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Abstract

Beyond CMOS nanotechnology has been attracted interest by many researchers. The logical fundamental elements of many

nanotechnologies are the majority, minority gates and inverters. The design of efficient adder systems and especially the parallel

prefix adders is of very importance. In this paper efficient majority logic implementation of parallel prefix is introduced. The

proposed methodology can be generalized to any parallel prefix structure design. Moreover, the proposed majority logic parallel

prefix adder designs demonstrate decreased circuit complexity when compared to the literature.
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Efficient Majority Logic
Parallel-Prefix Adder Design

Constantinos Efstathiou, Ioannis Kouretas, Paris Kitsos

Abstract—Beyond CMOS nanotechnology has been attracted
interest by many researchers. The logical fundamental elements
of many nanotechnologies are the majority, minority gates and
inverters. The design of efficient adder systems and especially
the parallel prefix adders is of very importance. In this paper
efficient majority logic implementation of parallel prefix is
introduced. The proposed methodology can be generalized to any
parallel prefix structure design. Moreover, the proposed majority
logic parallel prefix adder designs demonstrate decreased circuit
complexity when compared to the literature.

Index Terms—parallel-prefix adders, majority logic, emerging
nanotechnologies, arithmetic circuits.

I. INTRODUCTION

SCaling-down of CMOS technology has been predicted to
reach to a limit in the forthcoming years [1]. In order

to mitigate that a lot of beyond-CMOS devices have been
studied [2]–[14]. The fundamental logic components of several
developing nanotechnologies include majority, minority gate
and inverter [15], [16]. Forming minority logic networks from
their corresponding majority logic ones is straightforward.
Thus, the efficient majority logic synthesis of digital circuits
emerges for the beyond-CMOS era. In particular designing
arithmetic circuits is of high importance. Since addition is a
fundamental function in practically all digital processors, the
design of efficient adders [17] is crucial. Numerous designs
for high-performance adders have been studied. Parallel-prefix
adders are a significant class among them due to their ability
to produce high performance low-complexity hardware [17].
Majority logic parallel-prefix adders are proposed In [18]–[25].
Among them the most competitive designs are demonstrated
in [24].

This manuscript extends the majority logic carry bit compu-
tation methodology from [26] to majority logic parallel-prefix
adder design. By following this process any parallel-prefix
adder architecture can be constructed based to majority logic.
Additionally, new parallel-prefix adder architectures with effi-
cient majority logic are introduced. The proposed architectures
are designed using a novel method for computing sum bits.
The novel adder designs that are proposed are implemented
with significantly decreased number of majority gates (up to
38.5%), a smaller maximum fan out, or equal complexity and
fanout but with diminished by one majority gate level than
the initial ones. By utilizing cutting-edge nanotechnologies,
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Ioannis Kouretas is with Dept. of Electrical and Computer Engineering
University of Patras, Greece
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the proposed adder design can be used to efficiently create
efficient arithmetic units.

Tthe remainder of the paper is organized as follows. In
section II, majority logic and emerging nanotechnologies are
briefly discussed. Section III introduces the proposed majority
logic parallel-prefix adders’ design. Section IV quantitates
complexity and provides comparisons with the most efficient
majority logic parallel-prefix adder designs in the literature.
Section V finalizes the paper with conclusions.

II. MAJORITY LOGIC AND EMERGING
NANOTECHNOLOGIES

The fundamental logic components of various nanotech-
nologies are majority, minority gates and inverters. The (3-
input) majority gate (MG) carries out the following logic
function:

M (a, b, c) = ab ∨ (a ∨ b) c (1)

By using MG and the inverter a complete logic set can be
formulated. The two input OR and AND fundamental logic
operators are implemented in majority logic in accordance
with the a ∨ b = M(a, b, 1) and ab = M (a, b, 0) equations,
respectively. Moreover, the two-input logic operators, NOR
and NAND are implemented in minority logic by using
the equations a ∨ b = M (a, b, 1) and ab = M (a, b, 0),
respectively. Therefore MG forms also a complete logic gate
set.

It is simple to convert majority logic networks into their
matching minority logic networks. Minority logic circuits
produced by this process depict equal circuit delay complexity
as their majority logic counterparts. As a result, the only thing
we address in this work is the effective design of parallel-prefix
adders. The following text provides a brief introduction to a
few beyond-CMOS technologies that use majority logic as the
design primitive.

