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Abstract

Real-world dynamical control systems are often subject to input saturation due to the physical constraints of actuators. This

causes the response performance of the system to be reduced due to the effect of input saturation. To this end, we propose a

finite-time performance enhanced bounded control (FTPE-BC) method based on sliding mode control for finite time tracking

of linear systems with input saturation. In this method, an approach rate based on inverse tangent function is proposed to

make the system converge in finite time. A bounded controller based on sliding mode control is proposed, in which two control

parameters are introduced to reduce steady-state error, settling time and overshoot. Meanwhile, the finite-time stability of the

system is proved in a domain of attraction. The parameters selection principle of the controller is given to improve the transient

and steady-state performance of the closed-loop system. The simulation results verify the superiority of the proposed method

in the transient and steady-state performance enhancement.
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Abstract
Real-world dynamical control systems are often subject to input saturation due to the physical constraints
of actuators. This causes the response performance of the system to be reduced due to the effect of input
saturation. To this end, we propose a finite-time performance enhanced bounded control (FTPE-BC) method
based on sliding mode control for finite time tracking of linear systems with input saturation. In this method,
an approach rate based on inverse tangent function is proposed to make the system converge in finite time.
A bounded controller based on sliding mode control is proposed, in which two control parameters are
introduced to reduce steady-state error, settling time and overshoot. Meanwhile, the finite-time stability of
the system is proved in a domain of attraction. The parameters selection principle of the controller is given to
improve the transient and steady-state performance of the closed-loop system. The simulation results verify
the superiority of the proposed method in the transient and steady-state performance enhancement.

K E Y W O R D S

input saturation, finite-time stability, performance enhancement

1 INTRODUCTION

Input saturation is an inevitable problem in controller design due to the physical characteristics of actuators. At the same time, in
order to obtain better performance, the problem of finite-time stability has been widely concerned.

Input saturation is a common phenomenon in mechanical, robotics, and other fields1,2, which usually causes system perfor-
mance deterioration or even instability. The methods to deal with saturation control are mainly divided into two categories:
One-step methods and anti-windup methods. The one-step methods are to meet the performance specifications using saturation
constraints directly3,4. The anti-windup methods introduce some compensators or governors to meet performance index in
closed-loop systems5,6. Anti-windup methods include model recovery anti-windup designs (MRAW)7 and direct linear anti-
windup designs (DLAW)8, reference menagement method9, etc. The MRAW and DLAW methods introduce a compensator to
adjust the controller to optimize the L2 performance10,11 or enlarg the estimated domain of attraction of the system with input
saturation12,13,14. However, the MRAW and DLAW methods are suitable for linear time-invariant systems with input saturation,
and it is difficult to apply to nonlinear systems. The reference management method introduces an auxiliary system to adjust the
reference input to maintain the transient performance of the system15. This method can be applied to nonlinear systems, but it
can not improve the transient performance and domain of attraction of the system with input saturation. Summing up the above,
there is no discussion of how to improve transient performance while guaranteeing the domain of attraction.

The settling time is an important performance specification of the control system, which characterizes the convergent speed of
systems. Finite-time stability means that the settling time of the system is a finite value16. In the past decades, the problem of
convergence in a shorter time became a hot topic in the control designs in order to improve transient performance in terms of a
finite convergence time17. The definition and theorem of finite-time stability are given18. A finite-time stability theorem for faster
convergence is given19. The definition and theorem of practical finite-time stability are given. The problem of attitude control for
a spacecraft nonlinear system with inertia uncertainty and external disturbance is investigated. The sliding mode control method

Abbreviations: FTPE-BC, finite-time performance enhanced bounded control; MRAW, model recovery anti-windup; DLAW, direct linear anti-windup; LTI, linear time-invariant.
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is proposed to make the closed-loop system finite-time stable20. A practical finite-time stability theorem for faster convergence
is given. The finite time control problem of a class of uncertain nonlinear systems with unknown actuator fault is investigated.
The controller is designed by fusing the techniques of command filter and backstepping control21. A fast finite-time stability
theorem is given. The global finite-time adaptive stabilization problem for a class of high order uncertain nonlinear systems
is investigated. A state feedback stabilizer with an adaptive mechanism is constructed by applying continuous domination to
adaptive fashion of the systems22. However, these finite-time stabilization methods do not consider input saturation, and the
controllers all contain sign functions, which will lead to chattering problems in the steady-state response of the system.

