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Abstract

Optimization of hybrid dynamic systems typically involves characterizing switching times and mode sequences. Operating

autonomous hybrid systems with varying event timings presents multiple challenges. Complexity often arises from optimal

mode sequence determination, making optimization of the corresponding hybrid automaton more difficult. An experimental

autonomous hybrid dynamic system experiencing switching due to choked flow conditions is presented. Implementing gradient-

based optimization algorithms may be difficult due to complex switching patterns of the hybrid dynamic systems. To mitigate

this, an approximation of the Heaviside step function is applied to transform the hybrid switching functions to a continuous

and smooth forms. Using the Control Vector Parameterization (CVP) approach and evaluating gradients using the variational

method, an open-loop time-optimal control problem is presented. Modeling and control methods are demonstrated using an

experimental two-tank air system. The optimal control formulation can include constraints to avoid specific undesirable modes

of operation.
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Modeling and Time-Optimal Control of an

Experimental Hybrid Dynamic System

Abstract

Optimization of hybrid dynamic systems typically involves characterizing switching

times and mode sequences. Operating autonomous hybrid systems with varying event

timings presents multiple challenges. Complexity often arises from optimal mode se-

quence determination, making optimization of the corresponding hybrid automaton

more difficult. An experimental autonomous hybrid dynamic system experiencing

switching due to choked flow conditions is presented. Implementing gradient-based op-

timization algorithms may be difficult due to complex switching patterns of the hybrid

dynamic systems. To mitigate this, an approximation of the Heaviside step function

is applied to transform the hybrid switching functions to a continuous and smooth

forms. Using the Control Vector Parameterization (CVP) approach and evaluating

gradients using the variational method, an open-loop time-optimal control problem

is presented. Modeling and control methods are demonstrated using an experimental

two-tank air system. The optimal control formulation can include constraints to avoid

specific undesirable modes of operation.
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Index

i: index of control variables

j: index of equality/inequality constraints

k: index of time intervals

l: dummy index for sensitivity equations

m: index of mode

q: index of epochs

mq: index of mode at epoch q

Symbol

nm: total number of nodes

ne: total number of epochs

n1: total number of inequality path constraints

n2: total number of terminal equality constraints
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1 Introduction

Constrained dynamic Optimal Control Problems (OCPs) have received extensive theoret-

ical investigation.1,2 In many systems, the governing equations used to model continuous

dynamic systems remain consistent across the entire time horizon. However, the emergence

of discontinuities stemming from phase changes, flow transitions/reversals, irregularities in

process vessel geometry, and external control actions can introduce complexities in process

modeling and optimization. These phenomena are frequently modeled as sudden alterations

to the subsystem governing the process of interest. Each individual subsystem type is re-

ferred to as a mode or state.3 The comprehensive system describing the complete engineering

process consists of multiple such modes which form a sequence known as the hybrid mode

sequence.3 The progression of the system at specific time points is commonly described as

the process event timings. These events are typically triggered when the system fulfills spe-

cific transition conditions, often linked to transition functions that outline the transition.

Dynamic systems with abrupt changes are commonly called hybrid dynamic systems.

The theoretical and practical significance of hybrid systems stems from their wide range

of applications which reflect the complexity of the real world. In the field of industrial

automation, hybrid systems can manage and optimize production processes, achieving a

seamless interface between material handling and machine operation.4 Energy management

systems also use the concept of hybrid systems to balance load and generating capacity

to respond to instantaneous changes in the electrical grid.5 In intelligent transportation

systems, hybrid systems can handle the continuous and discrete aspects of vehicle dynamics,

thereby improving energy efficiency.6 In biomedical engineering, hybrid systems are used to

model the complex processes of cell growth within bioreactors as well as the effects of discrete

fed-batch systems.7 These applications indicate that hybrid systems are crucial for modern

science and engineering because they provide tools for analyzing and designing complex,

multi-scale, and interdisciplinary systems.
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Researchers established a comprehensive framework to understand and encompass these

complex systems. This framework aims to integrate advanced mathematical theories with

practical engineering techniques, thus providing a systematic approach for analyzing, design-

ing, and optimizing hybrid systems: Barton and Pantelides8 proposed a general modeling

framework for discrete/continuous processing systems operating in the continuous time do-

main. Bemporad and Morari9 presented a framework for systematic design of modeling and

optimal control of linear and mixed-integer linear programming and demonstrated on a gas

supply system. DeCarlo et al.10 presented general theorems for nonlinear hybrid systems

and results for verification of stability of hybrid systems applied in automotive controls and

avionics. Frequent exhibition of hybrid characteristic in real applications motivates the de-

velopment of modeling framework: Alur et al.11,12 suggested the hybrid systems were best

analyzed within a hybrid automaton framework, which suggested each state should be char-

acterized additionally by a set of variables and equations describing the system in that state.

Dimitriadis et al.13 proposed a modified framework within which purely discrete, purely

continuous and hybrid systems of arbitrary complexity can be constructed consistently and

then incorporated into a safety verification problem. Later, Feehery and Barton14–16 en-

riched the methodology on hybrid dynamic models by formulating a broad class of hybrid

discrete/continuous phenomena, presenting insight on sensitivity analysis of a hybrid system

and progress on optimization procedures. Parametric sensitivity analysis, concerned with

the sensitivity of the predicted model to infinitesimal perturbations in parameters, had many

applications in parameter estimation and optimization for hybrid systems.16,17

Research on developing deterministic algorithms for global solution of hybrid dynamic

optimization problems attracted interest due to a need to devise robust methods for auto-

mated design.3,18 Within a general hybrid framework based on continuous hybrid automaton

and depending on characteristic of the optimization problem formulation, a classification of

optimization problems of hybrid system embedded as well as solving approaches was at-

tempted to provide as in the work by Barton et al.3 In summary, hybrid system theory
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includes modeling with an emphasis on exposing the discontinuity, developing suitable al-

gorithms on identifying the model with exact switching conditions and optimal parameters,

and performing optimal control. The optimization of hybrid dynamic problems is typically

associated with optimal mode sequence decisions.