MGs and inverters are the fundamental building blocks of
logic circuit implementation in quantum-dot cellular automata
(QCA) technology [2], [3]. The cells used in QCA devices
are made up of four quantum dots, or electron locations,
positioned at a square’s corners. Only two stable states exist
each one of which can be achieved by charging a cell with
two electrons that can tunnel between dots. Fig. 1a depicts
the implementation of a MG in QCA technology, whereas in
Fig. 1b the implementation of the QCA inverter is depicted.

Memristors are non-volatile memory components with ex-
tremely low power consumption that can alter their resistance
state in response to the amount of charge applied to them. The
fundamental building blocks of logic operations in memristive
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M(1, 1, 0) = 1

(a) (b)
Fig. 1. QCA majority gates
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Fig. 2. A ReRAM based majority gate. (SA: sense amplifier)

logic are the resistance states of memristors [4]. By enabling
logic gates to be executed in an array configuration, memristive
logic has recently been utilized for in-memory computing
[5]. Fig. 2 illustrates the MG implementation by adopting a
Resistive Random Access Memory (ReRAM) array.

Spin-wave technology, all spin logic, and spin-transfer
torque technology are all included in the spin-based MG
implementation. Magnetic tunnel junctions (MTJs) can be used
to realize a magnetic graphene graph (MG), using the spin-
transfer torque technology as an example [6]. An MTJ is
a type of emerging spintronic technology consisting of two
ferromagnetic layers divided by a thin tunnel barrier that acts
as an insulator. There is a fixed magnetization in one free
layer and a changeable magnetization in the other. A small
amount of information is encoded in the junction’s low or
high resistance as a result. MGs are also the basic building
blocks in nanomagnetic logic [8] and other technologies [9],
[10].

The single electron tunneling (SET) technology can also
be used to create energy-efficient and compact minority gate
digital circuits [11], [12]. The SET implementation of a MG is
shown in Fig. 3a, while a SET inverter is depicted in Fig. 3b.
In addition, the fundamental component of tunneling phase
logic (TPL) circuits is the minority gate [13], [14].

III. MAJORITY LOGIC DESIGN OF PARALLEL ADDERS

Let A and B be n-bit binary numbers that are to be
added, expressed as A = an−1an−2 . . . a1a0 and B =
bn−1bn−2 . . . b1b0, respectively. For the binary addition of A
and B, the carries cis are generated based on the following
recursive formula:

ci = gi ∨ pici−1, (2)

where the bit generate signal is gi = aibi, while the propagate
signal is pi = ai ∨ bi, for the inclusive-OR addition and pi =
ai ⊕ bi, for the exclusive-OR one.

C
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VDD

C

C

C

Cb2VDD

CL

Vo

V1

V2

V3

V1

V2

V3

(a)

VDD

VDD

VoVin

(b)
Fig. 3. SET minority gate (a) and inverter (b)

The inclusive-OR addition is adopted for the proposed adder
designs, which is of higher efficiency for the implementation
of carry generation using majority logic [26]. Expanding
equation (2) for the computation of the carry ci with c−1 = 0
it is derived that

ci = gi ∨ pigi−1 ∨ pipi−1gi−1 ∨ . . . ∨ pipi−1 . . . p1g0 (3)

The terms Gm:k and Pm:k stand for the group generate
and group propagate signals, while the term Qm:k denotes a
new modified group generate signal derived from bits m,m−
1, ..., k. These signals are defined as follows:

Gm:k = gm ∨ pmgm−1 ∨ . . . ∨ pmpm−1 . . . pk+1gk (4)
Qm:k = gm ∨ pmgm−1 ∨ . . . ∨ pmpm−1 . . . pk+1pk (5)

Pm:k = pmpm−1 . . . pk+1pk (6)

The proposed design also adopts partial group generate signals
the definition of which is as follows:

Gm:ka = gm ∨ pmgm−1 ∨ . . . ∨ pmpm−1 . . . pk+1ak (7)
Gm:kb = gm ∨ pmgm−1 ∨ . . . ∨ pmpm−1 . . . pk+1bk (8)

The computation of the carries of the proposed adder design
is based on the following Lemmas proven in [26]:

Lemma 1: If gi = aibi,pi = ai ∨ bi, then

gi ∨ pif = M (ai, bi, f) (9)

Lemma 2: It holds the following:

Gi:j ∨ Pi:jf = Gi:j ∨Qi:jf (10)

Lemma 3: The following equations hold for the group
generate signals:

Gi:j = Gi:jaGi:jb (11)
Qi:j = Qi:jaQi:jb (12)

The subsequent Lemma [18] is also used in the proposed
design.