Finite-time stabilization under input saturation is a hot issue. The solution includes: bounded finite time control and reference
management based sliding mode control method. Recently, a bounded linear time-varying feedback control is proposed for
a linear time-invariant systems with actuator saturation, but it only achieves the stability goal in finite time23. The global
finite-time stabilization problem for systems with bounded controls is investigated. A bounded global finite-time controller is
proposed to stabilize the single integrator system with input saturation and to specify the saturation level of the control input24.
However, these bounded control methods are only suitable for finite-time stable control of linear systems with input saturation.
They can only satisfy determined finite time performance. At the same time, a finite-time observer-based adaptive sliding
mode output feedback controller is developed for dynamic positioning ship with input saturation and unknown disturbances
by constructing an auxiliary system25. To stabilize the UAV system with input saturation, an auxiliary system is designed to
compensate for the saturation effect. A fast terminal sliding mode controller is developed to achieve trajectory tracking control
of the UAV26. However, these reference management based methods can only maintain finite time performance, not improve it.
A super-twisting algorithm is proposed for a first-order linear system with input saturation. This approach achieves finite-time
convergence considering input saturation, but only for first-order linear systems27. A generic higher-order sliding mode with
bounded integral control is proposed for a nonlinear affine systems with actuator saturation. This approach achieves finite-time
stability for the nonlinear system, but only for single-input systems28. At present, the problem of finite time control to achieve
better performance and faster convergence for systems with input saturation is still worth exploring.

In this paper, we propose a finite-time performance enhanced bounded control (FTPE-BC) based on sliding mode variable
structure method for finite time tracking of linear systems with input saturation, which does not have these drawbacks. The main
innovations are as follows: Firstly, in order to improve the steady-state performance of the system applied by the sliding mode
variable structure method, an approach rate based on the inverse tangent function is proposed, so that the tracking error of the
system reaches a small neighborhood of the sliding surface within a finite time. It converges exponentially to the sliding surface
in this neighborhood to avoid chattering near the sliding surface. Secondly, in order to reduce the influence of input saturation
on the transient performance of the system, two control parameters are introduced into the bounded controller. The transient
performance of the closed-loop system can be improved by adjusting these parameter to reduce steady-state error, settling time
and overshoot. Thirdly, by analyzing the transient and steady-state response of the closed-loop system, the selection principle of
control parameters is given to improve the transient and steady-state performance of the closed-loop system. The advantage of
this method is that it is simple and easy, and the transient and steady-state performance of the system can be highly controllable.

This paper is organized as follows. Section II gives definitions of symbols and fundamental theorems. Section III describes
the design problems. A FTPE-BC control framework for a class of linear systems with input saturation is presented in Section
IV. Section V gives analysis of the closed-loop system. Section VI verifies the superiority of the controller through a case study.
Section VII concludes the paper.

2 PRELIMINARIES

2.1 Notation

A few notational conventions and definitions are first discussed. Throughout the paper, for a vector x = (x1, x2, · · · , xn)T ∈
Rn common use of the abbreviation ⌊x⌉q = (|x1|qsign(x1), |x2|qsign(x2), · · · , |xn|qsign(xn))T and the function arctan(x) =
(arctan(x1), arctan(x2), · · · , arctan(xn)). xi is defined as the i-th component of vector x. The norm is defined by ∥x∥ =

√
xTx.

A–1 and A+ are the inverse and the pseudo-inverse of matrix A ∈ Rm×n, respectively.
The vector-valued decentralized saturation function σ(·) : Rm → Rm is defined as

σ(u(t)) := (sat(u1(t)), sat(u2(t)), · · · , sat(um(t))) T, (1)



Finite-Time Performance Enhanced Bounded Control for Linear Systems With Input Saturation 3

where the saturation function sat(·) : R → R is defined as

sat(ui(t)) :=
{

ui(t), if |ui(t)| ≤ ūi,
sign(ui(t))ūi, if |ui(t)| > ūi,

(2)

with the sign function sign(·). ūi represents the maximum absolute value of the input signal of symmetric saturation sat(ui(t)).
We denote ū := (ū1, ū2, · · · , ūm)T.

2.2 Stability theorem

Some useful definitions and Lemmas on finite time control are introduced as follows.

Definition 1. 18 The equilibrium x(t) = 0 of a system ẋ(t) = f (t, x(t)) is said to be finite-time stable if there are an open
neighborhood Ω of the origin and a function T(x0) : Ω\0 → (0,∞) , such that the following statements hold.
1) Finite-time convergence:

lim
t→T(x0)

x(t, x0) = 0, and x(t, x0) = 0 for ∀ t > T(x0).

2) Lyapunov stability: For each open neighborhood Γε of the origin, there is an open subset Γδ of Ω including the origin such
that for each x0 ∈ Γδ\0, x(t, x0) ∈ Γε for all t ∈ [0, T(x0)], where T(x0) is called settling time or convergence time. Further, the
equilibrium is globally finite-time stable when Ω = Rn.

Definition 2. 20 The equilibrium x(t) = 0 of a system ẋ(t) = f (t, x(t)) is practical finite-time stable, if for any initial condition x0,
there exist a constant ε > 0 and a settling time T(ε, x0) < ∞ such that

∥x(t)∥ < ε, for ∀ t ≤ T(ε, x0).