In previous work,19 the nonlinear behavior and complex dynamics of the air flow behavior

in a tank system presents an interesting problem with switching dynamics. One goal of the

present work is to develop a high-fidelity model with available experimental data in order

to simulate the air flow behavior in tank system. A generalized model of coupled nonlinear

ordinary differential equations is presented. Using data collected from the experimental

apparatus, parameter estimation is achieved with MATLAB/Simulink. The proposed model

with estimated model parameters provides a basis for an open-loop optimal control problem.

The problem is solved with constraints enforced to avoid specified modes of operation. The

optimization results are then demonstrated experimentally.

With respect to open-loop control of the proposed hybrid system, a similar hybrid system

due to choked flow is found in previous work15 where the control signals are binary values.

The corresponding optimization formulation is a Mixed Integer Non-Linear Programming

(MINLP) problem. Distinctively, the current experimental multi-variable pressure tank sys-

tem accepts user-specified piece-wise constant control signal. Within the framework based

on hybrid automaton and by classification of Barton,3 the optimization problem formula-

tion of the proposed hybrid system uses nonlinear functions, varying event timings, and an

autonomous mode sequence. A possible solution approach could be based on a nonconvex

MINLP formulation.3

In the current work, the determination of event timings and mode sequences are uniquely

determined by the control input. Directly applying a Control Vector Parameterizaton (CVP)

algorithm to the OCP of proposed system requires the determination of event timings and

mode sequence a priori for a specific control. This is not easily attainable and can lead

to poor convergence using NLP optimization. This issue is addressed by introducing a
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smoothed Heaviside function20 to represent all modes and ensure only one mode is exclu-

sively active. The solutions of the proposed OCP with hybrid dynamics could be used for

solution of engineering tasks such as safety verification. Additionally, optimal process start-

up/shutdown/transition could be considered for choked flow systems. This work could be

extended to other binary hybrid systems.

This work is structured as follows: The modified hybrid framework is presented in Section

2. Section 3 describes the proposed hybrid model and proposed CVP method: In Section

3.1 a hybrid dynamic model is built due to choked flow phenomenon in gas transportation

which provides the base for the control problem. A standard estimation routine is applied to

estimate model parameters from experiment data in Section 3.2. In Section 4, an illustrative

OCP of proposed hybrid system is posed and a CVP-based algorithm with gradient evalu-

ated by trajectory sensitivity is implemented to solve hybrid time-optimal OCP. Results are

presented and discussed in Section 5 with conclusions in Section 6.

2 Background and Problem Formulation

Consider a dynamic system described by following first-order Ordinary Differential Equation

(ODE) defined on [t0, tF ]:

ẋ (t) = f̂ (x (t) , û (t) ,p) (1)

x (t0) = x0 (2)

Here, t0 is the given initial time, tF is the terminal time (tF > t0), x (t) ∈ Rnx are the

state variables, û (t) ∈ Rnu are the continuous control variables, p ∈ Rnp is the vector of

time-invariant parameters, x0 is the given initial states, and f̂ : Rnx × Rnu × Rnp → Rnx is

the vector function assuming continuously differentiable with respect to all arguments.

In practical applications, continuous control variables are often discretized, thereby trans-

forming the infinite-dimensional OCP into a finite-dimensional one. The two most popular

discretization policies are piecewise constant and piecewise linear which correspond to the
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forms of first-order and second-order basis functions of the B-spline function, respectively.21

The experimental setup for this study is designed to accept piecewise constant signals, which

is also the most commonly used form of discretization policy. Therefore, the entire time hori-

zon t ∈ [t0, tF ] is divided by switching time nodes tk into N time intervals:

[t0, tF ] = [t0, t1) ∪ [t1, t2) ∪ ... ∪ [tN−1, tN ] (3)

where tN = tF . Each control variable ûi of û (t) is approximated as time-invariant control

values σi,k on kth time intervals:

ûi (t) ≈ ui (t) =
N∑
k=1

σi,kχ[tk−1,tk) (t) , i = 1, ..., nu, k = 1, ..., N (4)

where χI (t) is the first-order basis function of B-spline function which is also called the

indicator function:

χI (t) =


1, if t ∈ I

0, if t /∈ I

(5)

The control values σi,k taken in the same kth stage is defined as the control value vector σk.

σk = [σ1,k, ..., σnu,k]
T ∈ Rnu , k = 1, ..., N (6)

The overall control value vector σ contains all σk vectors:
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σ =
[
σT

1 , ...,σ
T
N

]T
=

[σ1,1, ..., σnu,1, σ1,2, ..., σnu,2, ..., σ1,N , ..., σnu,N ]
T ∈ Rnu×N (7)

A set of switching times t is defined as:

T =
{
t = [t1, ..., tN (= tF )]

T ∈ RN : tk−1 < tk, k = 1, ..., N
}

(8)

The difference of two adjacent switching time nodes is denoted as the time interval length

δk = tk − tk−1. The vector of time interval lengths is denoted as δ:

δ = [δ1, ..., δN ]
T ∈ RN (9)

Using control vector parameterization of eq 1, a non-hybrid dynamic system with dis-

cretized control is rewritten as:

ẋ (t) = f (x (t|σ,p, t) ,u (t|σ, t) ,p) (10)

x (t0) = x0 (11)

In the context of a hybrid dynamic system, formulating the problem becomes more

complex. The hybrid system framework introduced by Barton et al.3 is presented here.

This original framework serves as a suitable modeling paradigm for coupled continuous state

and discrete state dynamics of embedded hybrid systems. In order to accommodate the

autonomous hybrid model proposed in this study, only limited modifications have been

made.

At the core of this framework lies the hybrid automaton, comprising discrete modes,
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decision variables, state variables, dynamics of each mode, mode transitions, and transition

functions.3 When describing the dynamic evolution of a hybrid system within this framework,

it is divided into two parts: The dynamics within each mode and the transitions between

modes. Discrete modes are discrete states of hybrid automation. At time points other than

transition, the system permits the existence of only one mode which is referred to as the

active mode.3 There should be a finite number of modes and a finite index set of all modes

M = {1, 2, ..., nm} where nm is the total number of modes.

