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Abstract

In areas of induced seismicity, earthquakes can be triggered by stress changes from fluid injection and from static deformation

caused by fault slip. Here we present a method to distinguish between injection-driven and earthquake-driven triggering of

induced seismicity by combining a calibrated, fully-coupled, poroelastic stress model of wastewater injection with a random

forest machine learning algorithm trained on both earthquake catalog and modeled stress features. We investigate the classic

Paradox Valley, Colorado induced seismicity dataset as an ideal test case: a single, high-pressure injector that has induced >7000

earthquakes between 1991 and 2012. We find that injection-driven earthquakes are approximately 22±-5% of the total catalog

and have distinct spatiotemporal clustering with a larger b-value, closer proximity to the well and earlier occurrence in the

injection history. Our model may be applicable to other regions to help determine site’s susceptibility to triggered earthquakes

due to fluid injection.
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Key Points:8

• Combining physics-based and machine learning models can decipher earthquake9

triggering mechanisms for induced seismicity.10

• Injection-driven earthquakes account for just 22±5% of all earthquakes in the Para-11

dox Valley catalog.12

• Injection-driven earthquakes have a larger b-value, are closer to the well, and oc-13

cur earlier in the injection history.14
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Abstract15

In areas of induced seismicity, earthquakes can be triggered by stress changes from fluid16

injection and from static deformation caused by fault slip. Here we present a method17

to distinguish between injection-driven and earthquake-driven triggering of induced seis-18

micity by combining a calibrated, fully-coupled, poroelastic stress model of wastewater19

injection with a random forest machine learning algorithm trained on both earthquake20

catalog and modeled stress features. We investigate the classic Paradox Valley, Colorado21

induced seismicity dataset as an ideal test case: a single, high-pressure injector that has22

induced >7000 earthquakes between 1991 and 2012. We find that injection-driven earth-23

quakes are approximately 22±5% of the total catalog and have distinct spatiotemporal24

clustering with a larger b-value, closer proximity to the well and earlier occurrence in25

the injection history. Our model may be applicable to other regions to help determine26

site’s susceptibility to triggered earthquakes due to fluid injection.27

Plain Language Summary28

The Paradox Valley Unit, Colorado in the central United States has had a remark-29

able increase in seismicity coincident with over 8 million cubic meters of brine fluid in-30

jection since 1991, inducing >7000 earthquakes within an aquifer 4.5 km below the sur-31

face. We use a physics-based model of the Earth combined with statistical and machine32

learning techniques to help discern which earthquakes are triggered by other earthquakes33

and which earthquakes are directly triggered by the stress changes from the well as well34

as their comparative characteristics. Discerning which earthquakes are directly caused35

from pressure changes due to the fluid injected by the well can inform our understand-36

ing of earthquake physics and provide useful information to operators of energy produc-37

tion sites.38

1 Introduction39

A variety of anthropogenic industrial activities, including wastewater disposal, can40

induce seismicity (Ellsworth, 2013; Keranen et al., 2014; Shirzaei et al., 2016). Similar41

to naturally occurring earthquakes, induced seismicity typically occurs on pre-existing,42

critically stressed faults (Townend & Zoback, 2000). Generating induced seismicity from43

the reactivation of faults is attributed to several physical mechanisms: pore pressure dif-44

fusion (Keranen & Weingarten, 2018; Weingarten et al., 2015; Langenbruch et al., 2018),45
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poroelastic coupling (Segall & Lu, 2015), and stress changes caused by seismic or aseis-46

mic fault slip (Ge & Saar, 2022; Brown & Ge, 2018).47

These physical mechanisms for induced seismicity jointly contribute to the trigger-48

ing potential of each earthquake. Since induced earthquakes can be triggered by small49

stress changes of order 1-10 kPa (Bachmann et al., 2012; Cacace et al., 2021; Stokes et50

al., 2023), a large difficulty arises in deciphering which mechanism was responsible for51

triggering each earthquake. We are particularly interested in discerning which earthquakes52

were more likely driven by injection-related stress changes and which earthquakes were53

more likely driven by stress changes from prior earthquakes. Furthermore, site-to-site54

differences in physical rock properties, reservoir structure, fault geometry, and remnant55

tectonic stress could contribute to differences in the ratio of injection-driven and earthquake-56

driven events despite similar injection-related stresses.57

Relative stress changes from fluid injection require analytical or numerical mod-58

els to resolve the spatio-temporal evolution of pore pressure and poroelastic stress. To59

capture the fully coupled poroelastic stress changes (Biot, 1941; Rice & Cleary, 1976;60

Wang, 2000) induced from the fluid sources requires detailed knowledge of the hydro-61

geologic properties of the region. The fault geometry is also critical for resolving fault62

plane stress tractions that characterize fault stability and the potential for induced seis-63

micity (G. C. P. King et al., 1994; Cocco, 2002; Levandowski et al., 2018). Hence, any64

attempt at discerning induced earthquakes requires an accurate and comprehensive hy-65

drogeological model, detailed injection well data, precise fault geometries, and high-resolution66

earthquake catalog.67

Here, we investigate which earthquakes are more likely triggered by stress changes68

from injection and which earthquakes are more likely triggered by earthquake-earthquake69

interaction. We built a three-dimensional (3D) fully-coupled poroelastic model of Para-70

dox Valley Unit, CO (PVU) to resolve time-dependent pore pressure and stress changes71

due to brine injection. To inform the contribution of our earthquake triggering mech-72

anisms, we use a random forest regression machine learning analysis trained on more than73

20 years of induced earthquakes at Paradox Valley Unit and SHapley Additive exPla-74

nations (SHAP), a game theoretic approach to explain the output of any machine learn-75

ing model (Lundberg & Lee, 2017). We corroborate our results with an independent, in-76

duced seismicity cluster analysis, which demonstrates that the physics-based machine77
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learning method provides novel insight into discerning triggering mechanism not previ-78

ously captured. This model explores the induced earthquake triggering process for wastew-79

ater disposal and could help discern what regions are more or less susceptible to stress80

changes from anthropogenic sources with applicability to other types of subsurface in-81

jection including CO2 sequestration, enhanced geothermal systems, and hydraulic frac-82

turing.83

2 Paradox Valley Unit (PVU) Data84

The PVU is a program run by the U.S. Bureau of Reclamation, which has been dis-85

posing deep brine into a confined aquifer between 4.3 and 4.6 km depth in Paradox Val-86

ley, Colorado since 1995 (Ake et al., 2005; Denlinger & RH O’Connell, 2020) (Figure 1).87

The high-pressure fluid injection has been associated with >7000 earthquakes between88

1991 and 2012, which have all been documented as induced seismicity (Ake et al., 2005;89

Block et al., 2015; V. M. King et al., 2016; Denlinger & RH O’Connell, 2020). Most seis-90

mic events within 5 km of the injection well were induced within the first 10 years of in-91

jection and nearly all within the high permeability injection reservoir known as the Leadville92

formation. This zone is highly pressurized from decades of continuous pumping and dic-93

tates the lateral migration of seismicity away from the wellbore. These carefully stud-94

ied events support the notion of a
√
t diffusion model for pressurization from the well95

(Block et al., 2015; V. M. King et al., 2016) (Figure 2). Additional ancillary data also96

make this an ideal study region: numerous wells that extend into deeper formations than97

just the Leadville aquifer, 3D seismic tomography, logs of P-wave velocity, density and98

porosity from the near surface to basement in the injection well, and logging of geologic99

units in other wells in the area (Denlinger & RH O’Connell, 2020).100

Most importantly for our purposes, previous work has already compiled a detailed,101

fully coupled poroelastic model (Denlinger & RH O’Connell, 2020). This model is given102

by a grid description of nodes with corresponding parameter values which we validate103

in our finite element numerical model (Dassault Systemes, 2020) with improved mesh-104

ing near the well where pressure and stress gradients are highest (see SM 8.1). Figure105

2 includes a plot of the earthquake distribution overlaid on a cross-section of the numer-106

ical model mesh.107
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Figure 1. Regional setting of the Paradox Valley Unit, CO (PVU). a) Earthquakes binned by

different magnitude ranges. The well is denoted by the red ‘X’. The deep brine injection began in

1991 at a depth of 4.3 km. Most seismicity is clustered near the well, where stress perturbations

are largest and fluctuate the most. b) Temporal evolution of events. There are more than 7000

earthquakes in the catalog, but within the 8 km radius around the well which we use for analysis

includes only 3000.

3 Methods108

The core of our methodology relies on the careful development of machine learn-109

ing features which will represent the contribution of injection-driven stress changes and110

earthquake-driven stress change for each event in the PVU catalog. Our injection-driven111

stress feature is resolved using time-dependent pore pressure and stress changes through-112

out the PVU. Pore pressure and stress perturbations are used to produce von Mises stress113

features that are physical inputs for the ML/SHAP analysis. To quantify our earthquake-114

driven stress changes, we create a second feature in the ML/SHAP analysis, which we115
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Figure 2. Earthquakes plotted as their radial distance from the well and time. Most earth-

quakes behave in a typical
√
t diffusion rate away from the well consistent with progressive lateral

migration of seismicity through the permeable Leadville (Ake et al., 2005; Block et al., 2015;

Denlinger & RH O’Connell, 2020). Flow tests were performed prior to 1995. Notice injection is

highest during peak injection rates ∼1997. Our model records pore pressure and stress pertur-

bations from 10-July-1991 to 16-April-2013. Numerical model cross section with earthquake and

well depth superimposed. The model is a fully-coupled poroelastic model based on prior work

(Denlinger & RH O’Connell, 2020). We increase the grid discretization near the well to capture

large changes in pressure gradients (see SM 8.1).

call the ”earthquake feature”. The earthquake feature is calculated from the stresses pro-116

duced by prior earthquakes that may have generated perturbations large enough to pro-117

duce the current earthquake. These two feature weights are then trained on the entire118

PVU catalog to find the optimal weight of each feature for each earthquake in the PVU119

catalog. SHAP analysis of the ML model’s feature weights allow for interpretation of the120

relative contribution of each feature to each event. We support our interpretations of trig-121

gering mechanisms from the ML/SHAP with results from a nearest neighbor distance122

cluster analysis.123

3.1 Numerical Model124

We model the relative increase in pore pressure ∆P (scalar) and poroelastic stress125

∆S (2nd order tensor) for the PVU using a model with one injection well in the center126

of the model domain (SM Figure 1). The hydrogeologic structure is based on a nodal127
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distribution of parameters that we reduced down to 1000 unique unit formations and use128

Abaqus to resolve the linear poroelastic equations (R. G. Hill et al., 2024) (see SM 8.1).129

The model dimensions are 50 km by 50 km laterally with a 18 km depth. Figure 2 shows130

a cross-section through the well injection zone. The injection is divided across three per-131

forated zones consistent with prior modeling and uses the entire injection history as 7952132

unique daily rates in our model from 10-July-1991 to 16-April-2013 (Denlinger & RH O’Connell,133

2020) (Figure 2). We output ∆P and ∆S from these daily steps across the entire do-134

main at 284 ∼monthly time steps. We do not include earthquakes in our study that oc-135

cur outside of the modelled time domain which is restricted by the injection history, al-136

though the earthquake catalog does extend until 31-December-2019 (Figure 2).137

3.2 Stress Features138

The Abaqus outputs of ∆P and ∆S were post-processed in Matlab using abaqus2matlab139