Lemma 1. 19 Suppose that there is a Lyapunov function V(x(t)) : D → R+, some design constants α > 0, β > 0, and 0 < q < 1
such that

V̇(x(t)) ≤ –αV(x(t)) – βVq(x(t)), ∀ x(t) ∈ D\0.

Then, the origin x(t) = 0 of system ẋ(t) = f (t, x(t)) is finite-time stable and the convergence time is given by T(x0) ≤
1

α(1–q) ln
αV1–q(x0)+β

β . Moreover, the origin is globally finite-time stable if D = Rn and V(x(t)) is radially unbounded.

Lemma 2. 21 If there exist a Lyapunov function V(x(t)) : D → R+, some design constants α > 0, β > 0, 0 < q < 1, and
0 < b < ∞ such that

V̇(x(t)) ≤ –αV(x(t)) – βVq(x(t)) + b, ∀ x(t) ∈ D\0,

then the trajectory of system ẋ(t) = f (x(t), u(t)) is practical finite-time stable and the convergence time is given by T(ε, x0) =
1

α(1–q) ln
αV1–q(x0)+λβ

λβ , with constants ε > 0 and 0 < λ < 1.

3 PROBLEM FORMULATION

3.1 A control system

We consider that a linear time-invariant system (LTI) with input saturation as follows{
ẋ(t) = Ax(t) + Bσ(u(t)),

y(t) = Cx(t),
(3)

where x(t) ∈ Rn is the state. u(t) ∈ Rm is the control input. y(t) ∈ Rp is the output. The magnitude of the control input u(t) is
constrained by the saturation function σ(·) in Eq. (1) since any practical actuators can only implement bounded control signals3.
(A, B) ∈ (Rn×n,Rn×m) is controllable, and (A, C) ∈ (Rn×n,Rp×n) is observable. The state x(t), the control input u(t), and the
output y(t) are measurable.
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Our objective is to design a controller under input saturation constraints so that the output y(t) of the system in Eq. (3)
converges in a finite time to a small neighborhood of a given continuously differentiable reference signal r(t) ∈ Rp, and converge
exponentially in the neighborhood to achieve accurate tracking.

By introducing the error vector e(t) := r(t) – y(t), the dynamics of the error e(t) is given as follows

ė(t) = Aex(t) + Buσ(u(t)) + ṙ(t), (4)

where matrices Ae = –CA and Bu = –CB are determined by Eq. (3).

Assumption 1. Assume that p ≤ m and rank(Bu) = p.

3.2 Finite time control problem

Considering the input saturation in Eq. (1) of the system in Eq. (3), our objective is to design a controller to stabilized the error
system in Eq. (4) in finite time. This control method can improve the settling time of transient response, i.e., ts ≤ T, reduce the
steady-state error i.e., ∥ess∥ ≤ ε. The following problem will be addressed.

Problem 1. Consider the error system in Eq. (4) with the input saturation in Eq. (1) satisfying Assumption 1. Design a controller
u(t) to make the error e(t) converge to a ε > 0 neighborhood containing the equilibrium point e(t) = 0 for a finite time, i.e. for
∀ |u(t)| ⪯ ū, there exist a convergence time T and a domain Ω such that

∥e(t)∥ < ε, for ∀ t > T, e(0) ∈ Ω. (5)

Furthermore, there exist positive constants κ and λ such that

∥e(t)∥ ≤ κ∥e(t0)∥e–λ(t–t0), for ∀ ∥e(t0)∥ < ε. (6)

Meanwhile, the overshoot and settling time of the system are reduced simultaneously.

4 THE CONTROL DESIGN METHOD OF FTPE-BC

To solve the Problem 1 formulated in Section 3.2, we propose a general approach to design a sliding mode control based finite
time performance enhanced bounded control (FTPE-BC) strategy that takes input saturation into account so that the error system
in Eq. (4) is practical finite-time stable.

4.1 An overview of FTPE-BC

We propose a FTPE-BC framework for a class of LTI systems with input saturation in Figure 1. In this framework, the plant
P consists of an actuator P1 subject to saturation constraint, and a LTI system P2 without input saturation. The controller
C consists of two parts, which are an unconstrained subcontroller C1 and a bounded subcontroller C2. Firstly, we propose a
finite time approach rate so that the tracking error of the system reaches near the sliding surface in finite time, at the same
time eliminate the chattering near the sliding surface, and reduce the steady-state error. Secondly, we design an unconstrained
controller so that the closed-loop system without input saturation is finite-time stable. Finally, a bounded controller is proposed
to make the closed-loop system practical finite-time stable under input saturation, and improve the transient and steady-state
performance of the closed loop system.

4.2 A finite time approach rate

In order to guarantee the performance of the proposed approach rate, we present the following facts.
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F I G U R E 1 The FTPE-BC framework diagram.

