
P
os
te
d
on

8
A
p
r
20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
71
26
02
94
.4
87
51
76
5/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Understanding the Impact of IoT Security Patterns on CPU Usage

and Energy Consumption on IoT Devices

Saeid Jamshidi1, Amin Nikanjam1, Nafi Kawser1, Foutse Khomh1, and Mohammad-Adnan
Hamdaqa1

1Polytechnique Montreal

April 08, 2024

Abstract

The Internet of Things (IoT) has given rise to numerous security issues that require effective solutions. IoT security patterns

have been suggested as an effective approach to address recurrent security design issues. Although several IoT security patterns

are proposed in the literature, it remains unclear how they impact the energy consumption and CPU usage of IoT-edge-

based applications. We conducted an empirical study using three testbed IoT applications (i.e., smart home, smart city, and

healthcare) to shed light on this issue. We evaluated the impact of six IoT security patterns, including Personal Zone Hub,

Trusted Communication Partner, Outbound-Only Connection, Blacklist, Whitelist, and Secure Sensor Node, both in pairs and

in combination (i.e., all patterns). Specifically, we conducted multiple penetration tests to first assess the pattern’s effectiveness

against attacks. Then, we conducted a comprehensive analysis of the energy consumption and CPU usage of the applications

with/without the implemented security patterns, aiming to evaluate the potential impact of these patterns on energy efficiency

and CPU usage. Our findings demonstrate a statistically significant increase in energy consumption and CPU usage. Based on

these findings, we provide guidelines for IoT developers to follow when implementing IoT-edge-based applications.

1

Received 26 April 2023; Revised 12 May 2023; Accepted 19 June 2023
DOI: xxx/xxxx

ARTICLE TYPE

Understanding the Impact of IoT Security Patterns on CPU Usage
and Energy Consumption on IoT Devices

Saeid Jamshidi* | Amin Nikanjam, | Kawser Wazed Nafi | Foutse Khomh | Mohammad-Adnan
Hamdaqa

1 Ecole Polytechnique Montréal, Quebec,
Canada

Correspondence
*Saeid Jamshidi, Email:
jamshidi.saeid@polymtl.ca
Present Address
Ecole Polytechnique Montréal,Quebec,
Canada

The Internet of Things (IoT) has given rise to numerous security issues that require
effective solutions. IoT security patterns have been suggested as an effective approach
to address recurrent security design issues. Although several IoT security patterns
are proposed in the literature, it remains unclear how they impact the energy con-
sumption and CPU usage of IoT-edge-based applications. We conducted an empirical
study using three testbed IoT applications (i.e., smart home, smart city, and health-
care) to shed light on this issue. We evaluated the impact of six IoT security patterns,
including Personal Zone Hub, Trusted Communication Partner, Outbound-Only
Connection, Blacklist, Whitelist, and Secure Sensor Node, both in pairs and in com-
bination (i.e., all patterns). Specifically, we conducted multiple penetration tests to
first assess the pattern’s effectiveness against attacks. Then, we conducted a com-
prehensive analysis of the energy consumption and CPU usage of the applications
with/without the implemented security patterns, aiming to evaluate the potential
impact of these patterns on energy efficiency and CPU usage. Our findings demon-
strate a statistically significant increase in energy consumption and CPU usage.
Based on these findings, we provide guidelines for IoT developers to follow when
implementing IoT-edge-based applications.
KEYWORDS:
IoT Security Patterns, Security, CPU Usage, Energy Consumption

1 INTRODUCTION

Internet of Things (IoT) refers to a network of interconnected physical objects embedded with software and hardware
components. IoT has found wide-ranging applications in various domains, including commerce, healthcare, industry, and trans-
portation1. IoT devices primarily collect, analyze, and communicate data with other connected devices. To facilitate this, edge
devices such as sensors, gateways, routers, and edge servers are often used in IoT applications to collect and process data. The
exchange of information among these devices occurs through both wired and wireless networks in IoT2 which are vulnerable to
various attacks. The interdependence of components within the IoT architecture, as depicted in Fig.1 , highlights the vulnera-
bility of the entire system to a single security breach. Consequently, ensuring the safety and reliability of IoT-based applications
has become crucial for their seamless operation in society.
On the other hand, IoT comprises low-powered devices such as the Raspberry Pi, which have limited access to different resources.