Lemma 4: It holds the following:

M
(
a, b,M (a, b, c)

)
= M

(
a, b, c

)
(13)

A. Carry bit computation

Using equations (3), (6) we get that the i-th carry of the
binary adder is ci = Gi:0. We have that

Gi:0 = Gi:k ∨ Pi:kGk−1:0 (14)
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(a)

a1b1

G1:0

a0 b0
0

MG MG

(b)
Fig. 4. Implementation of (a) the tree nodes (b) signal G1:0

According to Lemmas 2, 3, we get that Gi:0 = Gi:k ∨
Qi:kGk−1:0, or Gi:0 = Gi:kaGi:kb∨ (Gi:kaGi:kb)Gk−1:0. That
is, Gi:0 = M (Gi:ka, Gi:kb, Gk−1:0) (15)
Similarly, we get

Gi:ka = Gi:j ∨Qi:jGj−1:ka,

Gi:kb = Gi:j ∨Qi:jGj−1:kb,

Gi:ka = Gi:jaGi:jb ∨ (Gi:jaGi:jb)Gj−1:ka,

Gi:kb = Gi:jaGi:jb ∨ (Gi:jaGi:jb)Gj−1:kb,

or
Gi:ka = M (Gi:jaGi:jb, Gj−1:ka) (16)
Gi:kb = M (Gi:jaGi:jb, Gj−1:kb) (17)

Also, Gk−1:0 = M (Gk:ja, Gk:jb, Gj−1:0) (18)
Concluding, the root node of the carry computation tree

is implemented according to relation (15), while the group
generate signals at level L, are derived by the group generate
signals at level L− 1 using equations (16), (17), and (18).

The group generate signals are generated recursively until
the terms Gi:(i−1)a,Gi:(i−1)b, G1:0, are formed. These signals
are generated by using the following equations:

Gi:(i−1)a = gi ∨ piai−1

Gi:(i−1)b = gi ∨ pi bi−1

G1:0 = g1 ∨ p1 g0

Using Lemma 1 we get that:
Gi:(i−1)a = M (ai, bi, ai−1) (19)
Gi:(i−1)b = M (ai, bi, bi−1) (20)

G1:0 = M (a1, b1, g0) = M (a1, b1,M (a0, b0, 0)) (21)

Application of the proposed technique derives to a full tree
implementation of the carry bits, using only MGs.

The root node of each carry bit is implemented using one
majority gate, while the partial group generate signal pairs
and the group generate signal pairs are computed based to
equations (16), (17) and (20), (21), respectively. Furthermore,
the partial group generate signal pairs and the group generate
signal pairs are implemented using the nodes shown in Fig. 4a,
which includes two majority gates. The design of G1:0, is
shown in Fig. 4b.

Conventional parallel-prefix adder architectures are re-
viewed and compared in [24]. Among them the Kogge-Stone
(KS) adder architecture has minimal depth, high node count
(implies more hardware complexity) and fan out of each node
equal to 1. The Ladner-Fisher (LF) architectures has also
minimal depth, low node count, but they have high fan out.
The Brent-Kung (BK) adders shows maximum logic depth
(implies longer calculation time) and minimum number of

Fig. 5. 8-bit parallel-prefix carry computation unit architectures

nodes (implies minimum hardware complexity). The Han-
Carlson (HC) adders are modified Kogge-Stone architectures
with decreased node count and increased by one node logical
depth. This modification can also be applied to Ladner-
Fisher adders, resulting to modified Ladner-Fisher (MLF)
adder architectures with smaller number of nodes, decreased
fan out, and increased by one logical depth. The 8-bit carry
computation units of these architectures are given in Fig. 5.

According to the proposed majority logic carry computation
methodology, all the existing conventional parallel-prefix carry
computation architectures can efficiently be implemented us-
ing majority logic. As a first step, the carry computation unit
of the considered adder is designed according to the target-
ing conventional carry architecture. Then this architecture is
implemented using majority gates according to the proposed
carry computation methodology. A significant difference is
that the derived majority logic architectures does not require
the computation of the gi and pi signals [26].

B. Sum bit computation

The i-th sum bit of an n-bit adder is computed as
si = ai ⊕ bi ⊕ ci−1 (22)

According to the analysis provided in [27], the following
equation holds

si = M
(
ci, ci−1, M

(
ai, bi, ci−1

))
(23)

Using Lemma 4 it derives

si = M
(
ci, ci−1, M

(
ai, bi,M (ai, bi, ci−1)

))
(24)

According to Lemma 1 it derives ci = M (ai, bi, ci−1). It
holds that

si = M
(
ci, ci−1, M

(
ai, bi, ci

))
(25)

Equation (25) results to the efficient majority logic imple-
mentation of the si bit using two majority gates and one
inverter shown in Fig. 6a.