(Papazafeiropoulos et al., 2017). The stress features of ∆P and ∆S represent the rel-140

ative change induced from the fluid injection and are resolved at the closest value in the141

domain to each ∼3000 earthquakes during our study time. We assessed a variety of dif-142

ferent stress features during the preliminary stages of this work, consistent with prior143

forecasting studies (DeVries et al., 2018; Sharma et al., 2020; Qin et al., 2022). We found144

that von Mises stress and von Mises stressing rate were the best stress-based features145

for forecasting the seismicity rate and are the only two stress features we consider here-146

inafter. We make the assumption that the von Mises stress is resolved uniformly using147

a strike azimuth of 2600 and vertical dip consistent with the most common faulting struc-148

ture present from the earthquakes locations (Denlinger & RH O’Connell, 2020).149

3.3 Earthquake Feature150

Static stress transfer modeling can be used to assess earthquake-earthquake trig-151

gering on faults embedded in an elastic half space with homogeneous isotropic elastic prop-152

erties (Lin & Stein, 2004; Toda et al., 2005). Stress transfer can promote or reduce the153

potential of earthquake triggering, depending on the coefficient of friction, fault geom-154

etry, and sense of slip (G. C. P. King et al., 1994; Stein, 1999). Since the exact geome-155

tries of every earthquake in our model are unknown, we choose to develop an earthquake156

feature that is based on the occurrence of prior earthquakes that could have plausibly157

influenced each earthquake.158
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We use ‘cutde’ (Thompson, 2021) to resolve elastic stress transfer produced from159

triangular dislocation element representations of fault slip (Nikkhoo & Walter, 2015).160

Several assumptions are required for the static stress transfer modeling: (1) We assume161

a uniform stress drop for every event of 3 MPa, (2) a shear modulus of 30 GPa, and (3)162

a Poisson ratio of 0.25. Under this framework we show that the von Mises stress is self-163

similar for both parallel and perpendicular receiver receiver planes at a given distance164

from the event (SM Figure 2). By varying event magnitude, we calculate a radius from165

the center of the dislocation that can increase the potential of failure up to a distance166

that intersects the 10 kPa triggering threshold (Reasenberg & Simpson, 1992; Stein, 1999).167

As a sensitivity test we varied the stress drop from 1-10 MPa and observe marginal change168

to the perturbable radius for varying magnitudes (SM Figure 2). Then, for every earth-169

quake, we create an earthquake-to-earthquake feature, which counts the number of earth-170

quakes that could have perturbed it. The earthquake count is represented by ln(N +171

1), where N is the number of perturbing earthquakes to have occurred prior to each event.172

Higher values of this feature indicate a higher likelihood of earthquake-earthquake in-173

teraction.174

3.4 ML/SHAP Analysis175

We use the machine learning technique of random forest regression (RFR) to fit176

our observed seismicity (Ho et al., 1995; Ho, 1998). The RFR model makes a prediction177

on the target variable, which are one-hot encoded occurrences of the observed earthquakes178

across 284 ∼monthly time steps each. We avoid overfitting and optimize model hyper-179

parameters using an exhaustive grid search applied to a 5-fold cross-validation score. The180

observed seismicity is therefore repeatedly divided into training and test folds with the181

mean squared error evaluating fit on the test folds which the trained model does not see.182

The RFR models chosen for our analysis were trained using the hyperparameters derived183

from the best-performing model during the cross-validation process.184

The input features are composed from the stress and earthquake features as well185

as their time lags. The time lags are introduced both to capture any potential anisotropy186

or hydromechanical heterogeneity that are not explicit in the numerical model as well187

as time delayed effects that former earthquakes or stress history may have when perturb-188

ing the current earthquake. We find that including more lags improves the overall fit of189

our model, up to ∼50 lags, but is likely over-fitting and unrealistic. We assume that the190
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physical meaning of the lags are unreasonable beyond ∼1 year before the actual earth-191

quake timing and reserve our total lags to the local minimum of 5 lags (SM Figure 3).192

In other words, a model can contain the current stress/earthquake feature (+0 lag), the193

time period prior (+1 lag), and the time periods before that (+2-+5 lag etc..) or any194

combination of that set (SM Figure 3).195

To assess feature importance, we use SHAP, which provides a robust and self-consistent196

means to explain the predictions of our target variable (earthquake or no-earthquake)197

by computing the contribution of each feature to the prediction (Shapley et al., 1953;198

Lundberg & Lee, 2017). A key advantage of SHAP lies in its ability to consistently un-199

tangle the impacts of multiple correlated input variables (Trugman & Ben-Zion, 2023).200

Since the SHAP value is represented as an additive feature, it is a linear model and the201

contributions of each feature can be added to describe the contribution that the stress202

features have compared to the earthquake features. This is often preferable compared203

to permutation feature importance which chooses importance based on the decrease in204

model performance. Larger SHAP values for a given feature, averaged across the dataset,205

signify a higher importance for the model’s prediction.206

3.5 Cluster Analysis207

As an independent test of earthquake behavior, we investigate how the PVU seis-208

micity is distributed in magnitude, space, and time using a traditional cluster analysis.209

We use the nearest neighbor distance (NND) in the space-time-magnitude domain (Baiesi210

& Paczuski, 2004) for each pair of events i and j using the following equation:211

ηij =

 tij(rij)
d10−bmi , tij > 0;

∞, tij ≤ 0
(1)

Where, tij is the interevent time (year), rij is the inter event distance (km), d is the di-212

mension of the earthquake hypocenter distribution (d = 1.32) determined using a box-213

counting procedure (Corral, 2003) (SM Figure 4), b is the b-value (b = 0.75) determined214

by maximum likelihood estimation (Aki, 1965), and mi is the ith event magnitude (Zaliapin215

& Ben-Zion, 2013; Schoenball et al., 2015). The NND is separable into rescaled distance216

(Rij) and rescaled time (Tij) where (Zaliapin et al., 2008; Zaliapin & Ben-Zion, 2013):217

ηij = RijTij (2)
218

Rij = (rij)
d10−bmi/2 (3)
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219

Tij = (rij)
d10−bmi/2, (4)

An advantage of this form of NND is that the clustering style of seismicity can be dis-220

played by a joint 2D distribution of rescaled time log10 Tij and rescaled distance log10 Rij221

(Zaliapin et al., 2008; Zaliapin & Ben-Zion, 2013, 2016). The distribution helps to de-222

scribe the type of earthquake clustering style, since observed seismicity often shows a bi-223

modal joint distribution divided by a constant line and chosen nearest-neighbor thresh-224

old n0. Events below this threshold are classified as clustered (i.e., earthquake-driven trig-225

gering) and the events that are above this threshold are classified as background (i.e.,226

injection-driven or independent) (Zaliapin & Ben-Zion, 2016). We use the NND distri-227

butions for the PVU as an independent test of the physical mechanism driving each earth-228

quake in the sequence. We hypothesize that our ML/SHAP model will preferentially sep-229

arate injection-driven vs earthquake-driven events as identified by Zaliapin and Ben-Zion230

(2016).231

4 Results232

4.1 Numerical Model Results233

The fully-coupled poroelastic model shows that areas with seismicity experience234

pore pressure increases from 0.005 MPa to 9 MPa. Most pore pressure increases occur235

within an 8 km radius around the injection well (SM Figures 5-10). Most seismicity oc-236

curs in close vicinity of the injection well and the ∆P is highest in early 1999 (∼9 MPa).237

The pressure changes near the well mimic injection rate changes as the temporal delay238

of diffusion is negligible. Elsewhere, the diffusion process dominates the pressure changes239

and therefore the increase in pore pressure is more gradual through time (SM Figure 8-240

9). Across the domain, seismicity occurs during the highest rates of pressure increase.241

This observation is consistent with other instances of wastewater induced seismicity (Langenbruch242

et al., 2018; Qin et al., 2022). The increasing pore pressure diffuses laterally through the243

highly permeable Leadville formation. Low permeability confining units above and be-244

low the reservoir restrict vertical pressure migration (SM Video 1).245
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4.2 Cluster Analysis Results246

Results of the NND cluster analysis show that a larger portion of the earthquakes247

are classified as the background mode (Zaliapin & Ben-Zion, 2016; Goebel et al., 2019)(Fig-248

ure 3a). The constant threshold value η0 = −4.9 is chosen based on a 1D Gaussian mix-249

ture model analysis (Zaliapin et al., 2008; Zaliapin & Ben-Zion, 2016). The clustering250

behavior is similar to other cases of wastewater induced seismicity (Zaliapin & Ben-Zion,251

2016; Glasgow et al., 2021). There is a larger population of background events and clus-252

tered events occur at short space-time distances. These results are also dissimilar from253

other cases of induced seismicity that have a more clear bimodal distribution, albeit dif-254

ferent mechanical processes are occurring (Zaliapin & Ben-Zion, 2016, e.g., Coso and Salton255

Sea geothermal areas). A small portion of the background domain is characterized by256

low Rij and large Tij , which often characterizes these events as repeaters (Zaliapin &257

Ben-Zion, 2016; Hsu et al., 2024). These events make sense in the context of single well258

injection. The start-stop nature of the injection means repetitive changes in stress oc-259

cur at the same locations. This is observed in the pore pressure results at different clus-260

ters near the well where the pore pressure closely follows the flux of the injection (SM261

Figures 5-8).262

4.3 ML/SHAP Model Results263

Our preferred model uses the following: 1000 total trees, a maximum depth of 10,264

a minimum sample split of 10, and a minimum of 4 samples for a leaf node. Figure 4a265

shows the fit of our random forest model for two different model types. One model uses266

only the von Mises stress rate and earthquake feature while the other model uses both267

the von Mises stress and the von Mises stress rate as well as the earthquake feature (in-268

cluding lags). We find that the mean squared error (MSE) is slightly lower for the model269

that includes both stress features. However, we choose to present the parsimonious so-270

lution of one stress feature and refer the reader to the supplementary for the results in-271

cluding both stress features, which contains small differences to the main results (SM272

Figures 11-14).273
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Figure 3. a) Nearest neighbor time-distance distributions for seismicity in the PVU. The

color bar represents the number of event pairs. The total number of earthquakes used in this

analysis is 2927. The diagonal dashed line is the η0 background (above) and clustered (below)

mode threshold. The value is a constant distance threshold determined by the 1D Gaussian

mixture model and is -4.9. b) Comparing the earthquakes that have at least 50% stress feature

contribution on the rescaled distance rescaled time plot. Many of the earthquakes cluster in the

independent background mode with a second distribution towards the repeater mode and a few

earthquakes spread out in the cluster mode. c) The SHAP stress feature contribution vs. the

nearest neighbor distance value. Many of the earthquakes cluster below the 50% stress feature

contribution indicating and to the left of the -4.9 cluster threshold. However, earthquakes that

have >50% stress feature contribution, denoted as red circles, tends to populate the ‘background’

mode of the NND (to the right of -4.9). These results are consistent for earthquakes driven by

stress from the injection since they act as initial parent earthquakes that trigger subsequent seis-

micity in a region that has experienced stress changes high enough to begin seismicity.