A continuous system describing the dynamic of each mode m ∈ M which is characterized

by a system of nonlinear ODEs governing the evolution of the state variables when mode mq

is the current active mode is given as:

ẋ (t) =
ne∑
q=1

f (mq) (x (t|σ,p, t) ,u (t|σ, t) ,p)χ[τq−1,τq) (t) (12)

The time horizon is divided into consecutive intervals known as epochs Iq, where each epoch

represents a time interval:

Iq = [τq−1, τq) ⊂ R (13)

with τq−1 ≤ τq, q = 1, ...., ne. The hybrid time trajectory Tτ , is a finite sequence of epoch

{Iq} and ne is the total number of epochs. Corresponding to the sequence of epochs is a

finite sequence of modes, hybrid mode trajectory Tµ is a sequence:

Tµ = m1, ...,mne (14)

with mq ∈ M , q = 1, ...., ne. Any mode may be visited multiple times in this sequence. For

each epoch Iq, the discrete state of the hybrid automaton is mode mq and a transition to a

new mode mq+1 takes place at τq.

A transition may be controlled or autonomous. A controlled transition occurs at a certain

time in direct response to a control action. An autonomous transition occurs whenever a

10



transition condition involving state variables, parameters and time become satisfied. A

common formulation for transition conditions is taking the transition at the earliest time τq

at which a discontinuity function, g (x (t|σ,p, t) ,u (t|σ, t) ,p), crosses zero.

The vector of decision variables, denoted as z ∈ Rnz , can be categorized into three

classes of variables based on the inclusion of variable switching times and the presence of

model parameters to be determined. Taking into account both variable switching times and

model parameters, the vector z is formulated as zT =
[
σT ,pT , tT

]T
.

Regardless of either controlled or autonomous transition, the transition condition can be

represented as a common formulation:

x (τq+1—z) = T (x (τq—z) , z, τq) (15)

where τq is the time at which the transition occurs. The simplest and most common transition

function is state continuity:

x (τq+1|z) = x (τq|z) (16)

Given values of decision variables z, a simulation or execution of the hybrid automaton is

characterized by epochs, mode trajectory, initial mode and initial condition. The initial

mode m1 and the initial condition,

x (t0 = τ0) = x0 (17)

both may be decisions to be made by the optimization.

3 Tank Model and Parameter Estimation

In this section, the experimental hybrid model arising from choked flow phenomenon in a gas

tank system is presented. Subsection 3.1 introduces the experimental setup and modeling

while subsection 3.2 describes the process of parameter optimization using a conventional

11



parameter estimation method.

3.1 Experimental Setup and Modeling

In this subsection, an experimental process model derived from a multivariable pressure tank

system is presented based on fundamental principles.19 This nonlinear hybrid dynamic model

depicts the air flow dynamics within an experimental system encompassing tanks, pipes, and

valves. The actual experimental apparatus consists of four interconnected air tanks, allowing

configuration changes through valve manipulation.

Specifically, a two-tank configuration in series has been designed in current study as

depicted in Figure 1. At t = 0, high pressure air is feed into tank system and sequentially

flows through control valve CV1, followed by needle valves V12 and V22. The needle valves

V12 and V22 are partially open. The LabVIEW interface enables adjustment of the opening

percentage allowing for piecewise constant input control policies. Sensors of Tank 3 and

Tank 4 act as surrogates to measure the feed pressure P0 and the atmosphere pressure P3

respectively.

Assuming isothermal operation and applicability of the ideal gas law Pi (t) = ni (t)RT ,

the coupled balance equations for the configuration in terms of tank pressures are derived

as follows:

V1

RT

dP1 (t)

dt
= N1 (t)−N2 (t)

V2

RT

dP2 (t)

dt
= N2 (t)−N3 (t) (18)

where N1 represents the molar flow rate across CV1, while N2 and N3 denote the molar flow

rates across V12 and V22, respectively.

This hybrid dynamic model stems from the physical phenomenon of transitions between

12



normal and choked flow regimes. Choked flow is a pivotal condition where the mass flow

through a constraints reaches a point beyond which further reducing downstream pressure

does not increase the mass flow rate.22,23 The effects of choked flow are seen in the transition

of flow rate across valves between normal laminar/turbulent flow and choked regime.

The occurrence of this transition autonomously arises when the upstream/downstream

pressure ratio of a particular valve crosses a threshold.24,25 The molar flow rates are defined

as functions of dynamic state variables such as upstream/downstream pressures, control vari-

ables such as control valve open-up percentage, and other time-invariant model parameters

related to valve characteristics and thermodynamic properties.19

The hybrid dynamic model entails distinct flow rate expressions. These expressions

correspond to the choked flow condition Pi−1/Pi ≥ 2, or the normal flow condition 2 ≥

Pi−1/Pi, i = 1, 2, 3. Note Pi−1/Pi > 1 implies no reverse flow across the valve. For those

valves, the continuous molar flow rates Ni, i = 1, 2, 3 are given as:24,25

N1 =

 k1Γ
x3−1

√
P 2
0 /2 ifP0/P1 ≥ 2

k1Γ
x3−1

√
P0 (P0 − P1) if 2 ≥ P0/P1 ≥ 1
0 ifP0/P1 ≤ 1

N2 =


0.471k2P1 ifP1/P2 ≥ 2

k2 (1− 2 (P1 − P2) /3P1)
√

P1 (P1 − P2) if 2 ≥ P1/P2 ≥ 1
0 ifP1/P2 ≤ 1

N3 =


0.471k3P2 ifP2/P3 ≥ 2

k3 (1− 2 (P1 − P2) /3P1)
√

P2 (P2 − P3) if 2 ≥ P2/P3 ≥ 1
0 ifP2/P3 ≤ 1

(19)

Acknowledging that the valve position switch for CV1 does not occur instantaneously, it

is assumed that the control signal u1 with in the range [0, 100%] is subjected to low-pass

filtering with a time constant τm. This leads to the following model equations where the

V1/RT and V2/RT are consolidated as characteristic volume constants V1e and V2e:
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Table 1: Model parameters of hybrid system capturing switching behavior
Variable name Symbol Unit
Valve coefficient for CV1 k1 in3mol/ J
Valve coefficient for valve V12 k2 in3mol/ J
Valve coefficient for valve V22 k3 in3mol/ J
Characteristic volume constant of tank 1 V1e mol/psi
Characteristic volume constant of tank 2 V2e mol/psi
Actuator dynamic time constant τm 1
Base of the exponential lift function Γ 1

ẋ1 = Ṗ1 = (N1 −N2) /V1e

ẋ2 = Ṗ2 = (N2 −N3) /V2e

ẋ3 = (−x3 + u1) /τm (20)

The model parameters presented in Table 2 will be estimated using nonlinear regression

based on the dynamic model in Subsection 3.2.