Fact 1. According to the monotonicity and concavity of the function, if the inequality
(

1
2 ( qs–ps

qs+ps
)1/2
) ps

qs – arctan
(

( qs–ps
qs+ps

)1/2
)

< 0
holds, the following inequality is true,

| arctan(aζ)| ≥


| a
2ζ |, if 0 ≤ |ζ | <

( qs–ps
qs+ps

)1/2

a ,

|( a
2ζ)

ps
qs |, if

( qs–ps
qs+ps

)1/2

a ≤ |ζ | ≤ 2
a ,

1, if |ζ | > 2
a ,

(7)

where a > 0 is a real number, 0 < ps < qs < N are positive integers, and ζ ∈ R is a variable.

Proof. See Appendix A.

Remark 1. There is some large positive integer N, when 0 < ps < qs < N, to make the inequality
(

1
2 ( qs–ps

qs+ps
)1/2
) ps

qs –

arctan
(

( qs–ps
qs+ps

)1/2
)

< 0 hold. So
( qs–ps

qs+ps
)1/2

a can be a enough small real number.

A finite time approach rate that guarantees a closed-loop system converges in finite time is presented as follows,

ṡ(t) = –α1s(t) – β1 arctan(as(t)), (8)

where α1 > 0, β1 > 0, and 0 < a < 1.

Lemma 3. Suppose that there is a approach rate s(t) : R∗ → R, some design constants α1 > 0, β1 > 0, and 0 < a < 1 such that

Eq. (8). If there is a large integer N > 0 that makes Fact 1 true, then the origin s(t) = 0 is finite-time stable for |s(t)| ≥ ( qs–ps
qs+ps

)1/2

a

and the origin s(t) = 0 is exponentially stable for 0 ≤ |s(t)| ≤ ( qs–ps
qs+ps

)1/2

a .

Proof. See Appendix B.

Remark 2. The approach rate in Eq. (8) makes the tracking error of the system reach a small neighborhood of the sliding surface
in a finite time. In this neighborhood, it converges exponentially to the sliding surface to avoid chattering near the sliding surface.

4.3 The FTPE-BC design

Let s(t) ∈ Rp be the following sliding surface expressed

s(t) = Cse(t), (9)

where Cs ∈ R is a positive constant.
When the input saturation of system is not considered, an unconstrained controller is given as follows

u(t) =B+
uC–1

s (–α1s(t) – β1 arctan(s(t))) + B+
u(–Aex(t) – ṙ(t)), (10)
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where α1 > 0 and β1 > 0.
Now, considering the input saturation constraint and solving Problem 1, a bounded FTPE-BC control law is proposed by

combining the finite time approach rate in Eq. (8) as follows

v(t) =kB+
uC–1

s (–α1s(t) – β1 arctan(as(t))) + B+
u(–Aex(t) – ṙ(t)),

u(t) =σ(v(t)),
(11)

where 1 < k < ∞, α1 > 0, β1 > 0, and 0 < a < 1.

Remark 3. A new finite-time approach rate in Eq. (8) is proposed, in which parameter 0 < a < 1 can reduce the overshoot and
the steady-state oscillation of the closed-loop system.

Remark 4. The performance of the system decreases due to input saturation constraints. To this end, we add a parameter k > 1
to shorten the settling time and steady-state error to improve the response performance.

5 ANALYSIS OF THE CLOSED-LOOP SYSTEM

Analysis of the closed-loop system includes stability analysis, performance analysis and parameter selection of the designed
controller.

5.1 Stability analysis

In order to investigate the stability properties of the closed-loop system in Eq. (4), the control input of the system is considered
under the condition of unsaturated and saturated respectively.

5.1.1 Unsaturated control input

First, we discuss the finite-time stability of the closed-loop system in Eq. (4) without input saturation, i.e., for σ(u(t)) = u(t), is
shown as follows.

Theorem 1. Consider the error system in Eq. (4) without the input saturation in Eq. (1), and the controller in Eq. (10). There
exist positive constants ε and T, then after T, the error e(t) converge to the neighborhood of the equilibrium point e(t) = 0, i.e.,
∥e(t)∥ < ε for ∀ t ≥ T. Moreover, there exist positive constants κ and λ such that ∥e(t)∥ ≤ k∥e(t0)∥e–λ(t–t0), for ∀ ∥e(t0)∥ < ε,
then e(t) = 0 is exponentially stable in the ε neighborhood.