–12–



manuscript submitted to Geophysical Research Letters

Figure 4. a) Forecasted seismicity rate across for all time steps. Orange line represents the

best fit model that includes only the von-Mises stress rate. The dashed green line includes von-

Mises stress and has slightly better fit. b) Earthquake count binned through time for earthquakes

with SHAP stress rate <=50% (ie. earthquake-driven green) and >50% (ie. injection-driven red).

c) same as panel b, but for distance away from well. d) b-value analysis of all earthquakes (blue),

earthquake-driven (green), and injection-driven (red). e) Ratio of all earthquakes with a larger

sum of SHAP value for stress features (red) and the earthquake features (green). We reflect the

uncertainty of triggering mechanism based on our two models described in panel a.
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The SHAP analysis results are summarized in SM Figure 15. We output the re-274

sults exclusively at the time when the earthquakes occur since we are only interested in275

discerning the contribution of the stress features at that time. A summary of the SHAP276

contributions for all time, not just when the earthquakes occur, is presented in the sup-277

plementary material (SM Figure 16). The feature with the higher overall impact on the278

model is the perturbable earthquake feature that represents the number of earthquakes279

that occurred during the chosen time step that could have potentially perturbed the earth-280

quake in question. The next most important features, with nearly equal importance, are281

the lagged von Mises stress rates. These stress features are considerably less important282

on average compared with the earthquake feature.283

To assess the total contribution of the stress features vs the earthquake features,284

we compare the cumulative feature results. Separating which earthquakes are dominated285

by cumulative feature importance, Figure 4e shows that the ratio of earthquakes that286

have a higher stress feature contribution compared to earthquakes that have a higher to-287

tal earthquake feature contribution is about 1:5. We examined the sensitivity of this since288

it would be expected that increasing lags may contribute to higher contribution to stress.289

While the stress contribution does increase for models that include 0,+1,+2 lags, after290

the model reaches +3 lags, earthquakes that are considered to have a higher total stress291

contribution increase marginally. For example, from +3 lags to +5 lags the ratio has a292

percent increase of only ∼0.5% (SM Figure 17). We do not pursue sensitivity past +5293

lags as the SHAP analysis is computationally expensive with increasing features. It is294

important to note that when testing increasing lag sensitivity, the overall ratio of the to-295

tal number of stress features to earthquake features remains the same.296

5 Discussion297

The ML/SHAP model identifies injection-driven earthquakes (ie. >50% stress fea-298

ture contribution) predominantly as background events in the NND model (Figure 3b-299

c). In the NND model, background events are mostly the independent Poisson mode (Zaliapin300

et al., 2008; Zaliapin & Ben-Zion, 2016). This suggests injection-driven earthquakes of-301

ten act as parent earthquakes, likely induced by pore pressure and stress changes, trig-302

gering further seismicity. These results are further supported by the relative timing of303

these earthquakes, which often occur at the beginning of injection stages (Figure 4b).304

We statistically compare injection-driven event distribution to the larger catalog using305
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a two-sample Kolmogorov–Smirnov test, which rejects the null hypothesis of identical306

distributions with 99% confidence (SM Figure 18).307

We explored two interevent time measures to analyze event timing between injection-308

driven and earthquake-driven classes (Davidsen et al., 2021). The first measure, interevent309

time ratio R, indicates deviations from a Poisson process (Van Der Elst & Brodsky, 2010;310

Davidsen et al., 2017). Rejecting the Poisson process hypothesis with >95% confidence,311

we observe a significant peak at R = 0 suggesting triggering, and another at R = 1312

indicating longer intervals likely due to stress changes stimulated by a non-random pro-313

cess (SM Figure 19). Injection-driven earthquakes show less bi-modal distribution, im-314

plying less temporal clustering than earthquake-driven ones. The second measure, the315

Bi-test, also indicates temporal clustering and rejects the Poisson process hypothesis with316

>95% confidence (Bi et al., 1989; Baró et al., 2014). Injection-driven earthquakes ex-317

hibit lower temporal clustering (lower fluctuation in H values) compared to clearly clus-318

tered earthquake-driven ones (higher fluctuation in H values around 0 and 1) (SM Fig-319

ure 20).320

We also analyze the spatiotemporal distribution of injection-driven earthquakes (Fig-321

ure 4b-c). They tend to occur earlier in injection history and cluster near the injection322

well, contrasting with earthquake-driven earthquakes. These events coincide with sharp323

stress field changes near the well, often preceding clustered seismicity. The b-value of injection-324

driven earthquakes (Figure 4d) is notably higher (1.03) compared to overall seismicity325

(0.75) and earthquake-driven events (0.71). This suggests that injection-driven events326

tend to have lower magnitudes, on average, than the earthquake-driven events and a b-327

value closer to 1 indicates that these events may appear to mimic independent background328

events. The finding that earthquake-driven events produce lower b-values and charac-329

terize more of the large events in induced catalogs may have implications for maximum330

magnitude estimates of induced earthquakes, since initial injection-driven earthquakes331

at the onset of induced sequences might underestimate the overall maximum magnitude332

of triggered seismicity333

Clusters of seismic activity away from the well are noticeable, yet they have fewer334

stress-dominated earthquakes (SM Figure 21). Often, clusters away from the well are ini-335

tiated by a few injection-driven earthquakes. This observation is consistent with the ma-336

chine learning process since earthquakes that had no prior earthquakes would not be ex-337
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pected to have a strong prior earthquake feature contribution. However, not all injection-338

driven earthquakes precede nearby seismic events. Additionally, areas lacking clear clus-339

tering seem to host multiple injection-driven earthquakes, suggesting varied driving mech-340

anisms in those regions (SM Figure 21).341

It is important to recognize that uncertainty is introduced in the model at various342

stages: physical model material parameters, static stress transfer parameters, RFR in-343

put features, and the number of included lags. We affirm the numerical model (see SM344

8.1 and SM Figures 5-10) and show that the static stress transfer at a triggering thresh-345

old of 10 kPa is only marginally sensitive to varied stress drop assumptions (SM Figure346

2). We find that increasing lags beyond +3 does not greatly change the ratio of injection-347

driven and earthquake-driven earthquakes (SM Figure 17). The main model sensitivity348

lies in input features: incorporating von Mises stress and rate increases injection-driven349

earthquakes from 17% to 27% (Figure 4e and SM Figure 14). It is unclear whether in-350

cluding both the stress and stress rate features provides a better model since more injection-351

driven earthquakes also begin to populate the cluster mode, which we assume is a prod-352

uct of over-fitting the seismicity rate (Figure 4a and SM Figure 13). We therefore sug-353

gest that these two models may provide estimates on the lower and upper bound with354

the true portion of injection-driven earthquakes at approximately 22±5% of the total.355

Results of this study indicate that the physics-based model, with RFR and SHAP356

analysis, accounts for a significant portion of independent background mode events found357

in NND cluster analysis. However, not all background mode events are classified as injection-358

driven. The absence of a clear bi-modal distribution in NND analysis suggests that events359

populating the independent background mode may have less direct fluid injection influ-360

ence (Zaliapin & Ben-Zion, 2016; Glasgow et al., 2021). We expect this ratio of injection-361

driven vs earthquake-driven seismicity to vary by geologic region, stress state, distribu-362

tion of preexisting faults, and injection style. Understanding this ratio is crucial for wastew-363

ater management, as it impacts induced seismic hazard. Sites where seismicity is mainly364

earthquake-driven would be harder to control via well operations best practices (R. G. Hill365

et al., 2024), while sites with mostly injection-driven events may be more manageable.366

Identifying the triggering process in candidate sites can guide energy production deci-367

sions, avoiding areas prone to severe triggered seismicity.368
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6 Conclusion369

We decipher induced earthquake triggering mechanisms using a 3D fully-coupled370

poroelastic model of brine injection and a random forest machine learning model trained371

on more than 20 years of induced earthquakes at Paradox Valley Unit, Colorado. Our372

simple ML/SHAP feature training approach, using one injection-driven feature and one373

earthquake-driven feature, allows for the separation of events that are more likely injection-374

driven from events that are more likely earthquake-driven in the sequence. Comparing375

the ML/SHAP results with a nearest-neighbor cluster analysis reveals good agreement376

in stress contribution and cluster style. Our methodology finds that injection-driven earth-377

quakes make up only 22±5% of the catalog and have distinct spatiotemporal clustering378

with a larger b-value, closer proximity to the well and earlier occurrence in the injection379

history. Our method may be applicable to other regions to help determine the site sus-380

ceptibility to earthquake triggering or aid in declustering induced catalogs.381

7 Open Research382

Data of Abaqus files, post-processing scripts, ML model scripts, and figure gener-383

ation scripts are available online at Hill, R. (2024) (https://doi.org/10.5281/zenodo384

.10967359).385

The wastewater injection data and earthquake data is available from the Bureau386

of Reclamation Upper Colorado Basin website (https://https://www.usbr.gov/uc/387

progact/paradox/index.html).388

The numerical models were built and solved using the software Abaqus (Dassault Sys-389

temes, 2020).390
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8 Supplementary574

8.1 Model Pre-processing575

A variety of issues and subsequent solutions arose in the model preprocessing that576

is important to elaborate on. As mentioned, previous work already compiled resources577

into a comprehensive, fully coupled poroelastic model of the PVU (Denlinger & RH O’Connell,578

2020). However, this model was not easily portable to Abaqus and lacked sufficient dis-579

cretization to capture large pressure gradients near the well. The methodology used to580

transfigure the initial model are presented here. We compare the model to a well known581

analytical solution and observed wellhead pressures to confirm its robustness.582

8.1.1 Material Parameters and Meshing583

The first difficulty with the Denlinger and O’Connel (D&O) model (Denlinger &584

RH O’Connell, 2020) is that the poroelastic material parameters are all defined at the585

nodes of the mesh. In Abaqus, there are a few material parameters defined at the nodes586

(pore pressure, void ratio, and saturation), but the elements (hexahedrons defined spa-587

tially by 8 nodes) are assigned other material parameters (ie. Young’s modulus and bulk588

modulus of solid grains). After simple conversions of the given material parameters in589

the D&O model to the values used in Abaqus, we thought the best way to solve the is-590

sue of defining the node only values to elements would be to average the 8 nodal coor-591

dinates that make up a hexahedron element to the value at that element.592

However, the averaging proved ineffective for a variety of reasons. First, the D&O593

model near the region of the well head experiences strong changes in material values. The594

Leadville formation, the high permeable injection formation, is embedded in low perme-595

able material. The nodal change between these materials was actually only 1 node thick596

in some instances so by taking the average of 8 nodes resulted in significantly reducing597

the order of magnitude of material permeability for areas near fluid injection. Second,598

the strong changes in material values coupled with the large spatial discretization of the599

D&O model near the wellhead resulted in unrealistic gradients and convergence issues.600

Therefore, in order to solve the issues present with the conversion of the D&O model601

to Abaqus, we decided to make several adjustments to our model that we believe make602

it a stronger model overall. First, we decided to reduce the spatial discretization near603
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the well head. The well head is actually composed of 3 separate perforated injection zones604

and creates strong pressure gradients that require smaller spatial sampling in order to605

capture the large and rapid changes there. This is difficult to do based on the previous606

mesh since preserving spatial features such as dipping beds and down scaling material607

features is not straight forward. Thankfully, the vertical discretization was already well608

defined by the D&O model so the only change to the discretization was the horizontal609

directions. We solved this problem by preserving the number of elements whilst chang-610

ing the horizontal spacing to grow exponentially from the location of the well head. Then,611

the vertical spacing and material parameters of the D&O model are preserved in the smaller612

spacing by using a nearest point search measured in Euclidean distance. The spatial mesh-613

ing changes between the D&O model and ours are shown in Figure 1.614

The second adjustment we made was in the determination of material parameters615

throughout the model. As previously mentioned the D&O model allows for entirely unique616

material parameters at every node, which caused difficulties in convergence for Abaqus.617

