔPFOR::tetQ Δkor1AB Δkor2ADBG ΔcitS Δicd ΔacnA	4	2	4	2
Hydrogen peroxide resistant strain, hpr	0.5	0.25	2	1
∆katB::tetQ	0.5	0.25	2	1
ahpCF:pFD516	0.5	0.25	2	1
ahpF::pFD516	0.5	0.25	2	1
∆ahpC::tetQ	0.5	0.25	2	1

∆ftnA:tetQ	0.5	0.25	2	1
∆bfr::cfxA	0.5	0.25	2	1
∆dps::tetQ	0.5	0.25	2	1
∆bfr::cfxA ∆ftnA::tetQ	0.5	0.25	2	1
∆bfr Ddps	0.25	0.25	2	0.5
∆bfr::cfxA ∆dps::tetQ/bfr ⁺	0.25	0.25	1	0.5
∆bfr::cfxA ∆dps::tetQ/dps⁺	0.25	0.125	1	0.5
∆fnrA::tetQ	0.5	0.5	2	1
∆nrfA::tetQ	0.5	0.5	2	1
∆fnrC	0.5	0.5	1	1
ΔrelA ΔspoT	0.5	0.5	2	1
⊿trxB::cfxA	0.25	0.25	1	0.5
ΔtrxC ΔπxD::cfxA ΔtrxE ΔtrxF ΔtrxG	0.5	0.5	2	2
Δ trxC Δ trxD::cfxA Δ π rxE Δ trxF Δ trxG Δ oxyR::tetQ	0.5	0.25	2	0.5

Anaerobic: Inoculated plates were immediately incubated anaerobically. O₂ exposure: Duplicate plates were incubated for16-20 h in aerobic incubator at 37° C prior to anaerobic incubation at 37° C.