Proof. Consider Lyapunov function candidate V(e(t)) = 1
2 sT(t)s(t) whose time derivative is

V̇(e(t)) =s(t)Tṡ(t)

=s(t)TCs(Aex(t) + Buσ(u(t)) + ṙ(t)).
(12)

Since σ(u(t)) = u(t) and there is a large integer N > 0 that makes Fact 1 true, by substituting the controller in Eq. (10) into
Eq. (12) and using Fact 1, we obtain

V̇(e(t)) =s(t)TCs(Aex(t) + BuB+
u(–Aex(t) – ṙ(t)) + BuB+

uC–1
s (–α1s(t) – β1 arctan(s(t))) + ṙ(t))

=s(t)T(–α1s(t) – β1 arctan(s(t)))

≤ – αV(e(t)) – βVq(e(t)),

where α1 > 0, β1 > 0, and α = 2α1. When |s(t)| ⪰ ( qs–ps
qs+ps

)1/2, β = 2qβ1( 1
2 )p1 , q = p1+1

2 , p1 = ps
qs

, and 0 < ps < qs < N. According to
Lemma 1, the system in Eq. (4) is finite-time stable with convergence time

T ≤ 1
α(1 – q)

ln
αV1–q((e(0))) + β

β
. (13)
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When 0 ⪯ |s(t)| ≺ ( qs–ps
qs+ps

)1/2, β = β1, q = 1, and 0 < ps < qs < N. We obtain

V̇(e(t)) ≤ –λV(e(t)), for ∀ ∥e(t)∥ < ε

where λ = α + β. The equilibrium point e(t) = 0 of the system in Eq. (4) is exponentially stable in the ε neighborhood. The proof
is completed.

Remark 5. We can take the positive integers ps, qs, N as large as possible in order to make ( qs–ps
qs+ps

)1/2 as small as possible. To
ensure that the error of the closed-loop system converges to a smaller ε neighborhood in a finite time.

5.1.2 Saturated control input

Next, we discuss the domain of attraction and finite-time stability of the closed-loop system with the input saturation.

Theorem 2. Consider the error system in Eq. (4) with the input saturation in Eq. (1) and the controller in Eq. (11). If the domain
of attraction is

Ω = {e(t) = r(t) – Cx(t) : |B–1
u (Aex(t) + ṙ(t))| ≺ ū}, (14)

then, the equilibrium point e(t) = 0 is practical finite-time stable.

Proof. See Appendix C.

Theorem 3. Consider the error system in Eq. (4) with the input saturation in Eq. (1), and the controller in Eq. (11). There
exists positive constants ε and T. If the domain Ω satisfy Eq. (14), then the equilibrium point e(t) = 0 is practical finite-
time stable, i.e., ∥e(t)∥ < ε for ∀ t ≥ T and e(0) ∈ Ω. Moreover, there exist positive constants κ and λ such that ∥e(t)∥ ≤
k∥e(t0)∥e–λ(t–t0), for ∀ ∥e(t0)∥ < ε, then e(t) = 0 is exponentially stable in the ε neighborhood.

Proof. Consider Lyapunov function candidate V(e(t)) = 1
2 sT(t)s(t) whose time derivative is

V̇(e(t)) =sT(t)ṡ(t)

=s(t)TCs(Aex(t) + Buσ(u(t)) + ṙ(t))

=s(t)TCs(Aex(t) + Buv(t) – Buq(t) + ṙ(t)),

where q(t) = v(t) – σ(v(t)). Since e(t) ∈ Ω and there is a large integer N > 0 that makes Fact 1 true, by substituting the controller
(11) into Eq. (15), we obtain

V̇(e(t)) =sT(t) (k(–α1s(t) – β1 arctan(as(t))) – CsBuq(t))

≤ – αV(t) – βVq(t) + b,

where α = 2kα1 and b = –sT(t)CsBuq(t). |b| < ∞ is ture because ∥CsBuq(t)∥ < α1∥s(t)∥ + β1∥ arctan(as(t))∥ when e(t) ∈ Ω.

When |s(t)| ⪰ ( qs–ps
qs+ps

)1/2

a , β = 2qkβ1( a
2 )p1 , q = p1+1

2 , p1 = ps
qs

, and 0 < ps < qs < N. According to Lemma 2 the error e(t) converge to
the neighborhood Ωb = {e(t) : Vq(e(t)) ≤ b

(1–λ)β } in finite time

T ≤ 1
α(1 – q)

ln
αV1–q(e(0)) + λβ

λβ
, (15)

where λ ∈ (0, 1). There is a constant ε > 0 to make |s(t)| ⪰ ( qs–ps
qs+ps

)1/2

a hold, so ∥e(t)∥ < ε for ∀ t ≥ T, the equilibrium point e(t) = 0

is practical finite-time stable. When 0 ⪯ |s(t)| ≺ ( qs–ps
qs+ps

)1/2

a , β = kβ1a, q = 1, and q(t) = 0. We obtain

V̇(e(t)) ≤ –λV(e(t)), for ∀ ∥e(t)∥ < ε

where λ = α + β. The equilibrium point e(t) = 0 of the system in Eq. (4) is exponentially stable in the ε neighborhood. The proof
is completed.
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5.2 Performance analysis

Consider the closed-loop system consisting of the error dynimac in Eq. (4) of the plant in Eq. (3) with the input saturation in
Eq. (1), and the controller in Eq. (11). The transient and steady-state performance analyses are given below.

5.2.1 Transient performance analysis

The following theorem proves that the designed bounded controller can ensure finite-time stability of the closed-loop system.