Using the newly discretized mesh of nodes/elements, and their associated material pa-618

rameters, we applied a k-medoids clustering algorithm to cluster the nodes/elements based619

on similar material metrics across the combined set of materials. K-medoids is similar620

to k-means clustering, but instead of choosing the average from the kth cluster it chooses621

an actual data point as the center of the cluster. We worked with several different ma-622

terial cluster values, but ultimately decided on 1000. At this number, the model preserves623

many of the naturally occurring geological features such as the layered beds and salt domes624

whilst also maintaining a high level of material contrast near the wellhead without gen-625

erating drastic gradients.626

8.1.2 FEM Results Compared to Analytical Solution/Observation627

A well known analytical solution exists to describe the spatial and temporal evo-628

lution of pore pressure due to continuous fluid injection into a poroelastic full space (Rudnicki,629

1986). In order to gauge the success of the model, we first compare this solution to the630

3D model using homogeneous material parameters. Additionally, we reduce the 3 injec-631

tion nodes to a single node to better reflect the analytical solution. The radial analyt-632

ical solution of pore pressure is compared with the closest radial axis given by the nodes633

shown in Figure 22. The solution for pore pressure matches well to the analytical solu-634
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tion after 10 days of constant injection using a typical bulk value of the crust as shown635

in Figure 23.636

One thing to note is that the solution of pore pressure increases rapidly closer to637

the point of injection. The strong pressure gradients at this location require smaller el-638

ements then the horizontal discretization in the D&O model (200 m).639

With the model now confirmed in the simplest case it was time to test a variety640

of k-medoid models, as previously described, and compare them to the observed well-641

head pressures to confirm that the model was capable of capturing the observations. It642

is important to note that any complex model will result in overfitting of the wellhead643

data, and thus poor predictive ability for future data.644

There has been a plethora of previous work from observational drilling to pressure-645

flow modeling designed to capture the reservoir permeability structure (V. King & Block,646

2019). These different observations and modeling have provided a sizeable range of per-647

meability values. For example, the permeability of intact limestone and dolomite varies648

from 0.01 to 0.1 mD (Bear, 1988). Fracturing is expected to increase permeability out-649

side of this laboratory setting. Drill stem tests gave an original permeability of 7.97 mD,650

yet at the same time additional analysis indicated permeability between 1.3 and 1.5 mD.651

Samples from a well 4.6 km to the northeast yielded permeability ranges of 0.03 to 1.3652

mD (Harr, 1988). An earlier model by Denlinger and Roeloffs (Roeloffs & Denlinger, 2009)653

arrived at a permeability in the injection zone of 28 mD, with significantly lower values654

for the other formations. Additional pressure-flow models also arrive at ranges of 9.06655

to 29.2 mD for certain injection phases (V. King & Block, 2019). The current best model656

(the D&O model) throughout the entire model domain, only has a maximum permeabil-657

ity of 1.97 mD. The final 1000 k-medoids model, modeled at constant injection rate (typ-658

ical daily average from PVU injection data), is compared with several hypothetical an-659

alytical solutions for constant injection rate for a range of bulk permeabilities in Figure660

24.661

The final 3D heterogeneous model compares well with a range of typical observa-662

tional values and observed wellhead pressures. In the near-field, the permeability matches663

the higher permeability analytical solutions as expected since there is likely fractured664

media in this location (V. King & Block, 2019). In the far-field, where the permeabil-665

ity structure is expected to decrease, the model approaches the lower permeability an-666
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alytical solution. For the future, it will likely be important to test a variety of physics667

based models to understand the sensitivity introduced in the machine learning. How-668

ever, we are confident in the evidence presented that our current model, adopted from669

the D&O model, is robust enough to continue with the primary goal of this work.670
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8.2 Supplementary Figures671

Figure 1. Previous model mesh from D&O model (Panel A) with surface view of well location

compared to (Panel B) our smaller discretized model with similar surface view.
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Figure 2. The von Mises stress in kPa for the three varying earthquake magnitudes (0.5, 2.0,

and 4.0) for three varying stress drops (1, 3, and 10 MPa). We use cutde (Thompson, 2021) to

resolve stress transfer produced from fullspace triangle dislocation elements assuming a uniform

stress drop, a shear modulus of 30 GPa, and a Poisson ratio of 0.25. We show that the von Mises

stress is self similar for opposite receiver planes at certain distances, dependent on the mag-

nitude, produced by the dislocation. We use thetriggering threshold of 10 kPa (Reasenberg &

Simpson, 1992; Stein, 1999) which increases depending on the magnitude size. This distance is

our perturbable radius used for the earthquake feature.
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Figure 3. A sensitivity test to increasing and the overall MSE fit to the seismicity rate. We

find that there is a local minimum near 5 lags. The fit does not improve after approximately 50

lags.
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Figure 4. Hypocentral and epicentral (inlet) box-counting procedures with good agreement

on the fractal dimension df=1.32 of the earthquakes at Paradox Valley.
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Figure 5. Different k-means cluster locations (1-15) of seismicity for the PVU. We extract the

pore pressure at the center of each seismicity cluster from the numerical model in the subsequent

figures. We include results for the near well cluster (7), two further regions with more diffuse

responses (4) and (10) as well as farther distance (2) and (6).
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Figure 6. Cluster 7 near the well and pore pressure profile at the center of cluster. The pore

pressure mimics the injection well rates due its close vicinity to the well.
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Figure 7. Cluster 4.
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Figure 8. Cluster 10.
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Figure 9. Cluster 2.
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Figure 10. Cluster 6.
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Figure 11. Similar to SM Figure 15 but for the model that includes both the von Mises stress

and the von Mises stress rate. This represents 2927 total events. The most important feature is

the number of perturbable earthquakes (NumEQsP) that occurred during that same time step as

the earthquake in question. The next 65 variables are a mix of the von Mises and von Mises rate.
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Figure 12. Similar to Figure 3c but for the model that includes both the von Mises stress and

the von Mises stress rate. There is more earthquakes associated with the clustered mode, but still

a large amount of background mode earthquakes.
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Figure 13. Similar to Figure 3b but for the model that includes both the von Mises stress

and the von Mises stress rate. There is more earthquakes associated with the clustered mode, but

still a large amount of background mode earthquakes.
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Figure 14. Similar to Figure 4e but for the model that includes both the von Mises stress and

the von Mises stress rate. Ratio of the earthquake stress contribution totals for both the stress

features and the earthquake features. For our model of including +5lags the stress feature to

earthquake feature ratio approximately 1:3 which is must higher than the (1:5) ratio seen in the

model that only has one stress feature.
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Figure 15. Mean absolute SHAP value for times in the model that an earthquake actually

occured. This represents 2927 total events. The most important feature is the number of per-

turbable earthquakes (NumEQsP) that occurred during that same time step as the earthquake in

question. The next 6 variables are all the stress rate from the stress change from the injection.
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Figure 16. Simlar to SM Figure 15 except for all time steps in the model which includes the

time steps when an earthquake is not occurring (2927 ∗ 284 = 831, 268 total samples).
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Figure 17. Similar to SM Figure 14 but for the model that includes both the von Mises stress

and the von Mises stress rate and only +3 lags. The ratio is (0.3762) compared with the ratio at

+5 lags (0.3789). Implying, that the ratio is not sensitive to increasing lags after +3.
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Figure 18. Empirical cumulative density functions of the two sample Kolmogorov–Smirnov

test. We show that the distribution for the earthquakes with stress contribution >50% are not

drawn from the same distribution as the total earthquakes with 99% confidence. Dashed line

represents lower and upper confidence bounds for each distribution.
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Figure 19. Results of interevent time measure R-test (Van Der Elst & Brodsky, 2010; David-

sen et al., 2017). The histograms represent count of earthquakes for the total earthquakes (blue)

and the portion of this set for the the earthquake-driven earthquakes (green) and injection-driven

earthquakes (red). The overall events reject the null-hypothesis due to the PDF of the interevent

time ratio R exisiting outside the the dotted lines corresponding to the 95% confidence inter-

vals of a Poisson process. Notice that the bimodal tails near R = 0 and R = 1 are indicative

of clustering. The majority of the these tails are composed of earthquake-driven events. The

injection-driven earthquakes are considerably flatter and represent a lower portion of the clus-

tered seismicty in the overall catalog.

–46–



manuscript submitted to Geophysical Research Letters

Figure 20. Results of the two sample Kolmogorov-Smirnov test for the distribution of the

H statistics obtained by the Bi-test (Bi et al., 1989; Baró et al., 2014; Davidsen et al., 2021).

The overall sesimicity (blue) and the portion of cumulative components of the earthquake-

driven earthquakes (green) and injection-driven earthquakes (red). The three color bars rep-

resent the 50%, 95%, and 99.95% confidence bounds for the null hypothesis of a Poisson process

(Fn(H) = H). Notice that the portion H attributed to injection-driven earthquakes are signifi-

cantly flatter compared to the clustered earthquake-driven earthquakes which implies a smaller

component of the clustered seismicity albeit we can not reject that it is clustered.
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Figure 21. a) Map view of most earthquakes used in our study and denoted in color by the

time they occurred. The red circled events represent those circled in red in Figure 3 (i.e. earth-

quakes that had >50% stress feature contribution). b) same as above panel, but zoomed in near

well. The earthquakes strongly stress driven near the injection well, but also appear at different

clusters throughout the domain. Often those away from the well have early times compared to

the other earthquakes in their cluster suggesting they may be starting the seismicity in those

areas. There are some examples of earthquakes that are close but nearly stress driven as opposed

to earthquake driven as well.