3.2 Parameter Estimation

A set of discretely sampled data for P1m and P2m was acquired at a discrete sampling time-

series tn from the experimental setup. The system was driven by user-specified piece-wise

constant control inputs as illustrated in Figure 2. The estimation of parameters for the

hybrid model can be framed as an optimization problem which minimizes the sum squared

errors arising from the disparities between the simulated and measured state variables P1

and P2:
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min
p

ny∑
n=1

(
(P1m (tn|σ,p, t)− P1s (tn|σ,p, t))2 + (P2m (tn|σ,p, t)− P2s (tn|σ,p, t))2

)
s.t.

ẋ (t) = f (mq) (x (t|σ,p, t) ,u (t|σ, t) ,p) ,∀t ∈ [τq−1, τq)

y (tn) =

[
P1m (tn) P2m (tn)

]T
(21)

where p ∈ Rnp is the vector of model parameters to be optimized with their specific definitions

as defined in Table 1. The time points tn denote the sampling time points and ny is the total

number of data points available. The quantities P1m and P2m represent the measured states

as visually depicted in Figure 2. The quantities P1s and P2s correspond to the simulated

state trajectories derived from eqs 20 and 19. The data array y represents discrete measured

variables, encompassing P1m and P2m.

One may notice that the measured feed pressure P0m and the atmospheric pressure P3m

are not constant in the experimental data. The supply pressure P0m fluctuates whenever the

valve position switches as depicted in Figure 3. To obtain accurate model parameters, the

hybrid model was developed in MATLAB/Simulink and solved by a standard optimization

routine with gradient evaluated by finite difference method. The resulting optimal model

parameters are documented in Table 2. The corresponding simulated P1s and P2s values and

the simulated/measured discrepancies are depicted in Figure 4. The hybrid dynamic model

using the estimated model parameters will act as the model system for the optimization

problem detailed in Section 4. Figure 5 shows the phase plane P1m (t) versus P2m (t) for the

system, including the boundaries between operation modes.
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Table 2: Estimated model parameters of hybrid system
Variable Name Final Lower/Upper bound Gradient at J∗

k1 18.1119 (0, 30) -0.0024
k2 1.8046 (0, 3) -0.0273
k3 2.0703 (0, 3) 0.0129
V1e 21.0940 (18.686, 22.838) -0.0018
V2e 5.8173 (5.189, 6.667) -0.0069
τm 0.8897 (0, 2) -0.0026
R 85.1522 (50, 200) 0.0005

ode45 tolerance AbsTol = RelTol = 10−12

fmincon tolerance TolX = TolFun = 10−8

4 Problem Formulation and Solution

In Subsection 4.1, the construction of an optimization problem with path constraints is

discussed, along with discussions of the challenges arising during optimization due to the

distinctive attributes of the hybrid model. In subsection 4.2, the challenges posed by the hy-

brid model are presented, along with the smoothed Heaviside step function which overcomes

some numerical difficulties. Subsection 4.3 introduces the variational method for solution of

the stated optimization problem, accompanied by the derivations of corresponding sensitivity

and gradient formulas.

Given the estimation of model parameters p in Section 3, an assumption can be made

that these parameters remain unchanged throughout the simulation process. Consequently,

x (t|σ,p, t) will henceforth be represented as x (t|σ, t). In contexts devoid of ambiguity, the

symbols x (t|σ, t) and u (t|σ, t) can be further simplified to x (t) and f (x (t) ,u (t)).

4.1 Problem Formulation

The vector of model parameters denoted by p was defined. This hybrid model with the

estimated parameters p serves as a foundation for optimal control of the system. For corre-
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sponding optimization problems, the decision variables that need to be determined includes

the control values σ as well as the switching times t. The determination of times t is

equivalent to determination of duration of variable time intervals δ. A time-optimal con-

trol problem with state path constraint G1 and terminal point constraint x (tF ) = xF is

considered in the present work:

Problem 1

min
σ,t

J = tF

s.t.

ẋ1 = Ṗ1 = (N1 −N2) /V1e

ẋ2 = Ṗ2 = (N2 −N3) /V2e

ẋ3 = (−x3 + u1) /τm

∀t ∈ [τq−1, τq) , q = 1, ..., ne

x (t0) = x0

x (tF ) = xF

G1 = P1 − 1.5P2 ≤ 0 (22)

where the molar flow rates N1, N2, and N3 in Problem 1 refer to their definitions in eq

19. Problem 1 is an illustrative hybrid time-optimal control problem simulating a start-up

process with path constraints avoiding undesirable phase plane regions. The tank apparatus

is to be transitioned from a specified initial state x0 = x (t = 0) to another terminal state at

x (t = tF ) by an admissible control policy which minimizes the transition time. To enhance

the realism and complexity of the optimization problem, a path constraint, P1 ≤ 1.5P2, is

added to the problem. The significance of this path constraint lies its role in guaranteeing

that the selected valve operates within the constrained pressure ratio. This avoids any

pressure drops leading to choked flow, a phenomenon which can potentially have detrimental
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effects on both the valve and the pipe. These effects include vibrations linked to excessive

noise, equipment wear, and challenges in operation.

A similar tank changeover example was studied in the previous work where the path

constraint was introduced to avoid the formation of an explosive composition mixture in

the vessel at any time during the changeover15. In the explored tank changeover problem,15

the valves are assumed to be fully opened or completely closed leading to binary variables

into optimization formulation. The optimization problems associated with hybrid systems

can be categorized into various classes. This classification is contingent upon factors such

as the Linear Time-Varying (LTV) or nonlinear system dynamics, whether functionals are

affine or nonlinear, whether fixed or varying event timings, and whether mode sequence

is fixed/unfixed or switches controlled/autonomous.3 By classification of various kind of

hybrid optimal problem,3 the tank changeover example is classified as a nonsmooth MINLP

(Mixed-Integer Nonlinear Programming) optimization problem with varying event timings

and autonomous mode sequence and was solved with an Integrated Controlled Random

Search (ICRS) MINLP approach.15,26 In the problem studied in this work, the valve position

is controllable u1 ∈ [0, 100%]. Therefore, based on classification, the optimization problem

Problem 1 should fall under the category of a MINLP optimization with varying event timings

and autonomous mode sequence. In the following section, challenges in directly solving this

optimization problem will be highlighted, and the method of approximating this MINLP

problem as a NLP problem using a smoothed Heaviside step function will be introduced.