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor

2 Jamshidi ET AL

FIGURE 1 The figure illustrates the block diagram of the IoT pyramid.

Implementing security mechanisms on IoT devices typically requires additional processing, communication, and therefore com-
putation resources. This can potentially impact the performance of IoT devices and networks3. Despite the performance overhead
introduced by security mechanisms, they are indispensable for safeguarding IoT networks against cyber threats. Hence, striking
a balance between an appropriate level of security and the physical limitations of the device, such as low computing power and
restricted memory capacity in battery-powered devices, is crucial.
Researchers have proposed various security patterns to encapsulate solutions to recurrent problems in the security of IoT. These
patterns consider the secure design of IoT-based applications, accounting for their heterogeneity and complexity4, like the Per-
sonal Zone Hub, Trusted Communication Partner, Outbound-Only Connection, Blacklist, Whitelist5, and Secure Sensor Node
patterns6. However, despite the availability of these security solutions, no exploratory study has compared the energy con-
sumption and CPU usage of IoT devices when set up with different security patterns. Therefore, finding a trade-off between the
available IoT security solutions and IoT devices’ energy consumption and CPU usage is crucial.
This study aims to investigate the impact of different security patterns on energy consumption and CPU usage of IoT devices
and their inter-connected communication. To do so, we have implemented six distinct IoT security patterns: Personal Zone Hub,
Trusted Communication Partner, Outbound-Only Connection, Blacklist, Whitelist, and Secure Sensor Node. Subsequently, we
have chosen three IoT-edge-based applications, namely a smart home, a smart city, and a healthcare case, to evaluate the effi-
cacy of these patterns against critical attacks. The attacks include Distributed Denial-of-Service (DDoS), Secure Socket Shell,
Man-In-The-Middle (MITM), and Brute-force (BF) which are implemented by Kali Linux7. These attacks were selected to
assess the effectiveness of the chosen patterns under attack and to evaluate the energy consumed and CPU usage. We used the
PowerTOP8 tool for our evaluations. Our results show that the examined security patterns have practical utility in protecting
against attacks; however, the attacks may negatively impact application performance under certain conditions, such as DDoS
attacks. The energy consumed and CPU usage in different scenarios exhibit a statistically significant difference in most cases
under attacks. Our findings serve as a roadmap for practitioners in the selection of apt security solutions and patterns, specifi-
cally tailored to address the unique challenges of optimizing security while adhering to the inherent limitations of IoT devices.
To summarize, this paper makes the following contribution:

• We assessed the effectiveness of security patterns applied to IoT-edge-based applications against various attacks.

• We reported the trade-offs between security, energy consumption, and CPU usage in IoT devices and IoT-edge-based
applications.

The remainder of this paper is organized as follows: Section 2 discusses related works to our research. Section 3 discusses the
necessary background knowledge. In Section 4, we describe the experimental design, the Research Questions (RQs), and the
metrics of the experiments. Section 5 explains our results and findings. Section 6 summarizes some guidelines for developers
of IoT-edge-based applications based on our findings. Section 7 discusses threats to the validity of our study. Finally, Section 8
concludes the paper and outlines future work.

Jamshidi ET AL 3

2 RELATED WORKS

Research on finding effective security patterns and cryptography algorithms for IoT-based-edge applications and IoT frameworks
is not new. Researchers are performing their studies in this direction for an extended period. Still, there remains a study gap in
finding suitable security solutions for IoT devices, including the lack of practical investigation on the impact of security patterns
on IoT devices and their communication, energy consumption, and CPU usage. Current research mainly focuses on searching for
a secured IoT-edge devices interconnected network using different network-based distributed platforms such as fog computing,
edge computing, or cloud and host IoT applications. This kind of architecture enables secure communication and storage of
data among IoT devices and other interconnected components. This section will discuss the three topics largely aligned with the
empirical study we performed.