–48–



manuscript submitted to Geophysical Research Letters

Figure 22. Nodes used in comparison with analytical solution. Well is located on the left and

extends to the far field on the right.
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Figure 23. Analytical solution compared to the homogeneous 3D model. Dashed red line

represents the average well head pressure of the observed PVU.
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Figure 24. Final 1000 k-medoids model compared to several analytical solutions for a variety

of constant rate injection times.
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Key Points:8

• Combining physics-based and machine learning models can decipher earthquake9

triggering mechanisms for induced seismicity.10

• Injection-driven earthquakes account for just 22±5% of all earthquakes in the Para-11

dox Valley catalog.12

• Injection-driven earthquakes have a larger b-value, are closer to the well, and oc-13

cur earlier in the injection history.14
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Abstract15

In areas of induced seismicity, earthquakes can be triggered by stress changes from fluid16

injection and from static deformation caused by fault slip. Here we present a method17

to distinguish between injection-driven and earthquake-driven triggering of induced seis-18

micity by combining a calibrated, fully-coupled, poroelastic stress model of wastewater19

injection with a random forest machine learning algorithm trained on both earthquake20

catalog and modeled stress features. We investigate the classic Paradox Valley, Colorado21

induced seismicity dataset as an ideal test case: a single, high-pressure injector that has22

induced >7000 earthquakes between 1991 and 2012. We find that injection-driven earth-23

quakes are approximately 22±5% of the total catalog and have distinct spatiotemporal24

clustering with a larger b-value, closer proximity to the well and earlier occurrence in25

the injection history. Our model may be applicable to other regions to help determine26

site’s susceptibility to triggered earthquakes due to fluid injection.27

Plain Language Summary28

The Paradox Valley Unit, Colorado in the central United States has had a remark-29

able increase in seismicity coincident with over 8 million cubic meters of brine fluid in-30

jection since 1991, inducing >7000 earthquakes within an aquifer 4.5 km below the sur-31

face. We use a physics-based model of the Earth combined with statistical and machine32

learning techniques to help discern which earthquakes are triggered by other earthquakes33

and which earthquakes are directly triggered by the stress changes from the well as well34

as their comparative characteristics. Discerning which earthquakes are directly caused35

from pressure changes due to the fluid injected by the well can inform our understand-36

ing of earthquake physics and provide useful information to operators of energy produc-37

tion sites.38

1 Introduction39

A variety of anthropogenic industrial activities, including wastewater disposal, can40

induce seismicity (Ellsworth, 2013; Keranen et al., 2014; Shirzaei et al., 2016). Similar41

to naturally occurring earthquakes, induced seismicity typically occurs on pre-existing,42

critically stressed faults (Townend & Zoback, 2000). Generating induced seismicity from43

the reactivation of faults is attributed to several physical mechanisms: pore pressure dif-44

fusion (Keranen & Weingarten, 2018; Weingarten et al., 2015; Langenbruch et al., 2018),45
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poroelastic coupling (Segall & Lu, 2015), and stress changes caused by seismic or aseis-46

mic fault slip (Ge & Saar, 2022; Brown & Ge, 2018).47

These physical mechanisms for induced seismicity jointly contribute to the trigger-48

ing potential of each earthquake. Since induced earthquakes can be triggered by small49

stress changes of order 1-10 kPa (Bachmann et al., 2012; Cacace et al., 2021; Stokes et50

al., 2023), a large difficulty arises in deciphering which mechanism was responsible for51

triggering each earthquake. We are particularly interested in discerning which earthquakes52

were more likely driven by injection-related stress changes and which earthquakes were53

more likely driven by stress changes from prior earthquakes. Furthermore, site-to-site54

differences in physical rock properties, reservoir structure, fault geometry, and remnant55

tectonic stress could contribute to differences in the ratio of injection-driven and earthquake-56

driven events despite similar injection-related stresses.57

Relative stress changes from fluid injection require analytical or numerical mod-58

els to resolve the spatio-temporal evolution of pore pressure and poroelastic stress. To59

capture the fully coupled poroelastic stress changes (Biot, 1941; Rice & Cleary, 1976;60

Wang, 2000) induced from the fluid sources requires detailed knowledge of the hydro-61

geologic properties of the region. The fault geometry is also critical for resolving fault62

plane stress tractions that characterize fault stability and the potential for induced seis-63

micity (G. C. P. King et al., 1994; Cocco, 2002; Levandowski et al., 2018). Hence, any64

attempt at discerning induced earthquakes requires an accurate and comprehensive hy-65

drogeological model, detailed injection well data, precise fault geometries, and high-resolution66

earthquake catalog.67

Here, we investigate which earthquakes are more likely triggered by stress changes68

from injection and which earthquakes are more likely triggered by earthquake-earthquake69

interaction. We built a three-dimensional (3D) fully-coupled poroelastic model of Para-70

dox Valley Unit, CO (PVU) to resolve time-dependent pore pressure and stress changes71

due to brine injection. To inform the contribution of our earthquake triggering mech-72

anisms, we use a random forest regression machine learning analysis trained on more than73

20 years of induced earthquakes at Paradox Valley Unit and SHapley Additive exPla-74

nations (SHAP), a game theoretic approach to explain the output of any machine learn-75

ing model (Lundberg & Lee, 2017). We corroborate our results with an independent, in-76

duced seismicity cluster analysis, which demonstrates that the physics-based machine77
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learning method provides novel insight into discerning triggering mechanism not previ-78

ously captured. This model explores the induced earthquake triggering process for wastew-79

ater disposal and could help discern what regions are more or less susceptible to stress80

changes from anthropogenic sources with applicability to other types of subsurface in-81

jection including CO2 sequestration, enhanced geothermal systems, and hydraulic frac-82

turing.83

2 Paradox Valley Unit (PVU) Data84

The PVU is a program run by the U.S. Bureau of Reclamation, which has been dis-85

posing deep brine into a confined aquifer between 4.3 and 4.6 km depth in Paradox Val-86

ley, Colorado since 1995 (Ake et al., 2005; Denlinger & RH O’Connell, 2020) (Figure 1).87

The high-pressure fluid injection has been associated with >7000 earthquakes between88

1991 and 2012, which have all been documented as induced seismicity (Ake et al., 2005;89

Block et al., 2015; V. M. King et al., 2016; Denlinger & RH O’Connell, 2020). Most seis-90

mic events within 5 km of the injection well were induced within the first 10 years of in-91

jection and nearly all within the high permeability injection reservoir known as the Leadville92

formation. This zone is highly pressurized from decades of continuous pumping and dic-93

tates the lateral migration of seismicity away from the wellbore. These carefully stud-94

ied events support the notion of a
√
t diffusion model for pressurization from the well95

(Block et al., 2015; V. M. King et al., 2016) (Figure 2). Additional ancillary data also96

make this an ideal study region: numerous wells that extend into deeper formations than97

just the Leadville aquifer, 3D seismic tomography, logs of P-wave velocity, density and98

porosity from the near surface to basement in the injection well, and logging of geologic99

units in other wells in the area (Denlinger & RH O’Connell, 2020).100

Most importantly for our purposes, previous work has already compiled a detailed,101

fully coupled poroelastic model (Denlinger & RH O’Connell, 2020). This model is given102

by a grid description of nodes with corresponding parameter values which we validate103

in our finite element numerical model (Dassault Systemes, 2020) with improved mesh-104

ing near the well where pressure and stress gradients are highest (see SM 8.1). Figure105

2 includes a plot of the earthquake distribution overlaid on a cross-section of the numer-106

ical model mesh.107
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Figure 1. Regional setting of the Paradox Valley Unit, CO (PVU). a) Earthquakes binned by

different magnitude ranges. The well is denoted by the red ‘X’. The deep brine injection began in

1991 at a depth of 4.3 km. Most seismicity is clustered near the well, where stress perturbations

are largest and fluctuate the most. b) Temporal evolution of events. There are more than 7000

earthquakes in the catalog, but within the 8 km radius around the well which we use for analysis

includes only 3000.

3 Methods108

The core of our methodology relies on the careful development of machine learn-109

ing features which will represent the contribution of injection-driven stress changes and110

earthquake-driven stress change for each event in the PVU catalog. Our injection-driven111

stress feature is resolved using time-dependent pore pressure and stress changes through-112

out the PVU. Pore pressure and stress perturbations are used to produce von Mises stress113

features that are physical inputs for the ML/SHAP analysis. To quantify our earthquake-114

driven stress changes, we create a second feature in the ML/SHAP analysis, which we115
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Figure 2. Earthquakes plotted as their radial distance from the well and time. Most earth-

quakes behave in a typical
√
t diffusion rate away from the well consistent with progressive lateral

migration of seismicity through the permeable Leadville (Ake et al., 2005; Block et al., 2015;

Denlinger & RH O’Connell, 2020). Flow tests were performed prior to 1995. Notice injection is

highest during peak injection rates ∼1997. Our model records pore pressure and stress pertur-

bations from 10-July-1991 to 16-April-2013. Numerical model cross section with earthquake and

well depth superimposed. The model is a fully-coupled poroelastic model based on prior work

(Denlinger & RH O’Connell, 2020). We increase the grid discretization near the well to capture

large changes in pressure gradients (see SM 8.1).

call the ”earthquake feature”. The earthquake feature is calculated from the stresses pro-116

duced by prior earthquakes that may have generated perturbations large enough to pro-117

duce the current earthquake. These two feature weights are then trained on the entire118

PVU catalog to find the optimal weight of each feature for each earthquake in the PVU119

catalog. SHAP analysis of the ML model’s feature weights allow for interpretation of the120

relative contribution of each feature to each event. We support our interpretations of trig-121

gering mechanisms from the ML/SHAP with results from a nearest neighbor distance122

cluster analysis.123

3.1 Numerical Model124

We model the relative increase in pore pressure ∆P (scalar) and poroelastic stress125

∆S (2nd order tensor) for the PVU using a model with one injection well in the center126

of the model domain (SM Figure 1). The hydrogeologic structure is based on a nodal127
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distribution of parameters that we reduced down to 1000 unique unit formations and use128

Abaqus to resolve the linear poroelastic equations (R. G. Hill et al., 2024) (see SM 8.1).129

The model dimensions are 50 km by 50 km laterally with a 18 km depth. Figure 2 shows130

a cross-section through the well injection zone. The injection is divided across three per-131

forated zones consistent with prior modeling and uses the entire injection history as 7952132

unique daily rates in our model from 10-July-1991 to 16-April-2013 (Denlinger & RH O’Connell,133

2020) (Figure 2). We output ∆P and ∆S from these daily steps across the entire do-134

main at 284 ∼monthly time steps. We do not include earthquakes in our study that oc-135

cur outside of the modelled time domain which is restricted by the injection history, al-136

though the earthquake catalog does extend until 31-December-2019 (Figure 2).137

3.2 Stress Features138

The Abaqus outputs of ∆P and ∆S were post-processed in Matlab using abaqus2matlab139

(Papazafeiropoulos et al., 2017). The stress features of ∆P and ∆S represent the rel-140

ative change induced from the fluid injection and are resolved at the closest value in the141

domain to each ∼3000 earthquakes during our study time. We assessed a variety of dif-142

ferent stress features during the preliminary stages of this work, consistent with prior143

forecasting studies (DeVries et al., 2018; Sharma et al., 2020; Qin et al., 2022). We found144

that von Mises stress and von Mises stressing rate were the best stress-based features145

for forecasting the seismicity rate and are the only two stress features we consider here-146

inafter. We make the assumption that the von Mises stress is resolved uniformly using147

a strike azimuth of 2600 and vertical dip consistent with the most common faulting struc-148

ture present from the earthquakes locations (Denlinger & RH O’Connell, 2020).149

3.3 Earthquake Feature150

Static stress transfer modeling can be used to assess earthquake-earthquake trig-151

gering on faults embedded in an elastic half space with homogeneous isotropic elastic prop-152

erties (Lin & Stein, 2004; Toda et al., 2005). Stress transfer can promote or reduce the153

potential of earthquake triggering, depending on the coefficient of friction, fault geom-154

etry, and sense of slip (G. C. P. King et al., 1994; Stein, 1999). Since the exact geome-155

tries of every earthquake in our model are unknown, we choose to develop an earthquake156

feature that is based on the occurrence of prior earthquakes that could have plausibly157

influenced each earthquake.158
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We use ‘cutde’ (Thompson, 2021) to resolve elastic stress transfer produced from159

triangular dislocation element representations of fault slip (Nikkhoo & Walter, 2015).160