This approach aims to enhance the efficiency and stability of the solution process, enabling

more flexible management of hybrid system switchings in practical applications.

4.2 Smoothed Heaviside Step Function

For any given input sequences defined by control values σ and switching time points t, the

execution of the hybrid automaton with dynamics described in Problem 1 is characterized
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by the finite sequence of epochs and the corresponding mode sequence which needs to be

determined a priori. For the hybrid gas-flow system with choked flow, autonomous transitions

occur whenever the transition condition g (x (t|σ, t) ,u (t|σ, t)) is met.

The determination of event timings τq−1/τq for a given (σ, t) decides the hybrid time

trajectory Tτ and corresponding hybrid mode trajectory Tµ. This could be clearly depicted in

the two-dimensional phase plane, where the sampled data points P1m and P2m are portrayed

on the phase plane. Given that reverse flow is not permitted, the trajectory can only exist in

the upper-left region, indicating P0 > P1 > P2 > Patm. Within this region, three threshold

curves on the phase plane indicate the threshold values of the upstream to downstream ratios

necessary for occurrence of choked flow. These three threshold curves partition the upper-left

area into several distinct regions labeled as A to G in Figure 5 with each representing one

mode mq. Regions A to G show the different region of modes of operation. One may notice

that the boundaries between certain mode regions are defined only by a common geometric

point, such as the common point between regions A and C. Theoretically, a transition from

mode A to C through this common point is feasible, although a dual-mode simultaneous

transition is extremely challenging to implement from an experimental perspective.

Event timings τq−1 and τq are marked by the time points when state trajectory intersects

the boundaries of these regions. The sequence of state trajectory passing through those

regions forms the mode trajectory Tµ. A continuous-time hybrid automaton, presented in

Figure 6, explicitly illustrates all potential individual transitions between adjacent mode

regions of phase plane, as depicted in Figure 5.

However, it is difficult to determine the exact event times given the state equations and

the specified control policies input dependent on user-specified (σ, t). A natural approach

to simplify the problem is to introduce binary variables ymq for all modes m = 1, ..., nm and

all epochs q = 1, ..., ne:
3

ẋ (t) =
nm∑
m=1

ymqf
(mq) (x (t|σ, t) ,u (t|σ, t)) ,∀t ∈ [τq−1, τq) (23)
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The binary variable ymq is set to 1 if mode m is active during epoch q and it is set to 0 if

mode m is inactive during that epoch q. The inclusion of the allocation constraint ensures

that exactly one mode is active in each epoch:
nm∑
m=1

ymq = 1,∀q = 1, ..., ne (24)

Rather than enumerating all modes of the hybrid dynamic system, binary variables can be

used to switch the lower level equations (19) defining the flow rates. For a piecewise system

containing only two subsystems, it is straightforward to use the Heaviside step function to

represent the discontinuity. A smooth approximation of the Heaviside step function,20 using

the transition condition g (x,u) as the independent variable, is defined as:

H (g (x,u)) = H1 {g (x,u) , λ}|λ→∞ = lim
λ→∞

arctan (λg (x,u)) /π + 1/2 (25)

For readability, the two arguments g (x,u) and λ in smoothed penalty function H1 {·} are

enclosed in braces {·} in the following context. The graph showing λ values ranging from 1

to 500 is depicted in Figure 7.

The piecewise molar flow rate expressions N1, N2, and N3, as outlined in (19) can be tran-

sitioned into a continuous function by using the aforementioned smooth Heaviside function

(25). This results in the integrated flow rate expressions NH
1 , NH

2 , and NH
3 :

NH
1 =k1Γ

x3−1
√

P0 (P0 − P1) ·H1 {(2P1 − P0) , λ}

+ k1Γ
x3−1

√
P 2
0 /2 · (1−H1 {(2P1 − P0) , λ})

NH
2 =k2 (1− 2 (P1 − P2) /3P1) ·

√
P1 (P1 − P2)H1 {(2P2 − P1) , λ}

+ 0.471k2P1 · (1−H1 {(2P2 − P1) , λ})

NH
3 =k3 (1− 2 (P2 − P3) /3P2) ·

√
P2 (P2 − P3)H1 {(2P3 − P2) , λ}

+ 0.471k3P2 · (1−H1 {(2P3 − P2) , λ}) (26)
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The distribution coefficientsH1 {g (x,u) , λ} and (1−H1 {g (x,u) , λ}) function like switch-

ing mechanisms, dictating the activation of only one subsystem among the molar flow rate

expressions NH
1 , NH

2 , and NH
3 at any given time. When H1 is zero, 1 − H1 becomes one,

effectively toggling between the subsystems. This ensures that only one subsystem is op-

erational while the others remain inactive. As a result, determining the the hybrid time

trajectory Tτ and its accompanying hybrid mode trajectory Tµ becomes unnecessary for any

specified (σ, t).

Introducing the smoothed Heaviside function and using the integrated flow rate expres-

sions, Problem 1 may be reformulated as Problem 2:

Problem 2

min
σ,t

J = tF

s.t.

ẋ1 = Ṗ1 =
(
NH

1 −NH
2

)
/V1e

ẋ2 = Ṗ2 =
(
NH

2 −NH
3

)
/V2e

ẋ3 = (−x3 + u1) /τm

∀t ∈ [tk−1, tk) , k = 1, ..., N

x (t0) = x0

x (tF ) = xF

G1 = P1 − βP2 ≤ 0 (27)

where the integrated molar flow rate expressions NH
1 , NH

2 , and NH
3 in Problem 2 refer to

their definitions in (26). The formulated Problem 2 no longer requires determination of the

corresponding hybrid time/mode trajectories Tτ/Tµ in advance for any given (σ, t). Problem

2 is a regular OCP with state dynamic described by a continuous system. Notably the time

horizon [t0, tF ] is partitioned into contiguous time stages t ∈ [tk−1, tk) which allows the

existence of one or several modes at each stage in Problem 2. In Problem 1, the time horizon

is partitioned into contiguous epochs Iq = [τq−1, τq) where only one mode can be active in

each epoch. Note that use of the Heaviside approximation may result in a very stiff ODE
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simulation, especially at switching times.