Theorem 4. Consider the closed-loop system consisting of the error dynimac in Eq. (4) and the controller in Eq. (11). When

|s(t)| ⪰ ( qs–ps
qs+ps

)1/2

a , if e(0) ∈ Ω in Eq. (14), then the origin e(t) = 0 is practical finite-time stable, and the overshoot is smaller than a
constant.

Proof. According to Theorem 2 and e(0) ∈ Ω in Eq. (14), ∥q(t)∥ < k∥(CsBu)–1(–α1s(t) – β1 arctan(as(t)))∥. Since there is a
integer N > 0 that holds Fact 1, we obtain the closed-loop system as follows,

ė(t) =kC–1
s (–α1s(t) – β1 arctan(as(t))) – Buq(t)

=k̄C–1
s (–α1s(t) – β1 arctan(as(t)))

⪯ – αe(t) – βeq(t),

where constants 0 < k̄ < k, α = k̄α1, β = k̄β1( a
2 )q, q = ps

qs
, and 0 < ps < qs < N. The origin e(t) = 0 is finite-time stable when

|s(t)| ⪰ ( qs–ps
qs+ps

)1/2

a according to Lemma 3. By solving Eq. (16) we obtain

⌊ei(t)⌉1–q ≤ –
β

α
+
β

α
e–α(1–q)t + ⌊ei(0)⌉1–qe–α(1–q)t, (16)

where i ∈ {1, 2, . . . , p}. Thus the overshoot of the system is ⌊ei(t)⌉1–q ≤ –β
α when |s(t)| ⪰ ( qs–ps

qs+ps
)1/2

a . The proof is completed.

5.2.2 Steady-state performance analysis

The following theorem proves that the designed bounded controller can enhance the steady-state performance of the closed-loop
system.

Theorem 5. Consider the closed-loop system consisting of the error dynimac in Eq. (4) and the controller in Eq. (11). When

0 ⪯ |s(t)| ≺ ( qs–ps
qs+ps

)1/2

a , if e(0) ∈ Ω in Eq. (14) and ∥q(t)∥ = 0, then the origin e(t) = 0 is exponentially stable, and the overshoot is
zero.

Proof. Since e(0) ∈ Ω in Eq. (14), ∥q(t)∥ = 0, and there is a integer N > 0 that holds Fact 1. Therefore, we obtain the closed-loop
system as follows,

ė(t) =kC–1
s (–α1s(t) – β1 arctan(as(t)))

⪯ – kα1e(t) – kβ1
a
2

e(t).
(17)

The origin e(t) = 0 is finite-time stable when 0 ⪯ |s(t)| ≺ ( qs–ps
qs+ps

)1/2

a with 0 < ps < qs < N according to Lemma 3. By Solving

Eq. (17) we obtain e(t) ⪯ e(0)e–(kα1+kβ1
a
2 )t. Therefore the overshoot of the system is zero when 0 ⪯ |s(t)| ≺ ( qs–ps

qs+ps
)1/2

a . The proof is
completed.

5.3 Parameters selection for FTPE-BC

In order to make the overshoot, rise time and steady-state time of the closed-loop system response as small as possible, we give
an analytical design method for the selection of controller parameters.

Furthermore, the constraints u(t) ⪯ ū for controller (11) are considered. In order to make V(e(0)) = 1
2 s2(0) with Eq. (9)

and b = –sT(t)CsBuq(t) as small as possible, Cs is taken as small as possible. To satisfy the T in Eq. (15) and the error
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e(t) ⪯ e(0)e–(kα1+kβ1
a
2 )t in Eq. (17) while minimizing, select α1 and k as large as possible. In order to make the overshoot

⌊ei(t)⌉1–q ≤ β1( a
2 )q

α1
in Eq. (16) as small as possible, select β1 and a as small as possible.

6 A CASE STUDY

The proposed FTPE-BC in Eq. (11) method is compared to windup sliding mode control (WSMC) in Eq. (10) method and
Unconstrained sliding mode control (USMC) in Eq. (10) method in the plant in Eq. (3) without input saturation in Eq. (1) as
well as to the super-twisting algorithm (STA) based27 method and to the finite-time stabilization bounded control (FTSBC)
based24 method in the course of a simulation.

6.1 System description

For this purpose, the plant in Eq. (3) with ū = (0.3, 0.3)T, C = (1, 0, 0, 0) and

A =


–3.2320 20 0 0
–2.3040 –20 20 0
–0.3420 0 –20 20
0.0960 0 0 –20

 , B =


89.7480 41.3200

0 0
0 0
0 0


is considered.

6.2 Setting up

The functionality of the proposed controller has been tested through simulation on a personal computer with a CPU of 2.00 GHz.
The simulation language is C language.