Several assumptions are required for the static stress transfer modeling: (1) We assume161

a uniform stress drop for every event of 3 MPa, (2) a shear modulus of 30 GPa, and (3)162

a Poisson ratio of 0.25. Under this framework we show that the von Mises stress is self-163

similar for both parallel and perpendicular receiver receiver planes at a given distance164

from the event (SM Figure 2). By varying event magnitude, we calculate a radius from165

the center of the dislocation that can increase the potential of failure up to a distance166

that intersects the 10 kPa triggering threshold (Reasenberg & Simpson, 1992; Stein, 1999).167

As a sensitivity test we varied the stress drop from 1-10 MPa and observe marginal change168

to the perturbable radius for varying magnitudes (SM Figure 2). Then, for every earth-169

quake, we create an earthquake-to-earthquake feature, which counts the number of earth-170

quakes that could have perturbed it. The earthquake count is represented by ln(N +171

1), where N is the number of perturbing earthquakes to have occurred prior to each event.172

Higher values of this feature indicate a higher likelihood of earthquake-earthquake in-173

teraction.174

3.4 ML/SHAP Analysis175

We use the machine learning technique of random forest regression (RFR) to fit176

our observed seismicity (Ho et al., 1995; Ho, 1998). The RFR model makes a prediction177

on the target variable, which are one-hot encoded occurrences of the observed earthquakes178

across 284 ∼monthly time steps each. We avoid overfitting and optimize model hyper-179

parameters using an exhaustive grid search applied to a 5-fold cross-validation score. The180

observed seismicity is therefore repeatedly divided into training and test folds with the181

mean squared error evaluating fit on the test folds which the trained model does not see.182

The RFR models chosen for our analysis were trained using the hyperparameters derived183

from the best-performing model during the cross-validation process.184

The input features are composed from the stress and earthquake features as well185

as their time lags. The time lags are introduced both to capture any potential anisotropy186

or hydromechanical heterogeneity that are not explicit in the numerical model as well187

as time delayed effects that former earthquakes or stress history may have when perturb-188

ing the current earthquake. We find that including more lags improves the overall fit of189

our model, up to ∼50 lags, but is likely over-fitting and unrealistic. We assume that the190
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physical meaning of the lags are unreasonable beyond ∼1 year before the actual earth-191

quake timing and reserve our total lags to the local minimum of 5 lags (SM Figure 3).192

In other words, a model can contain the current stress/earthquake feature (+0 lag), the193

time period prior (+1 lag), and the time periods before that (+2-+5 lag etc..) or any194

combination of that set (SM Figure 3).195

To assess feature importance, we use SHAP, which provides a robust and self-consistent196

means to explain the predictions of our target variable (earthquake or no-earthquake)197

by computing the contribution of each feature to the prediction (Shapley et al., 1953;198

Lundberg & Lee, 2017). A key advantage of SHAP lies in its ability to consistently un-199

tangle the impacts of multiple correlated input variables (Trugman & Ben-Zion, 2023).200

Since the SHAP value is represented as an additive feature, it is a linear model and the201

contributions of each feature can be added to describe the contribution that the stress202

features have compared to the earthquake features. This is often preferable compared203

to permutation feature importance which chooses importance based on the decrease in204

model performance. Larger SHAP values for a given feature, averaged across the dataset,205

signify a higher importance for the model’s prediction.206

3.5 Cluster Analysis207

As an independent test of earthquake behavior, we investigate how the PVU seis-208

micity is distributed in magnitude, space, and time using a traditional cluster analysis.209

We use the nearest neighbor distance (NND) in the space-time-magnitude domain (Baiesi210

& Paczuski, 2004) for each pair of events i and j using the following equation:211

ηij =

 tij(rij)
d10−bmi , tij > 0;

∞, tij ≤ 0
(1)

Where, tij is the interevent time (year), rij is the inter event distance (km), d is the di-212

mension of the earthquake hypocenter distribution (d = 1.32) determined using a box-213

counting procedure (Corral, 2003) (SM Figure 4), b is the b-value (b = 0.75) determined214

by maximum likelihood estimation (Aki, 1965), and mi is the ith event magnitude (Zaliapin215

& Ben-Zion, 2013; Schoenball et al., 2015). The NND is separable into rescaled distance216

(Rij) and rescaled time (Tij) where (Zaliapin et al., 2008; Zaliapin & Ben-Zion, 2013):217

ηij = RijTij (2)
218

Rij = (rij)
d10−bmi/2 (3)
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219

Tij = (rij)
d10−bmi/2, (4)

An advantage of this form of NND is that the clustering style of seismicity can be dis-220

played by a joint 2D distribution of rescaled time log10 Tij and rescaled distance log10 Rij221

(Zaliapin et al., 2008; Zaliapin & Ben-Zion, 2013, 2016). The distribution helps to de-222

scribe the type of earthquake clustering style, since observed seismicity often shows a bi-223

modal joint distribution divided by a constant line and chosen nearest-neighbor thresh-224

old n0. Events below this threshold are classified as clustered (i.e., earthquake-driven trig-225

gering) and the events that are above this threshold are classified as background (i.e.,226

injection-driven or independent) (Zaliapin & Ben-Zion, 2016). We use the NND distri-227

butions for the PVU as an independent test of the physical mechanism driving each earth-228

quake in the sequence. We hypothesize that our ML/SHAP model will preferentially sep-229

arate injection-driven vs earthquake-driven events as identified by Zaliapin and Ben-Zion230

(2016).231

4 Results232

4.1 Numerical Model Results233

The fully-coupled poroelastic model shows that areas with seismicity experience234

pore pressure increases from 0.005 MPa to 9 MPa. Most pore pressure increases occur235

within an 8 km radius around the injection well (SM Figures 5-10). Most seismicity oc-236

curs in close vicinity of the injection well and the ∆P is highest in early 1999 (∼9 MPa).237

The pressure changes near the well mimic injection rate changes as the temporal delay238

of diffusion is negligible. Elsewhere, the diffusion process dominates the pressure changes239

and therefore the increase in pore pressure is more gradual through time (SM Figure 8-240

9). Across the domain, seismicity occurs during the highest rates of pressure increase.241

This observation is consistent with other instances of wastewater induced seismicity (Langenbruch242

et al., 2018; Qin et al., 2022). The increasing pore pressure diffuses laterally through the243

highly permeable Leadville formation. Low permeability confining units above and be-244

low the reservoir restrict vertical pressure migration (SM Video 1).245
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4.2 Cluster Analysis Results246

Results of the NND cluster analysis show that a larger portion of the earthquakes247

are classified as the background mode (Zaliapin & Ben-Zion, 2016; Goebel et al., 2019)(Fig-248

ure 3a). The constant threshold value η0 = −4.9 is chosen based on a 1D Gaussian mix-249

ture model analysis (Zaliapin et al., 2008; Zaliapin & Ben-Zion, 2016). The clustering250

behavior is similar to other cases of wastewater induced seismicity (Zaliapin & Ben-Zion,251

2016; Glasgow et al., 2021). There is a larger population of background events and clus-252

tered events occur at short space-time distances. These results are also dissimilar from253

other cases of induced seismicity that have a more clear bimodal distribution, albeit dif-254

ferent mechanical processes are occurring (Zaliapin & Ben-Zion, 2016, e.g., Coso and Salton255

Sea geothermal areas). A small portion of the background domain is characterized by256

low Rij and large Tij , which often characterizes these events as repeaters (Zaliapin &257

Ben-Zion, 2016; Hsu et al., 2024). These events make sense in the context of single well258

injection. The start-stop nature of the injection means repetitive changes in stress oc-259

cur at the same locations. This is observed in the pore pressure results at different clus-260

ters near the well where the pore pressure closely follows the flux of the injection (SM261

Figures 5-8).262

4.3 ML/SHAP Model Results263

Our preferred model uses the following: 1000 total trees, a maximum depth of 10,264

a minimum sample split of 10, and a minimum of 4 samples for a leaf node. Figure 4a265

shows the fit of our random forest model for two different model types. One model uses266

only the von Mises stress rate and earthquake feature while the other model uses both267

the von Mises stress and the von Mises stress rate as well as the earthquake feature (in-268

cluding lags). We find that the mean squared error (MSE) is slightly lower for the model269

that includes both stress features. However, we choose to present the parsimonious so-270

lution of one stress feature and refer the reader to the supplementary for the results in-271

cluding both stress features, which contains small differences to the main results (SM272

Figures 11-14).273
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Figure 3. a) Nearest neighbor time-distance distributions for seismicity in the PVU. The

color bar represents the number of event pairs. The total number of earthquakes used in this

analysis is 2927. The diagonal dashed line is the η0 background (above) and clustered (below)

mode threshold. The value is a constant distance threshold determined by the 1D Gaussian

mixture model and is -4.9. b) Comparing the earthquakes that have at least 50% stress feature

contribution on the rescaled distance rescaled time plot. Many of the earthquakes cluster in the

independent background mode with a second distribution towards the repeater mode and a few

earthquakes spread out in the cluster mode. c) The SHAP stress feature contribution vs. the

nearest neighbor distance value. Many of the earthquakes cluster below the 50% stress feature

contribution indicating and to the left of the -4.9 cluster threshold. However, earthquakes that

have >50% stress feature contribution, denoted as red circles, tends to populate the ‘background’

mode of the NND (to the right of -4.9). These results are consistent for earthquakes driven by

stress from the injection since they act as initial parent earthquakes that trigger subsequent seis-

micity in a region that has experienced stress changes high enough to begin seismicity.
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Figure 4. a) Forecasted seismicity rate across for all time steps. Orange line represents the

best fit model that includes only the von-Mises stress rate. The dashed green line includes von-

Mises stress and has slightly better fit. b) Earthquake count binned through time for earthquakes

with SHAP stress rate <=50% (ie. earthquake-driven green) and >50% (ie. injection-driven red).

c) same as panel b, but for distance away from well. d) b-value analysis of all earthquakes (blue),

earthquake-driven (green), and injection-driven (red). e) Ratio of all earthquakes with a larger

sum of SHAP value for stress features (red) and the earthquake features (green). We reflect the

uncertainty of triggering mechanism based on our two models described in panel a.
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The SHAP analysis results are summarized in SM Figure 15. We output the re-274

sults exclusively at the time when the earthquakes occur since we are only interested in275

discerning the contribution of the stress features at that time. A summary of the SHAP276

contributions for all time, not just when the earthquakes occur, is presented in the sup-277

plementary material (SM Figure 16). The feature with the higher overall impact on the278

model is the perturbable earthquake feature that represents the number of earthquakes279

that occurred during the chosen time step that could have potentially perturbed the earth-280

quake in question. The next most important features, with nearly equal importance, are281

the lagged von Mises stress rates. These stress features are considerably less important282

on average compared with the earthquake feature.283

To assess the total contribution of the stress features vs the earthquake features,284

we compare the cumulative feature results. Separating which earthquakes are dominated285

by cumulative feature importance, Figure 4e shows that the ratio of earthquakes that286

have a higher stress feature contribution compared to earthquakes that have a higher to-287

tal earthquake feature contribution is about 1:5. We examined the sensitivity of this since288

it would be expected that increasing lags may contribute to higher contribution to stress.289