The LabVIEW interface allows piecewise constant input control policies only. This char-

acteristic aligns with the foundation of CVP, where the control variables are parameterized.

The variational method, also known as direct or trajectory sensitivity method will be em-

ployed to solve the proposed hybrid OCP Problem 2.

4.3 Sensitivity/Gradient Derivations

In the collocation method, the slack variables are used to transform inequality constraints

into equality constraints.27 Alternately, the CVPmethod typically uses Valentine’s method28,29

or penalty functions to handle inequality constraints. The presented work employs a smoothed

penalty function approach as described in the work by Liu et al.30 and Liu et al.2

When inequality constraints Gj (x (t) ,u (t)) ≤ 0, j = 1, ..., n1 are strictly satisfied, the

integration of path violations should be zero.

N∑
k=1

∫ tk

tk−1

max {Gj (x (t) ,u (t)) , 0} dt = 0, j = 1, ..., n1 (28)

Here, n1 is the total number of inequality constraints. The max function max {Gj (·) , 0} de-

notes the choice of the greater between Gj (x (t) ,u (t)) and 0. For readability, the two argu-

ments Gj (x (t) ,u (t)) and 0 in max function max {·} and Gj (x (t) ,u (t)) and the smoothing

factor ϵ in the smoothed penalty function spf {·} in all following equations are enclosed in

braces {·}.

The optimization parameters are time-independent so the resulting Static Optimization

Problem (SOP) in general Mayer form with max function is formulated as SOP1 with cor-

responding objective function J1:
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SOP1

min
σ,t

J1 = Φ0 (x (tF |σ, t)) +
N∑
k=1

∫ tk

tk−1

L0 (x (t|σ, t) ,u (t|σ, t) , t) dt

s.t.
N∑
k=1

∫ tk

tk−1

max {Gj (x (t|σ, t) ,u (t|σ, t)) , 0} dt = 0, j = 1, ..., n1 (29)

The max function max {Gj, 0} is non-negative regardless of whether the constraints Gj ≤ 0

are satisfied or not. Consequently the max function can be added to original objective

J1 by multiplying with a weighting parameter ρ, resulting in a new objective function J2

corresponding to SOP2 with no path constraints.

SOP2

min
σ,t

J2 = J1 + ρ ·
N∑
k=1

∫ tk

tk−1

ni∑
j=1

max {Gj (x (t|σ, t) ,u (t|σ, t)) , 0} dt (30)

Some concerns related to application of the penalty function with (28) for OCP solving

were presented by Barton:14 The max function max {Gj, 0} is continuous but non-smooth.

Accordingly, the SOP2 is inherently a discrete OCP and first order gradient information

can not be obtained within the framework of CVP. Additionally, numerical difficulties may

arise because this formulation requires ρ → ∞ to exactly satisfy the constraint precisely. A

smoothed penalty function approach is employed to approximate the max function in J2 so

that the gradient information can be computed within an acceptable error tolerance. The

idea was proposed first by Bryson31 and a detailed algorithm was later presented by Liu et

al.30 A smoothed function which approximates max {Gj, 0} is given as:2,30

spf {Gj, ϵ} =
1

2

(
Gj (x (t) ,u (t)) +

√
G2

j (x (t) ,u (t)) + 4ϵ2
)

(31)

where ϵ is the smoothing factor, ϵ > 0. By substituting the smoothed function spf {Gj, ϵ}

for max function max{Gj, 0} in eq 30, the new objective function J3 is written as follows

corresponding to SOP3:
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SOP3

min
σ,t

J3 = J1 + ρ ·
N∑
k=1

∫ tk

tk−1

n1∑
j=1

spf {Gj (x (t|σ, t) ,u (t|σ, t)) , ϵ} dt (32)

where the smoothed penalty function spf is defined in (31).

The objective J3 is continuous and smooth, assuming Gj is continuous and smooth. Then

the first order gradient information can be evaluated using the trajectory sensitivity method.

Furthermore, an iterative algorithm Algorithm 1 is proposed to obtain more accurate opti-

mal controls by gradually increasing the penalty factor ρ and decreasing smoothing factor

ϵ.30 Corresponding to smoothed penalty function spf {Gj (·) , ϵ}, the updating formula for

smoothing factor ϵ in kth
p iteration is presented as:30

ϵ(kp) = 2ς/
((

1 +
√
5
)
ρ(kp)n1 (tF − t0)

)
(33)

Error analysis proves30 that if the smoothing factor ϵ is sufficiently small, the solution

of SOP3 is approximately the solution to SOP1. The proof showing the error between

solutions to SOP1 and SOP3 within minimal tolerance is also available30. Consequently the

implementation of Algorithm 1 does not necessarily require ρ → ∞ to obtain an exactly

solution to SOP1 thus no numerical difficulty is expected. The form of the penalty function

is not unique, and an alternative penalty function in the form of a piecewise function is

feasible.32 In prior research,33 the penalty function defined in (31) was adopted, and its

precision was validated through case studies to align with the results achieved by the popular

optimization package Pyomo34 and the Ipopt solver. Therefore, this study maintains the use

of the penalty function specified in (31).