An 8-bit majority logic KS parallel-prefix adder is given in
Fig. 7.

C. Efficient majority logic parallel-prefix adder architectures

Our design is based on a new sum bit computation, which
results to simplified parallel-prefix carry computation unit
architectures and therefore to efficient majority logic adder
architectures.
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Fig. 6. Majority logic implementation of (a) bit si (b) si+1, si

Fig. 7. Majority logic Kogge-Stone 8-bit carry computation unit

D. New sum bit computation

We have that ci−1 = M (ai−1, bi−1, ci−2). Then from
equation (23) we get

si = M
(
ci, M(ai−1, bi−1, ci−2), M

(
ai, bi, ci

))
(26)

From equation (23) we get that bit si+1 is computed according
to the following:

si+1 = M
(
ci+1, ci, M

(
ai+1, bi+1, ci

))
(27)

Since ci+1 = M (ai+1, bi+1, ci) the following holds

si+1 = M
(
M (ai+1, bi+1, ci) , ci, M

(
ai+1, bi+1, ci

))
(28)

According to equations (26) and (28) bits si+1, si are com-
puted only from carries ci, ci−2. Therefore, carry ci−1 does
not need to be computed. The majority logic implementation
of si+1, si bits according to equations (26) and (28) is shown
in Fig. 6b.

Concluding, according to the proposed methodology only
the carries cn−1 (= cout) , cn−3, cn−5, c3, c1, c0 of an n-bit
adder is computed resulting to simplified parallel-prefix adder
architectures.

We exemplify our methodology by designing an 8-bit ma-
jority logic simplified Kogge Stone parallel-prefix adder.

Example. Let the 8-bit Kogge-Stone (KS) adder architec-
ture shown in Fig. 5. According to the proposed methodology
only carries c7, c5, c3, c1, c0 need to be computed. The sim-
plified Kogge-Stone (SKS) parallel-prefix architecture of the
carry computation unit is shown in Fig. 8.

017 35

0127 3456

Fig. 8. 8-bit SKS carry computation unit

Fig. 9. Proposed 8-bit majority logic SKS parallel-prefix adder

The carry computation unit of Fig. 8 is implemented using
majority logic according to the proposed methodology. We
have that c0 = g0 = M (a0, b0, 0). Using relation (21) we get
that c1 = G1:0 = g1 ∨ p1g0 = M (a1, b1, g0). According to
relation (15) we get that c3 = G3:0 = M (G3:2a, G3:2b, G1:0)
where G3:2a = M (a3, b3, a2), G3:2b = M(a3, b3, b2). In the
same way

c5 = G5:0 = M (G5:2a, G5:2b, G1:0) ,

where
G5:2a = M (G5:4a, G5:4b, G3:2a)

G5:2b = M (G5:4a, G5:4b, G3:2b) ,

Similarly,
c7 = G7:0 = M (G7:4a, G7:4b, G3:0) ,

where
G7:4a = M (G7:6a, G7:6b, G5:4a)

G7:4b = M (G7:6a, G7:6b, G5:4b) .

Bits s0 and s7 of the proposed adder are implemented
according to equation (25), while the bit pairs are implemented
with 5 majority gates and 2 inverters according to equation
(28). The proposed majority logic design of the 8-bit SKS
parallel-prefix adder is depicted in Fig. 9.

It is noted that the proposed methodology can be efficiently
applied to all the existing conventional parallel-prefix carry
computation architectures.

IV. COMPLEXITY ANALYSIS AND COMPARISONS

Majority logic parallel-prefix adder designs are published
previously in [18]–[25]. Among them, the adders in [24] are
the most efficient. Therefore, the proposed new majority logic
parallel-prefix adders are compared only against the designs
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in [24]. The proposed designs have been described in Verilog
and verified by using extensive simulation. The number of
the majority gates required for the implementation of all the
considered design is the sum of the number of the majority
gates of the parallel-prefix carry computation unit and that of
the sum unit. Besides, the delay complexity required is the
sum of the delays required for generation of all carries and
sums.

The complexity of the carry computation unit depends on
the selected parallel-prefix adder architecture. In particular,
the Kogge-Stone (KS) parallel-prefix unit is implemented
using n log2 n − n + 1 nodes [28]. Each node is imple-
mented with two majority gates, except the n − 1 root
nodes, which are implemented using only one. One more
majority gate is required for the computation of signal g0.
Then the total complexity of the KS carry computation unit
is 2 (n log2 n− n+ 1)− (n− 1) + 1 = 2n log2 n− 3n+ 4.