The reference r(t) = 2 sin(t) is used. The FTPE-BC in Eq. (11), WSMC in Eq. (10), and USMC in Eq. (10) controller’s
parameters are chosen as Cs = 0.5, α1 = 12, β1 = 0.2, a = 0.1, and k = 80. STA27 control law is u(t) = σ(v(t)), where{

v(t) = k1B+
u⌊r – y(t)⌉ 1

2 + ṽ(t)
˙̃v(t) = k2 sign(u(t) – ṽ(t)),

(18)

where k1 = 12 and k2 = 0.2. FTSBC24 control law is

u(t) =B+
u(–α(tanh(k3e(t)))

4
3 – β(tanh(k3e(t)))

2
3 ) + B+

u(–Aex(t) – ṙ(t)), (19)

where α = 12, β = 0.2, and k3 = 1.
For the comparison of the transient performance in different closed-loop systems, we define some measures that include the

rise time tr when ∥e(t)∥ ≤ 0.1 for all t > tr, the overshoot µ as µ := e(tp) where tp is the peak time, the settling time ts when
∥e(t)∥ ≤ 1% for all t > ts > tr, and steady-state error ess := ∥e(t)∥ for t → ∞.

6.3 Result

The response performance of the system in Eq. (3) under the action of different controllers is shown in Figure 2 and Figure 3.
The response performance analysis of system in Eq. (3) under the action of different controllers is shown in Table 1 and Table 2.

6.4 Analysis and discussion

The effects of different controllers FTPE-BC in Eq. (11), WSMC in Eq. (10), and USMC in Eq. (10) in the plant in Eq. (3) without
input saturation in Eq. (1) are compared. According to Table 1, tr = 0.2977(s) of WSMC is twice larger than tr = 0.2415(s) of
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(a) The system output and tracking error (b) The system control input

F I G U R E 2 The response of the plant with input saturation under different controllers.

(a) The system output and tracking error (b) The system control input

F I G U R E 3 The response of the plant with input saturation under different controllers.

USMC and tr = 0.1336(s) of FTPE-BC, ts = 0.4824(s) of WSMC is larger than ts = 0.4231(s) of USMC and ts = 0.1378(s) of
FTPE-BC, ess = 2.3866 × 10–4 of WSMC and ess = 2.3866 × 10–5 of USMC are much larger than ess = 3.0620 × 10–6 of FTPE-
BC, µ = 1.0975 × 10–4 of USMC is larger than µ = 9.6794 × 10–5 of WSMC and µ = 8.4633 × 10–5 of FTPE-BC. Therefore,
the proposed FTPE-BC design method improves the transient and steady-state performance compared with the original SMC
method. The effects of different controllers FTPE-BC in Eq. (11), STA27, and FTSBC24 are compared. According to Table 2,
tr = 0.4104(s) of STA is twice larger than tr = 0.2145(s) of FTSBC and tr = 0.1336(s) of FTPE-BC, µ = 0.6219 of STA is much
larger than µ = 0.1730 of FTSBC and µ = 8.4633 × 10–5 of FTPE-BC, ts = 0.4573(s) of STA is twice larger than ts = 0.2171(s)
of FTSBC and ts = 0.1378(s) of FTPE-BC, ess = 1.6818 × 10–3 of FTSBC is much larger than ess = 4.8536 × 10–5 of STA
and ess = 3.0620 × 10–6 of FTPE-BC. Therefore, the proposed u(t)design has better transient and steady-state performance
than the tool designs in27 and24. In addition, the FTPE-BC design method takes full advantage of limited control capabilities.
The finite-time stability of the system is guaranteed in the domain of attraction. The advantages of FTPE-BC design method in
transient and steady-state performance are demonstrated.
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T A B L E 1 The performance comparison

Indexes WSMC USMC FTPE-BC
Rise time tr (s) 0.2977 0.2415 0.1336
Peak time tp (s) 1.0030 0.9440 0.1420
Overshoot µ 9.7345 × 10–5 1.1024 × 10–4 8.4633 × 10–5

Settling time ts (s) 0.4824 0.4231 0.1378
Steady-state error ess 2.3866 × 10–4 2.3866 × 10–4 3.0620 × 10–6

T A B L E 2 The performance comparison

Indexes STA 27 FTSBC 24 FTPE-BC
Rise time tr (s) 0.4104 0.2145 0.1336
Peak time tp (s) 0.2850 0.2770 0.1420
Overshoot µ 0.6219 0.1730 8.4633 × 10–5

Settling time ts (s) 0.4573 0.2171 0.1378
Steady-state error ess 4.8536 × 10–5 1.6818 × 10–3 3.0620 × 10–6