2.1 Secured IoT Architecture
Among various researchers in secured IoT architecture, Syed et al. presented a security pattern for IoT devices that uses the Fog
Computing9 in the back-end. Their pattern can assist users who wish to grasp the relationship among the IoT components. The
authors of this work used a pattern-oriented software architecture that describes a pattern to provide an answer to a problem
recurring in a particular context. Andreas et al.10 also proposed an architectural pattern for Fog computing (Fogxy). By decou-
pling the heterogeneous IoT components from the centralized cloud components, Fogxy describes the connection and interplay
of different components in IoT architecture. The cloud-thing continuum is created by introducing different layers of the sys-
tem. In several domains, including manufacturing, autonomous vehicles, and smart grids, a decentralized deployment of clients
enables real-time critical applications. The authors of this paper claimed that their proposed pattern is intended to represent a set
of instructions for software engineers assigned the difficult task of creating applications related to fog computing. The properties
of fog computing can be met by implementing Fogxy’s distributed components which are organized in various hierarchies. The
operation of applications, hence, using fog computing, will become less complicated. So, to put the authors’ work in a nutshell,
we can say, Fogxy directly works with components of Fog computing instead of only considering IoT components or IoT-edge
devices. In another work, Fernandez et al.11 describe a pattern that indicates each threat, such as DDoS, unauthorized access to
the data in a thing, the wrong command to the actuator, etc., and its corresponding defenses against that threat. In addition to
these, the authors of this paper also used different types of security patterns to ensure security in two architectures: cloud and
fog. The authors of this paper used five varieties of secure patterns in two given architectures: secure clouds, secure fog, secure
things, secure actuators, and secured sensors.
Researchers also checked whether blockchain architecture and its security mechanism could be used with IoT devices and made
them secure. Pahl et al.12 proposed a design pattern that consists of IoT-edge orchestration and a blockchain-based provenance
mechanism. A state machine that describes the basic orchestration activities is formalized as an architecture pattern supported
by a blockchain to enable trusted orchestration management. Fysarakis et al.13 have discussed the development of IoT platform
enablers and patterns for orchestrating smart objects in IoT applications with guaranteed security, privacy, dependability, and
interoperability (SPDI). Accordingly, this can be achieved by using patterns defined as generic ways of integrating and orches-
trating different types of smart objects and components guaranteeing specific SPDI properties, henceforth called SPDI patterns.
Searching for a suitable secured IoT framework and interconnected network is not directly aligned with our present area of
study and is out of the scope of this paper. In our paper, we implemented some of the cryptography algorithms. We secured
interconnected networks for IoT devices proposed in different studies to explore the energy consumption and CPU usage of IoT-
edge devices when placed in different secured IoT architectures. Thus, this paper’s scope fully differs from the regular work of
searching for a secured IoT architecture.

2.2 IoT Security Patterns
Lee et al.14 have applied five security design patterns while developing an IoT software system. The authors’ goal in this work
was to address the security problems of IoT applications and increase system security. Their security design patterns included
a secure adapter, directory, logger, exception manager, and input validation. At the same time, the authors designed a secure
directory, secure logger, and exception manager to address the issue of unsecured application data. They claimed that their secure
adapter and input validation pattern handle the security issues of unprotected wireless communication and user information,
respectively.

4 Jamshidi ET AL

Later, Fernández et al.15 implemented a secure distributed publish/
subscribe pattern. They claim this pattern is one of the most widely used patterns for IoT software design. They aimed to
decouple event publishers and those interested in the events (i.e., subscribers) through IoT systems. Publication and subscription
are securely handled. After that, Syed and Fernández16 proposed to exploit the security flaws of IoT devices to make a denial
of service (DoS) attack. The authors described how this attack is usually carried out and countermeasures that can be taken to
mitigate it. In another work, Fernandez and Romero17 showed how to misuse RF remote controllers to take control of the IoT
devices using RF. In this paper, the authors described how attackers maintain control over the RF remote controllers and how to
mitigate them. This pattern was developed as part of their work on building a Security Reference Architecture for Cargo Ports.
This paper describes an attack on industrial RF remote controllers, widely used in cranes in container terminals, as a misuse
pattern.
Cristian et al.6 introduced a design pattern for secure sensor nodes to describe the problem and offer a reusable, adaptable,
and extensible solution. In this pattern, they describe a secure sensor node as a cyber-physical system that obtains, stores, and
transmits data securely from a physical environment to another node or system of information. Rafael et al.18 demonstrated how
the UAV-Aided Wireless Sensor Network (WSN) pattern could implement a mining dam monitoring system to warn against
deadly collapses and possibly prevent them. Their report uses an unmanned aircraft vehicle as part of a WSN. Also, in WSN,
sensor nodes that are located closer to the sink have a greater risk of becoming overloaded (as a result of receiving a significant
amount of data packets) and are subject to the risk of having their battery drained faster than nodes those are located further away,
which as a result reduces the network lifetime. To get around this issue, the UAV-aided WSN pattern simplifies the underlying
architecture of a WSN using a UAV as a mobile sink node.
Security on IoT components is required to enhance users’ privacy and protect sensitive information. Pape et al.,19 demonstrated
how applying privacy patterns to the IoT architecture can improve users’ privacy. They mapped the privacy patterns onto IoT,
fog computing, and cloud computing architectures. Fernandez et al.4 surveyed and classified existing IoT security patterns to
assess their scopes and quality and determine whether they are suitable for inclusion in a helpful catalog. A catalog must cover
most of the common types of security systems to be useful. They concluded that the number of available patterns is insufficient
for a workable catalog and that most patterns are either incomplete or employ descriptions that differ. They concluded that none
of them had taken security concerns into account. They suggested making adjustments to the pattern-based approaches that have
already been in use for distributed systems as a potential option.
To the best of our knowledge, no study presents comparative results or discussion about the impacts of different security patterns
in terms of the level of security (which means the stability of different security patterns under different security attacks), energy
consumption, and CPU usage in the context of the IoT.