While the stress contribution does increase for models that include 0,+1,+2 lags, after290

the model reaches +3 lags, earthquakes that are considered to have a higher total stress291

contribution increase marginally. For example, from +3 lags to +5 lags the ratio has a292

percent increase of only ∼0.5% (SM Figure 17). We do not pursue sensitivity past +5293

lags as the SHAP analysis is computationally expensive with increasing features. It is294

important to note that when testing increasing lag sensitivity, the overall ratio of the to-295

tal number of stress features to earthquake features remains the same.296

5 Discussion297

The ML/SHAP model identifies injection-driven earthquakes (ie. >50% stress fea-298

ture contribution) predominantly as background events in the NND model (Figure 3b-299

c). In the NND model, background events are mostly the independent Poisson mode (Zaliapin300

et al., 2008; Zaliapin & Ben-Zion, 2016). This suggests injection-driven earthquakes of-301

ten act as parent earthquakes, likely induced by pore pressure and stress changes, trig-302

gering further seismicity. These results are further supported by the relative timing of303

these earthquakes, which often occur at the beginning of injection stages (Figure 4b).304

We statistically compare injection-driven event distribution to the larger catalog using305
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a two-sample Kolmogorov–Smirnov test, which rejects the null hypothesis of identical306

distributions with 99% confidence (SM Figure 18).307

We explored two interevent time measures to analyze event timing between injection-308

driven and earthquake-driven classes (Davidsen et al., 2021). The first measure, interevent309

time ratio R, indicates deviations from a Poisson process (Van Der Elst & Brodsky, 2010;310

Davidsen et al., 2017). Rejecting the Poisson process hypothesis with >95% confidence,311

we observe a significant peak at R = 0 suggesting triggering, and another at R = 1312

indicating longer intervals likely due to stress changes stimulated by a non-random pro-313

cess (SM Figure 19). Injection-driven earthquakes show less bi-modal distribution, im-314

plying less temporal clustering than earthquake-driven ones. The second measure, the315

Bi-test, also indicates temporal clustering and rejects the Poisson process hypothesis with316

>95% confidence (Bi et al., 1989; Baró et al., 2014). Injection-driven earthquakes ex-317

hibit lower temporal clustering (lower fluctuation in H values) compared to clearly clus-318

tered earthquake-driven ones (higher fluctuation in H values around 0 and 1) (SM Fig-319

ure 20).320

We also analyze the spatiotemporal distribution of injection-driven earthquakes (Fig-321

ure 4b-c). They tend to occur earlier in injection history and cluster near the injection322

well, contrasting with earthquake-driven earthquakes. These events coincide with sharp323

stress field changes near the well, often preceding clustered seismicity. The b-value of injection-324

driven earthquakes (Figure 4d) is notably higher (1.03) compared to overall seismicity325

(0.75) and earthquake-driven events (0.71). This suggests that injection-driven events326

tend to have lower magnitudes, on average, than the earthquake-driven events and a b-327

value closer to 1 indicates that these events may appear to mimic independent background328

events. The finding that earthquake-driven events produce lower b-values and charac-329

terize more of the large events in induced catalogs may have implications for maximum330

magnitude estimates of induced earthquakes, since initial injection-driven earthquakes331

at the onset of induced sequences might underestimate the overall maximum magnitude332

of triggered seismicity333

Clusters of seismic activity away from the well are noticeable, yet they have fewer334

stress-dominated earthquakes (SM Figure 21). Often, clusters away from the well are ini-335

tiated by a few injection-driven earthquakes. This observation is consistent with the ma-336

chine learning process since earthquakes that had no prior earthquakes would not be ex-337
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pected to have a strong prior earthquake feature contribution. However, not all injection-338

driven earthquakes precede nearby seismic events. Additionally, areas lacking clear clus-339

tering seem to host multiple injection-driven earthquakes, suggesting varied driving mech-340

anisms in those regions (SM Figure 21).341

It is important to recognize that uncertainty is introduced in the model at various342

stages: physical model material parameters, static stress transfer parameters, RFR in-343

put features, and the number of included lags. We affirm the numerical model (see SM344

8.1 and SM Figures 5-10) and show that the static stress transfer at a triggering thresh-345

old of 10 kPa is only marginally sensitive to varied stress drop assumptions (SM Figure346

2). We find that increasing lags beyond +3 does not greatly change the ratio of injection-347

driven and earthquake-driven earthquakes (SM Figure 17). The main model sensitivity348

lies in input features: incorporating von Mises stress and rate increases injection-driven349

earthquakes from 17% to 27% (Figure 4e and SM Figure 14). It is unclear whether in-350

cluding both the stress and stress rate features provides a better model since more injection-351

driven earthquakes also begin to populate the cluster mode, which we assume is a prod-352

uct of over-fitting the seismicity rate (Figure 4a and SM Figure 13). We therefore sug-353

gest that these two models may provide estimates on the lower and upper bound with354

the true portion of injection-driven earthquakes at approximately 22±5% of the total.355

Results of this study indicate that the physics-based model, with RFR and SHAP356

analysis, accounts for a significant portion of independent background mode events found357

in NND cluster analysis. However, not all background mode events are classified as injection-358

driven. The absence of a clear bi-modal distribution in NND analysis suggests that events359

populating the independent background mode may have less direct fluid injection influ-360

ence (Zaliapin & Ben-Zion, 2016; Glasgow et al., 2021). We expect this ratio of injection-361

driven vs earthquake-driven seismicity to vary by geologic region, stress state, distribu-362

tion of preexisting faults, and injection style. Understanding this ratio is crucial for wastew-363

ater management, as it impacts induced seismic hazard. Sites where seismicity is mainly364

earthquake-driven would be harder to control via well operations best practices (R. G. Hill365

et al., 2024), while sites with mostly injection-driven events may be more manageable.366

Identifying the triggering process in candidate sites can guide energy production deci-367

sions, avoiding areas prone to severe triggered seismicity.368
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6 Conclusion369

We decipher induced earthquake triggering mechanisms using a 3D fully-coupled370

poroelastic model of brine injection and a random forest machine learning model trained371

on more than 20 years of induced earthquakes at Paradox Valley Unit, Colorado. Our372

simple ML/SHAP feature training approach, using one injection-driven feature and one373

earthquake-driven feature, allows for the separation of events that are more likely injection-374

driven from events that are more likely earthquake-driven in the sequence. Comparing375

the ML/SHAP results with a nearest-neighbor cluster analysis reveals good agreement376

in stress contribution and cluster style. Our methodology finds that injection-driven earth-377

quakes make up only 22±5% of the catalog and have distinct spatiotemporal clustering378

with a larger b-value, closer proximity to the well and earlier occurrence in the injection379

history. Our method may be applicable to other regions to help determine the site sus-380

ceptibility to earthquake triggering or aid in declustering induced catalogs.381

7 Open Research382

Data of Abaqus files, post-processing scripts, ML model scripts, and figure gener-383

ation scripts are available online at Hill, R. (2024) (https://doi.org/10.5281/zenodo384

.10967359).385

The wastewater injection data and earthquake data is available from the Bureau386

of Reclamation Upper Colorado Basin website (https://https://www.usbr.gov/uc/387

progact/paradox/index.html).388

The numerical models were built and solved using the software Abaqus (Dassault Sys-389

temes, 2020).390
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Surface uplift and time-dependent seismic hazard due to fluid injection in east-540

ern texas. Science, 353 (6306), 1416–1419.541

Stein, R. S. (1999). The role of stress transfer in earthquake occurrence. Nature,542

402 (6762), 605–609.543

Stokes, S. M., Ge, S., Brown, M. R., Menezes, E. A., Sheehan, A. F., & Tiampo,544

K. F. (2023). Pore pressure diffusion and onset of induced seismicity. Journal545

of Geophysical Research: Solid Earth, 128 (3), e2022JB026012.546

Thompson, B. (2021). cutde. Retrieved from https://github.com/tbenthompson/547

cutde548

Toda, S., Stein, R. S., Richards-Dinger, K., & Bozkurt, S. B. (2005). Forecasting the549

evolution of seismicity in southern california: Animations built on earthquake550

stress transfer. Journal of Geophysical Research: Solid Earth, 110 (B5).551

Townend, J., & Zoback, M. D. (2000). How faulting keeps the crust strong. Geology ,552

28 (5), 399–402.553

Trugman, D. T., & Ben-Zion, Y. (2023). Coherent spatial variations in the produc-554

tivity of earthquake sequences in california and nevada. The Seismic Record ,555

3 (4), 322–331.556

Van Der Elst, N. J., & Brodsky, E. E. (2010). Connecting near-field and far-field557

earthquake triggering to dynamic strain. Journal of Geophysical Research:558

Solid Earth, 115 (B7).559

Wang, H. (2000). Theory of linear poroelasticity: With applications to geomechanics560

and hydrogeology. Princeton, New Jersey: 287 pp., Princeton Univ. Press.561

Weingarten, M., Ge, S., Godt, J. W., Bekins, B. A., & Rubinstein, J. L. (2015).562

–22–



manuscript submitted to Geophysical Research Letters

High-rate injection is associated with the increase in us mid-continent seismic-563

ity. Science, 348 (6241), 1336–1340.564

Zaliapin, I., & Ben-Zion, Y. (2013). Earthquake clusters in southern california i:565

Identification and stability. Journal of Geophysical Research: Solid Earth,566

118 (6), 2847–2864.567

Zaliapin, I., & Ben-Zion, Y. (2016). Discriminating characteristics of tectonic and568

human-induced seismicity. Bulletin of the Seismological Society of America,569

106 (3), 846–859.570

Zaliapin, I., Gabrielov, A., Keilis-Borok, V., & Wong, H. (2008). Clustering anal-571

ysis of seismicity and aftershock identification. Physical review letters, 101 (1),572

018501.573

–23–



manuscript submitted to Geophysical Research Letters

8 Supplementary574

8.1 Model Pre-processing575

A variety of issues and subsequent solutions arose in the model preprocessing that576

is important to elaborate on. As mentioned, previous work already compiled resources577

into a comprehensive, fully coupled poroelastic model of the PVU (Denlinger & RH O’Connell,578

2020). However, this model was not easily portable to Abaqus and lacked sufficient dis-579

cretization to capture large pressure gradients near the well. The methodology used to580

transfigure the initial model are presented here. We compare the model to a well known581

analytical solution and observed wellhead pressures to confirm its robustness.582

8.1.1 Material Parameters and Meshing583

The first difficulty with the Denlinger and O’Connel (D&O) model (Denlinger &584

RH O’Connell, 2020) is that the poroelastic material parameters are all defined at the585

nodes of the mesh. In Abaqus, there are a few material parameters defined at the nodes586

(pore pressure, void ratio, and saturation), but the elements (hexahedrons defined spa-587

tially by 8 nodes) are assigned other material parameters (ie. Young’s modulus and bulk588

modulus of solid grains). After simple conversions of the given material parameters in589

the D&O model to the values used in Abaqus, we thought the best way to solve the is-590

sue of defining the node only values to elements would be to average the 8 nodal coor-591

dinates that make up a hexahedron element to the value at that element.592

However, the averaging proved ineffective for a variety of reasons. First, the D&O593

model near the region of the well head experiences strong changes in material values. The594

Leadville formation, the high permeable injection formation, is embedded in low perme-595

able material. The nodal change between these materials was actually only 1 node thick596

in some instances so by taking the average of 8 nodes resulted in significantly reducing597

the order of magnitude of material permeability for areas near fluid injection. Second,598

the strong changes in material values coupled with the large spatial discretization of the599