7 CONCLUSIONS

In this paper, a FTPE-BC framework is proposed for a class of linear time-invariant systems with input saturation to achieve finite-
time convergence. In this method, an approach rate based on the inverse tangent function is proposed to make the tracking error
of the system reach near the sliding surface in a finite time and avoid chattering near the sliding surface. A bounded controller
based on sliding mode variable structure method is presented. By introducing a control parameter into the bounded controller,
the transient performance of the closed-loop system is improved by reducing both the overshoot and the stabilization time. The
finite-time stability of the system is proved in a certain domain of attraction. The method is simple and easy to implement,
and the response performance of the closed-loop system is highly controllable. The simulation results verify the superiority
of the design tool in the transient and stability indexes. The method realizes the highly controllable transient and steady-state
performance. It is shown that the proposed control framework can effectively improve the response performance of the system.
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APPENDIX

A PROOF OF FACT 1

Proof. Firstly, when 0 ≤ |ζ | <
( qs–ps

qs+ps
)1/2

a , if ζ ≥ 0, then a
2ζ – arctan(aζ) ≤ 0 according to the monotonicity. If ζ < 0 then

a
2ζ – arctan(aζ) > 0 is true by symmetry. Secondly, when

( qs–ps
qs+ps

)1/2

a ≤ |ζ | ≤ 2
a , if ζ ≥ 0, take

f =
(a

2
ζ
) ps

qs – arctan(aζ). (A1)

The derivative of f with respect to ζ is
df
dζ

=
ps

qs

(a
2

) ps
qs
ζ

ps–qs
qs –

a
1 + a2ζ2 . (A2)
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Let ζ = ξ
a , therefore

df
dζ

= a

(
ps

qs

(
1
2

) ps
qs

ξ
ps–qs

qs –
1

1 + ξ2

)
. (A3)

Take F = (1 + ξ2)ξ
ps–qs

qs – qs
ps

2
ps
qs . The derivative of F with respect to ξ is

dF
dξ

=
(

2 –
qs – ps

qs
(1 + ξ2)ξ–2

)
ξ

ps
qs . (A4)

When ( qs–ps
qs+ps

)1/2 ≤ ξ ≤ 2, dF
dξ ≥ 0 is true. Therefore f is concave. Since

(
1
2 ( qs–ps

qs+ps
)1/2
) ps

qs – arctan
(

( qs–ps
qs+ps

)1/2
)

< 0 and

1 – arctan(2) < 0 is true, ( a
2ζ)

ps
qs – arctan(aζ) < 0. If ζ < 0 then ( a

2ζ)
ps
qs – arctan(aζ) > 0 is true by symmetry. Finally, when

|ζ | > 2
a , | arctan(aζ)| > 1 according to the monotonicity. The proof is completed.

B PROOF OF LEMMA 3

Proof. When s(t) > 0, if
( qs–ps

qs+ps
)1/2

a ≤ s(t) ≤ 2
a , by using Fact 1 obtain

ṡ(t) ≤ –α1s(t) – β1⌊
a
2

s(t)⌉
ps
qs , (B5)

then, the origin s(t) = 0 is finite-time stable and the convergence time is given by T(s(0)) ≤ 1
α1(1– ps

qs
) ln

α1s
1– ps

qs (0)+β1
β1

according to

Lemma 1. If s(t) > 2
a , by using Fact 1 obtain

ṡ(t) ≤ –α1s(t) – β1. (B6)

By multiplying both sides of equation (B6) by eα1t to get

deα1ts(t)
dt

≤ –β1eα1t. (B7)

Solve equation (B7) to obtain

s(t) ≤ –
β1

α1
+
β1

α1
e–α1t + s(0)e–α1t, (B8)

therefore, the origin s(t) = 0 is finite-time stable and the convergence time is given by T(s(0)) < 1
α1

ln α1s(0)+β1
β1

according to

Eq. (B8) . If 0 ≤ s(t) ≤ ( qs–ps
qs+ps

)1/2

a , by using Fact 1 obtain

ṡ(t) ≤ –α1s(t) – β1
a
2

s(t). (B9)

Solve equation (B9) to obtain
s(t) ≤ s(0)e–(α1+β1

a
2 )t. (B10)

Therefore, the origin s(t) = 0 is exponentially stable. When s(t) ≤ 0, the conclusion holds because of the symmetry of the
function in Eq. (8). The proof is completed.

C PROOF OF THEOREM 2

Proof. When |B–1
u (Aex(t) + ṙ(t))| ≺ ū holds, by the idea of cancellation we obtain α1s(t) ̸= 0 or β1 arctan(as(t)) ̸= 0 of the

controller in Eq. (11). Consider Lyapunov function candidate V(e(t)) = 1
2 sT(t)s(t) ∈ R whose time derivative is as follows,

V̇(e(t)) =sT(t)ṡ(t)

=sT(t)Cs(Aex(t) + Buσ(u(t)) + ṙ(t))

=sT(t)k̄ (–α1s(t) – β1 arctan(as(t)))

<0,

(C11)

where constant 0 < k̄ < k due to |B–1
u (Aex(t) + ṙ(t))| ≺ ū. Therefore the equilibrium e(t) = 0 of the closed-loop system is practical

finite-time stable. The proof is completed.
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