2.3 Energy Consumption in IoT devices
Researchers have been working on searching for energy-efficient and low-cost security solutions for IoT networks and frame-
works for a long time20. Among them, Prakasam et al.21 proposed an 8-bit-based Lightweight Cryptography algorithm for
secured communication keeping in mind the low power resources of IoT devices. Although this approach is good for embedded
IoT devices, for real-world IoT communication, 8-bit cryptography is not suitable at all. In another work, Yeh et al.22 proposed
an Elliptic Curve point multiplication-based low-energy inhaling cryptography algorithm for communication to secure its device
from a single source attack. This algorithm might be suitable for intranet communication between the devices but not for the
IoT applications open to the regular world of internet communication. As a consequence, it is required to see whether the avail-
able cryptography and security algorithms and security patterns used for regular Internet communication can be applied to IoT
devices and frameworks and their Intranet and Internet communication.

A group of studies is performed to explore the adaptability of high-performance cryptography algorithms and security patterns
in IoT devices and communication. Yazdinejad et al.23 proposed an IoT architecture where they added a Software Defined
Network (SDN) component with IoT devices along with regular blockchain-based security architecture to ensure security in an
energy-efficient way. Very recently, Tekin et al.24 performed an empirical study where they collected the energy consumption
of Machine-Learning-based (ML) Intrusion detection models on IoT devices at the time of training and executing them. Their
work was mainly offline-based analysis of the energy requirements of ML models. As far as we know, no previous research
has been conducted on the topic covered by this paper, which focuses on examining the sustainability level of various Security
Patterns in the face of different security breaching attacks. Additionally, it investigates the effects these patterns under attack
have on CPU usage and energy consumption of IoT devices within an IoT network.

Jamshidi ET AL 5

FIGURE 2 PZH pattern solution sketch5.

3 BACKGROUND

In this section, we introduce key concepts relevant to our study.

3.1 Designing IoT applications
Developing and designing applications for IoT infrastructure can be challenging25,26,27,28,29 for various reasons. Depleting the
power of low-power IoT devices, even while they are operating at their minimum power levels. Nevertheless, power consumption
control becomes increasingly intricate in IoT devices with advanced configurations. This is because, in high-performance IoT
devices, the processor, display, and communication interfaces have varying power requirements. Furthermore, the utilization
of the CPU is a crucial aspect that has a substantial effect on both the energy efficiency and the operational capacity of these
devices. Hence, it is crucial to guarantee that various components of IoT devices, such as their CPUs, exhibit reduced power
consumption and possess an extended battery lifespan. It is essential to guarantee that the apps running on them are optimized
for both energy efficiency and reduced CPU usage at the same time.

Ensuring security during connectivity changes is essential in IoT, alongside power management and monitoring. Many
IoT/M2M devices also offer a variety of internet connectivity choices. Any security error enables hackers to gain unauthorized
access or assume control of the devices, perhaps resulting in connectivity issues30. Hence, it is imperative to discern both the
potential risks and the energy consumption and CPU usage of each component within the complete IoT architecture. The range
of threats in IoT systems is more varied than in any other IT system. Every IoT device integrated into an IoT infrastructure is
seen as a component of cyber-physical systems and is susceptible to its own set of security risks. Therefore, it is imperative
to take into account the safety and reliability features of IoT devices and their internal communications to safeguard the IoT
infrastructure and its internal data transmission. Furthermore, IoT devices can be interconnected using a multitude of connect-
ing protocols. To ensure the security of an IoT infrastructure, it is imperative to safeguard the connection protocols employed by
these IoT devices. To address the security and privacy concerns in IoT networked devices, it is necessary to identify a security
solution or pattern that effectively reduces energy consumption and CPU usage while maintaining efficiency31,32.