The LF parallel-prefix units are implemented using
1
2n log2 n nodes [28]. In the same way we get that they are
implemented with n log2 n− (n− 1) + 1 = n log2 n− n+ 2
majority gates. Each sum bit of all the majority logic designs
in [24] is implemented using two majority gates and one
inverter. That is, the complexity of the sum unit of the adders
in [24] is 2n majority gates and n inverters.

Summarizing, the Kogge-Stone adders are implemented
with AKS = 2n log2 n − 3n + 4 majority gates and n in-
verters, while the Ladner-Fisher adders are implemented with
ALF = n log2 n+ n+ 2 majority gates and n inverters.

The proposed SKS parallel-prefix units are implemented us-
ing 1

2n log2 n−(n2 −1) nodes. Therefore, the total complexity
of the SKS carry computation unit is 2

(
1
2n log2 n− n

2 + 1
)
−

n
2 + 1 = n log2 n − 3n

2 + 3 majority gates. Also, the
proposed SLF parallel-prefix units are implemented using
1
4n log2 n + n

4 nodes. Therefore, they are implemented with
1
2n log2 n+ n

2 − n
2 + 1 = 1

2n log2 n+ 1 majority gates.
The sn−1 and the s0 bits of both the proposed SKS and

SLF designs are implemented with 2 majority gates and one
inverter. The rest of the sum bits are implemented in pairs,
where each pair is implemented with 5 majority gates and 2
inverters. Concluding the total complexity of the proposed sum
unit is 4 + 5n−2

2 = 5n
2 − 1 majority gates and n inverters.

That is, the total complexity of the proposed SKS adders is
ASKS = 1

2n log2 n + 1 majority gates and n inverters, while
that of the proposed SLF adders is ASLF = 1

2n log2 n+1 and
n inverters. Since all the considered designs have the same
number of inverters, they are not included in our comparisons.

Subsequently the delay complexity is computed. The delay
for the carry computation unit in parallel-prefix adders is the
sum of the total prefix adder stages and one majority gate
delay for computing carry c0 as shown in Fig. 5. The delay
of the sum unit is the delay of two majority gates and one
inverter.

More specifically the number of stages for the Kogge-Stone
is log2 n, therefore the corresponding delay complexity is
log2 n + 3. The same holds for the Ladner-Fischer adders
log2 n+ 3. Similarly, the delay for the proposed SKS adders
and the proposed SLF adders log2 n + 3. Summarizing, the

TABLE I
NUMBER OF MG FOR VARIOUS SIZES OF KS AND THE PROPOSED SKS

ADDERS.

n
KS [24] Proposed (SKS) Saving (%)
AKS ASKS

8 44 34 22.7
16 116 82 29.3
32 292 194 33.6
64 708 450 36.4

128 1668 1026 38.5

TABLE II
NUMBER OF MG FOR VARIOUS SIZES OF LF AND THE PROPOSED SLF

ADDERS.

n
LF [24] Proposed (SLF) Saving (%)
ALF ASLF

8 34 32 5.9
16 82 72 12.2
32 194 160 17.5
64 450 352 21.8
128 1026 768 25.1

delay complexity for all the designs is the same and hence it
is omitted from the comparisons.

Table I compares the complexity of the conventional major-
ity logic KS designs [24] and the complexity of the proposed
simplified Kogge-Stone adder (SKS) adder design. In partic-
ular, the proposed design exhibits from 22.7% up to 38.5%
savings in terms of the number of majority gates.

Table II compares the number of majority gates used in
the conventional majority logic LF designs, and the number
of majority gates of the proposed simplified Ladner-Fisher
adder (SLF) adder design. It is shown that the proposed
circuit design depicts up to 25.1% reduction. Furthermore, the
proposed design depicts smaller fanout and hence significant
gains can be achieved for the implementations, where fanout
is important.

Compared against the majority logic Han-Carlson adders
the proposed simplified Kogge-Stone adders have the same
hardware complexity, but they have the advantage that they
are implemented with one majority gate level less. The same
holds for the comparison of the proposed simplified Ladner-
Fisher adders with the modified Ladner-Fisher adders.

V. CONCLUSIONS

In this work a new majority logic carry computation
methodology is presented. Using this methodology all the
existing parallel-prefix adder architectures can be implemented
using majority logic. New efficient majority logic parallel-
prefix adder architectures are also presented. The new majority
logic parallel-prefix adders compared against the existing ones,
are implemented using smaller number of majority gates, and
smaller fanout or with decreased by one level of majority
gates. The proposed designs can be applied to the efficient
implementation of fast arithmetic units using emerging beyond
CMOS nanotechnologies.
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