When incorporating the variable switching times t as decision variables, the discontinuity

in sensitivity values at the switching times t cannot be dismissed. This discontinuity is
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Algorithm 1 Iterative algorithm for the smoothed penalty function approach

Step 1. Set up the iteration number kp = 1, initial penalty factor ρ(kp), initial smoothing
factor ϵ(kp), and tolerance ς.
Step 2. Input the initial decision variable vector z(kp) = (σ, t).
Step 3. Solve the OCP with trajectory sensitivity approach, obtain new decision variable
vector z(kp+1).
Step 4. Decide whether the decision variable vector converge by

∣∣J3 (z(kp+1)
)
− J3

(
z(kp)

)∣∣ ≤
ς.
If satisfied, output z(kp+1) as an approximate solution.
If not satisfied, continue to Step 5.
Step 5. Increment the iteration index kp = kp+1, z(kp) = z(kp+1). Update ρ(kp+1) = c(kp)ρ(kp)

and ϵ(kp+1) = d(kp)ϵ(kp), c(kp)d(kp) = 1 (c > 1, 0 < d < 1). Go back to Step 2.

typically described by the transfer function, which is also known as the jump condition.14,35,36

When the switching times are variable, it may be cumbersome to integrate the state and

sensitivity systems numerically.37 Loxton and Teo et al. proposed a Control Parameterization

Enhance Transform (CPET) technique to overcome this difficulty by mapping the time scale

to a new time scale.1,38,39 If the length of each time stage δk is flexible, a normalized time

variable s is introduced by time scaling transformation of Loxton as:40

dt = δkds = δ⌊s⌋+1ds,

k = 1, .., N (34)

where ⌊s⌋ is the floor function of s. The relation of t (s) from t ∈ [tk−1, tk) to the new time

scale s ∈ [k − 1, k) is given as:

t (s) = [s− (k − 1)] (tk − tk−1) + tk−1 (35)

New state variables x̄, control variables ū, and vector function f̄ are defined in the

s domain. Additionally, the new objective function, equality constraints, and inequality

constraints are included in vector form Ḡ, where the values are equivalent to their originals:
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x̄ (s) = x (t) = x (t (s))

ū (s) = u (t (s))

f̄ (x̄ (s) , ū (s)) = f (x (t) ,u (t)) = f (x̄ (s) , ū (s))

Ḡ (x̄ (s) , ū (s)) = G (x (t) ,u (t)) = G (x̄ (s) , ū (s)) (36)

As a result, the state equation ODE after the time scaling is obtained as:

˙̄x (s) = δkf (x̄ (s|σ, δ) , ū (s|σ, δ)) ,

∀s ∈ [k − 1, k) , k = 1, ..., N (37)

In the time-scaled problem, the class of decision variables that need to be solved for has

shifted from the switching times t in Problem 3 to the lengths of time intervals δ, although t

and δ are intrinsically the same type of decision variables, determining t inherently dictates

δ.

By adopting the CPET technique to transform Problem 2 to mitigate sensitivity discon-

tinuity, the resulting optimization problem can be denoted as Problem 3. For readability,

the bar symbol indicating time-scaling has been omitted from the letters. The time scale can

be discerned by examining the time variable inside the parenthesis: x (t|σ, t) or x (s|σ, δ).

Problem 3
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min
σ,δ

J =
N∑
k=1

δk + ρ · x4 (N)

s.t.

ẋ1 = Ṗ1 = δk
(
NH

1 −NH
2

)
/V1e

ẋ2 = Ṗ2 = δk
(
NH

2 −NH
3

)
/V2e

ẋ3 = δk (−x3 + u1) /τm

ẋ4 = δk

(
(P1 − βP2) +

√
(P1 − βP2)

2 + 4ϵ2
)
/2

∀s ∈ [k − 1, k) , k = 1, ..., N

x (0) = x0

x (N) = xF (38)

where an additional variable x4 has been incorporated to account for the integration of path

violation of G1. This modification transforms the Lagrange term of eq 32 into a Mayer term

x4 facilitating problem solution.

The OCP formatted by Problem 3 is subsequently solved using the sensitivity method.

The sensitivity coefficients ϕi,k and ψk are partial derivatives of the state variables from eq

37 with respect to the control values σi,k and time interval lengths δk in the transformed

time domain, respectively:

ϕi,k (s) =
∂x (s|σ, δ)

∂σi,k

, i = 1, ..., nu, k = 1, ..., N (39)

ψk (s) =
∂x (s|σ, δ)

∂δk
, k = 1, ..., N (40)

Note ϕi,k (s) ∈ Rnx and ψk (s) ∈ Rnx . In Problem 3 the integration of path violations is

represented by the variable x4. Therefore, for Problem 3, the dimension of state variables

for Problem 3, denoted as nx, is calculated as nx = 3 + 1 = 4.

The corresponding sensitivity equations may be derived by taking the partial derivative

of eq 37 with respect to σi,k and δk in transformed time domain s:
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ϕ̇i,k (s) =
N∑
l=k

δl
∂f (x (s|σ, δ) ,u (s|σ, δ))

∂x
ϕi,k (s)χ[l−1,l) (s)

+ δk
∂f (x (s|σ, δ) ,u (s|σ, δ))

∂ui

χ[k−1,k) (s) (41)

ψ̇k (s) =
N∑
l=k

δl
∂f (x (s|σ, δ) ,u (s|σ, δ))

∂x
ψk (s)χ[l−1,l) (s)

+ f (x (s|σ, δ) ,u (s|σ, δ))χ[k−1,k) (s) (42)

The final functions for the computation of first-order gradient in s time scale/domain are

given as:33

∂Gj

∂σi,k

=
∂Φj (x (N |σ, δ))

∂x
ϕi,k (N)

+
N∑
l=k

∫ l

l−1

δl
∂Lj (x (s|σ, δ) ,u (s|σ, δ))

∂x
ϕi,k (s) ds

+

∫ k

k−1

δk
∂Lj (x (s|σ, δ) ,u (s|σ, δ))

∂ui

ds (43)

∂Gj

∂δk
=
∂Φj (x (N |σ, δ))

∂x
ψk (N)

+
N∑
l=k

∫ l

l−1

δl
∂Lj (x (s|σ, δ) ,u (s|σ, δ))

∂x
ψk (s) ds

+

∫ k

k−1

Lj (x (s|σ, δ) ,u (s|σ, δ)) ds (44)

In the following section, the derived sensitivity formulas from (41) and (42) and the

gradient formulas from (43) and (44) are employed. When combined with specific exper-

imental settings, the open-loop optimization problem corresponding to Problem 3 can be

solved. Note that the experimental system momentarily exceeds the constraint P2 ≤ 1.5P1.

This shows that a safety margin should be incorporated into any system when the slightest

excursion into an unsafe mode can not be tolerated.
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5 Results and Discussion

The implementation was carried out using MATLAB version 2023a. The optimization pro-

cess involved the use of the ODE solver ’ode45’ and the NLP solver ’fmincon’. In order to

achieve accurate optimization outcomes for Problem 3, the tolerances of the ODE solver tol-

erances were configured as AbsTol = RelTol = 10−8. Accordingly, the NLP solver tolerances

were set to TolX = TolFun = TolCon = 10−6.The parameter λ governing the behavior of

the smoothed Heaviside function H1 was established at λ = 104. The Sequential Quadratic

Programming (SQP) algorithm was employed, with Algorithm 1 parameters initialized as

c = 10, d = 0.1, ς = 2× 10−4, and ρ(1) = 1.