D&O model near the wellhead resulted in unrealistic gradients and convergence issues.600

Therefore, in order to solve the issues present with the conversion of the D&O model601

to Abaqus, we decided to make several adjustments to our model that we believe make602

it a stronger model overall. First, we decided to reduce the spatial discretization near603
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the well head. The well head is actually composed of 3 separate perforated injection zones604

and creates strong pressure gradients that require smaller spatial sampling in order to605

capture the large and rapid changes there. This is difficult to do based on the previous606

mesh since preserving spatial features such as dipping beds and down scaling material607

features is not straight forward. Thankfully, the vertical discretization was already well608

defined by the D&O model so the only change to the discretization was the horizontal609

directions. We solved this problem by preserving the number of elements whilst chang-610

ing the horizontal spacing to grow exponentially from the location of the well head. Then,611

the vertical spacing and material parameters of the D&O model are preserved in the smaller612

spacing by using a nearest point search measured in Euclidean distance. The spatial mesh-613

ing changes between the D&O model and ours are shown in Figure 1.614

The second adjustment we made was in the determination of material parameters615

throughout the model. As previously mentioned the D&O model allows for entirely unique616

material parameters at every node, which caused difficulties in convergence for Abaqus.617

Using the newly discretized mesh of nodes/elements, and their associated material pa-618

rameters, we applied a k-medoids clustering algorithm to cluster the nodes/elements based619

on similar material metrics across the combined set of materials. K-medoids is similar620

to k-means clustering, but instead of choosing the average from the kth cluster it chooses621

an actual data point as the center of the cluster. We worked with several different ma-622

terial cluster values, but ultimately decided on 1000. At this number, the model preserves623

many of the naturally occurring geological features such as the layered beds and salt domes624

whilst also maintaining a high level of material contrast near the wellhead without gen-625

erating drastic gradients.626

8.1.2 FEM Results Compared to Analytical Solution/Observation627

A well known analytical solution exists to describe the spatial and temporal evo-628

lution of pore pressure due to continuous fluid injection into a poroelastic full space (Rudnicki,629

1986). In order to gauge the success of the model, we first compare this solution to the630

3D model using homogeneous material parameters. Additionally, we reduce the 3 injec-631

tion nodes to a single node to better reflect the analytical solution. The radial analyt-632

ical solution of pore pressure is compared with the closest radial axis given by the nodes633

shown in Figure 22. The solution for pore pressure matches well to the analytical solu-634
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tion after 10 days of constant injection using a typical bulk value of the crust as shown635

in Figure 23.636

One thing to note is that the solution of pore pressure increases rapidly closer to637

the point of injection. The strong pressure gradients at this location require smaller el-638

ements then the horizontal discretization in the D&O model (200 m).639

With the model now confirmed in the simplest case it was time to test a variety640

of k-medoid models, as previously described, and compare them to the observed well-641

head pressures to confirm that the model was capable of capturing the observations. It642

is important to note that any complex model will result in overfitting of the wellhead643

data, and thus poor predictive ability for future data.644

There has been a plethora of previous work from observational drilling to pressure-645

flow modeling designed to capture the reservoir permeability structure (V. King & Block,646

2019). These different observations and modeling have provided a sizeable range of per-647

meability values. For example, the permeability of intact limestone and dolomite varies648

from 0.01 to 0.1 mD (Bear, 1988). Fracturing is expected to increase permeability out-649

side of this laboratory setting. Drill stem tests gave an original permeability of 7.97 mD,650

yet at the same time additional analysis indicated permeability between 1.3 and 1.5 mD.651

Samples from a well 4.6 km to the northeast yielded permeability ranges of 0.03 to 1.3652

mD (Harr, 1988). An earlier model by Denlinger and Roeloffs (Roeloffs & Denlinger, 2009)653

arrived at a permeability in the injection zone of 28 mD, with significantly lower values654

for the other formations. Additional pressure-flow models also arrive at ranges of 9.06655

to 29.2 mD for certain injection phases (V. King & Block, 2019). The current best model656

(the D&O model) throughout the entire model domain, only has a maximum permeabil-657

ity of 1.97 mD. The final 1000 k-medoids model, modeled at constant injection rate (typ-658

ical daily average from PVU injection data), is compared with several hypothetical an-659

alytical solutions for constant injection rate for a range of bulk permeabilities in Figure660

24.661

The final 3D heterogeneous model compares well with a range of typical observa-662

tional values and observed wellhead pressures. In the near-field, the permeability matches663

the higher permeability analytical solutions as expected since there is likely fractured664

media in this location (V. King & Block, 2019). In the far-field, where the permeabil-665

ity structure is expected to decrease, the model approaches the lower permeability an-666
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alytical solution. For the future, it will likely be important to test a variety of physics667

based models to understand the sensitivity introduced in the machine learning. How-668

ever, we are confident in the evidence presented that our current model, adopted from669

the D&O model, is robust enough to continue with the primary goal of this work.670
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8.2 Supplementary Figures671

Figure 1. Previous model mesh from D&O model (Panel A) with surface view of well location

compared to (Panel B) our smaller discretized model with similar surface view.
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Figure 2. The von Mises stress in kPa for the three varying earthquake magnitudes (0.5, 2.0,

and 4.0) for three varying stress drops (1, 3, and 10 MPa). We use cutde (Thompson, 2021) to

resolve stress transfer produced from fullspace triangle dislocation elements assuming a uniform

stress drop, a shear modulus of 30 GPa, and a Poisson ratio of 0.25. We show that the von Mises

stress is self similar for opposite receiver planes at certain distances, dependent on the mag-

nitude, produced by the dislocation. We use thetriggering threshold of 10 kPa (Reasenberg &

Simpson, 1992; Stein, 1999) which increases depending on the magnitude size. This distance is

our perturbable radius used for the earthquake feature.
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Figure 3. A sensitivity test to increasing and the overall MSE fit to the seismicity rate. We

find that there is a local minimum near 5 lags. The fit does not improve after approximately 50

lags.
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Figure 4. Hypocentral and epicentral (inlet) box-counting procedures with good agreement

on the fractal dimension df=1.32 of the earthquakes at Paradox Valley.
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Figure 5. Different k-means cluster locations (1-15) of seismicity for the PVU. We extract the

pore pressure at the center of each seismicity cluster from the numerical model in the subsequent

figures. We include results for the near well cluster (7), two further regions with more diffuse

responses (4) and (10) as well as farther distance (2) and (6).
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Figure 6. Cluster 7 near the well and pore pressure profile at the center of cluster. The pore

pressure mimics the injection well rates due its close vicinity to the well.
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Figure 7. Cluster 4.
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Figure 8. Cluster 10.
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Figure 9. Cluster 2.
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Figure 10. Cluster 6.
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Figure 11. Similar to SM Figure 15 but for the model that includes both the von Mises stress

and the von Mises stress rate. This represents 2927 total events. The most important feature is

the number of perturbable earthquakes (NumEQsP) that occurred during that same time step as

the earthquake in question. The next 65 variables are a mix of the von Mises and von Mises rate.
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Figure 12. Similar to Figure 3c but for the model that includes both the von Mises stress and

the von Mises stress rate. There is more earthquakes associated with the clustered mode, but still

a large amount of background mode earthquakes.
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Figure 13. Similar to Figure 3b but for the model that includes both the von Mises stress

and the von Mises stress rate. There is more earthquakes associated with the clustered mode, but

still a large amount of background mode earthquakes.
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Figure 14. Similar to Figure 4e but for the model that includes both the von Mises stress and

the von Mises stress rate. Ratio of the earthquake stress contribution totals for both the stress

features and the earthquake features. For our model of including +5lags the stress feature to

earthquake feature ratio approximately 1:3 which is must higher than the (1:5) ratio seen in the

model that only has one stress feature.
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Figure 15. Mean absolute SHAP value for times in the model that an earthquake actually

occured. This represents 2927 total events. The most important feature is the number of per-

turbable earthquakes (NumEQsP) that occurred during that same time step as the earthquake in

question. The next 6 variables are all the stress rate from the stress change from the injection.
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Figure 16. Simlar to SM Figure 15 except for all time steps in the model which includes the

time steps when an earthquake is not occurring (2927 ∗ 284 = 831, 268 total samples).
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Figure 17. Similar to SM Figure 14 but for the model that includes both the von Mises stress

and the von Mises stress rate and only +3 lags. The ratio is (0.3762) compared with the ratio at

+5 lags (0.3789). Implying, that the ratio is not sensitive to increasing lags after +3.
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Figure 18. Empirical cumulative density functions of the two sample Kolmogorov–Smirnov

test. We show that the distribution for the earthquakes with stress contribution >50% are not

drawn from the same distribution as the total earthquakes with 99% confidence. Dashed line

represents lower and upper confidence bounds for each distribution.
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Figure 19. Results of interevent time measure R-test (Van Der Elst & Brodsky, 2010; David-

sen et al., 2017). The histograms represent count of earthquakes for the total earthquakes (blue)

and the portion of this set for the the earthquake-driven earthquakes (green) and injection-driven

earthquakes (red). The overall events reject the null-hypothesis due to the PDF of the interevent

time ratio R exisiting outside the the dotted lines corresponding to the 95% confidence inter-

vals of a Poisson process. Notice that the bimodal tails near R = 0 and R = 1 are indicative

of clustering. The majority of the these tails are composed of earthquake-driven events. The

injection-driven earthquakes are considerably flatter and represent a lower portion of the clus-

tered seismicty in the overall catalog.

–46–



manuscript submitted to Geophysical Research Letters

Figure 20. Results of the two sample Kolmogorov-Smirnov test for the distribution of the

H statistics obtained by the Bi-test (Bi et al., 1989; Baró et al., 2014; Davidsen et al., 2021).

The overall sesimicity (blue) and the portion of cumulative components of the earthquake-

driven earthquakes (green) and injection-driven earthquakes (red). The three color bars rep-

resent the 50%, 95%, and 99.95% confidence bounds for the null hypothesis of a Poisson process

(Fn(H) = H). Notice that the portion H attributed to injection-driven earthquakes are signifi-

cantly flatter compared to the clustered earthquake-driven earthquakes which implies a smaller

component of the clustered seismicity albeit we can not reject that it is clustered.
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Figure 21. a) Map view of most earthquakes used in our study and denoted in color by the

time they occurred. The red circled events represent those circled in red in Figure 3 (i.e. earth-

quakes that had >50% stress feature contribution). b) same as above panel, but zoomed in near

well. The earthquakes strongly stress driven near the injection well, but also appear at different

clusters throughout the domain. Often those away from the well have early times compared to

the other earthquakes in their cluster suggesting they may be starting the seismicity in those

areas. There are some examples of earthquakes that are close but nearly stress driven as opposed

to earthquake driven as well.
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Figure 22. Nodes used in comparison with analytical solution. Well is located on the left and

extends to the far field on the right.

–49–



manuscript submitted to Geophysical Research Letters

Figure 23. Analytical solution compared to the homogeneous 3D model. Dashed red line

represents the average well head pressure of the observed PVU.
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Figure 24. Final 1000 k-medoids model compared to several analytical solutions for a variety

of constant rate injection times.
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