The feed pressure P0 was set to be constant at 75.00 psia. The atmospheric pressure

P3 was specified as 14.67 psia. Both of these pressures are held constant throughout the

optimization simulation. Initially, both Tank 1 and Tank 2 have pressures close to the

atmospheric value, specifically given by x0 = (14.69, 14.68) psia. Given an acceptable control

input, it is anticipated that the system will achieve the terminal state of xF = (73.77, 56.67)

psia. This terminal state corresponds to a steady state where u1 = 75%. The goal of

the optimization is to arrive at this terminal state xF in the shortest possible time while

adhering to specific state constraints. This simulation essentially mirrors the start-up process

of a plant, with a selected valve V12 satisfying an illustrative constraints G1 = P1 − 1.5P2 as

explained in the previous section.

Table 3 presents the parameter values of the optimization process and the optimal objec-

tives for each iteration as determined by Algorithm 1. Figure 8 illustrates the optimal state

trajectories, while Figure 9 displays them in the phase plane. The optimal decision variables

are outlined in Table 4, where σ1,k denotes the control heights of CV1 and δk denotes the

lengths of the time intervals.

29



Table 3: Penalty process for Problem 3
Iteration Penalty factor ρ Smoothing factor ϵ x4 (s = N) J∗

3,min

1 100 1.2361× 10−4 0.0952 40.5672
2 101 1.2361× 10−5 8.7874× 10−5 40.6116
3 102 1.2361× 10−6 1.3971× 10−7 40.6122
4 103 1.2361× 10−7 1.1809× 10−10 40.6120

Table 4: Optimal control policy for Problem 3
kth Stage 1 2 3 4 5 6

σ1,k 38.94 46.44 55.45 67.96 100.00 0.00
δk 14.54 4.98 4.57 3.93 11.80 0.79

CPU Time: 31.918 s

6 Conclusions

A high-fidelity autonomous hybrid model developed from experimental data was pre-

sented. This model describes the hybrid dynamic process of air flow in a tank system with

choked flow phenomenon taken into consideration. The developed hybrid dynamic model

was used for solution of optimal control problems. The goal was to minimize the transi-

tion time from one steady state to another without violation of specified path constraints.

The path constraints originate from forcing the system to avoid extreme choked flow dur-

ing the transition. Determination of the mode and time sequence of the hybrid dynamic

system when applying sensitivity to both parameter estimation and OCP was avoided by

introducing a smoothed Heaviside function. In order to protect specific valves against ex-

cessive choked flow, the application of Problem 3 could be expanded to more harsh work

situations with higher feed pressure P0. Other binary piecewise systems could benefit from

the implementation of smoothed Heaviside function.

The application of the smoothed Heaviside function excels in seamlessly transitioning

30



between two subsystems. However, when the number of subsystems surpasses two, a re-

evaluation of this approach may be needed. In the context of the system considered in this

work, the gas supply pressure consistently exceeds the downstream pipeline so a unidirec-

tional flow is considered. Given a valve designed for bidirectional flow accommodating both

forward and reverse directions, it becomes essential to include an additional representation

to precisely illustrate the four distinct scenarios arising from combinations of forward/reverse

flow and normal/choked flow conditions. In such scenarios, introducing multi-dimensional

smoothing functions or a combination of multiple smoothed Heaviside functions could be

more appropriate. In practical applications, especially with frequent valve state alterations,

capturing these four distinct flow states accurately can be challenging. Each flow state tran-

sition might come with its own set of conditions, complicating control strategies. Moreover,

integrating these four flow states could introduce added uncertainties and potential insta-

bility to the system. This necessitates meticulous considerations during control strategy

designs. In conclusion, while the smoothed Heaviside function proves commendable in bi-

nary systems, its stability and performance might require further scrutiny and adjustments

in more intricate scenarios.

Another direction for further investigation involves the parameter λ in the smoothed

Heaviside function used in current study. This parameter λ adjusts the steepness of the

smooth approximation. Currently, the parameter λ used in the smoothed Heaviside function

determining the steepness was predetermined. Future work may focus on investigating the

relationship between the chosen value of λ and the introduced approximation error when

compared to the regular Heaviside function. It is essential to note that the approximation

error due to smoothing is dependent on the value of λ. Consequently, it is imperative to

ensure that such an approximation neither compromises the stability of the system nor

diminishes its performance and that the value of λ is adjusted according to the specific

application needs.
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CV2

CV1

P1 P2

P0 P3

V04

V01

V02

V03 V34 V44

V12 V22
Tank 1

Tank 3 Tank 4

Tank 2

High
Pressure
Air
Feed
P0

Figure 1: Flowsheet of experimental tank apparatus in the two-tanks in series format. Note
this arrangement allows the pressure of tank 3 to mirror the feed pressure P0 and the pressure
of tank 4 matching the atmospheric pressure P3.

32



Figure 2: Experimental data P1m and P2m for specified control policy.
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Figure 3: Experiment data of P0m and P3m versus time.
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Figure 4: Simulated states P1s and P2s versus measured states P1m and P2m (top) and
simulated/measured error (bottom).
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Figure 5: Phase plane plot of experimental pressure data P1m and P2m versus time. Note for
some regions such as region A and B, the common boundaries are line segments, while for
others such as region A and C, the common boundaries consist only of a point.
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Transition

Transition Conditions

mode A

mode B

mode C

mode D

mode E

mode F

mode G

mode m : 

Figure 6: Continuous time hybrid automaton of the illustrated hybrid system due to choked
flow. Note if the common boundary between mode regions in phase plane Figure 5 is merely
a point, the transition between these modes is not depicted in this automaton diagram.
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Figure 7: Smoothed Heaviside functions H1 (x, λ) with different λ values.
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Figure 8: Experimental states P1m and P2m versus simulated states P1s and P2s with predicted
control policy.
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Figure 9: Phase plane plot of P1m and P2m versus time with predicted control policy.
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