3.2 IoT patterns
This section explores the fundamental concept of the six security patterns and their significance in safeguarding the security of
intra-connected and interconnected IoT devices. The implementation of the Stuttgart5 patterns was deemed necessary as they
furnish a comprehensive4 set of IoT patterns. Furthermore, we integrated the SSN6 pattern to facilitate secure data transmission
between the server, user, and Raspberry Pi, along with its attached sensors.
i. Personal Zone Hub (PZH): The growing prevalence of IoT devices has presented users with a concomitant increase in the

complexity of managing these devices’ permissions, data sharing, and control across various gateways and cloud systems. To
address these challenges, PHZs have emerged as a viable solution. PHZs enable users to effectively manage, control, and inte-
grate all of their devices, services, applications, and workflows. Furthermore, PHZs offer the added advantage of creating a

6 Jamshidi ET AL

FIGURE 3 Trusted Communication Partner pattern solution sketch5.

FIGURE 4 Outbound-Only Connection pattern solution sketch5.

permanently addressable hub, thereby allowing users to selectively share access to different parts of the data and functionality
encompassed by the PHZs. As a result, PHZs represent a promising solution to the challenges associated with managing and
controlling IoT devices in a network.
ii. Trusted Communication Partner (TCP): In a dynamic environment, a device may have multiple communication options
available. However, not all of these communication partners may be familiar or reliable. Some may even pose a security threat;
attackers may exploit these communication media to gain unauthorized access to the device and its network. To mitigate such
risks, it is recommended to configure the device with a single trusted communication partner or a list of dependable communi-
cation partners. This pattern enables not only secure incoming and outgoing communication with these trusted partners but also
restricts other communication attempts and promptly alerts the designated person in charge for further investigation.
iii. Outbound-Only Connection (OOC): The proliferation of IoT devices has created a new avenue for malicious actors to gain
access to individuals’ personal and sensitive information. Cybercriminals often exploit vulnerabilities in these devices by send-
ing unsolicited communication requests that trick the device into connecting to a compromised network. To mitigate such risks,
many IoT devices are programmed only to allow authorized connections, thereby preventing unauthorized access attempts. This
controlled connection OOC pattern allows the devices to initiate and control connections while not rejecting all incoming com-
munication requests that lack proper authorization.
iv. Blacklist (BL): Privileges, whether they are freely given or explicitly granted, are susceptible to abuse. Establishing mea-
sures to prevent ongoing abuse and restrict potential future abuse is imperative. To achieve this, maintainers frequently create
a BL containing records of individuals identified as abusive users or misused their privileges. By maintaining such a list, the
maintainers can better manage the privileges and ensure that they are only granted to trustworthy individuals.
v. Whitelist (WL): The WL functions in contrast to the BL, which blocks known abusive communication partners. However,
while the BL is never complete, the WL limits the number of possible attacks by providing an administrative interface to add
communication partner identifiers. This interface enables the checking of privileges that the WL controls. When a communica-
tion partner on the WL requests a privilege, the system can proceed. Conversely, the system will automatically deny the request if
the requester is not on the WL. Thus, the WL serves as an effective means of limiting access to known communication partners.
vi. Secure Sensor Node (SSN): A sensor node seamlessly performs data collection and transmission tasks in a sensor network.
However, suppose the sensor node lacks security mechanisms. In that case, it may be vulnerable to various security issues, such

Jamshidi ET AL 7

FIGURE 5 Blacklist pattern solution sketch5.

FIGURE 6 Whitelist pattern solution sketch5.

as privacy, integrity, and confidentiality. This can compromise the data stored, data transmission, and the environment with
which it interacts. The SSN pattern tells a sensor node how to securely send and store data in a WSN, regardless of its topology.
A secure sensor node can encrypt data in communications and storage while keeping a record of events for auditing purposes. As
the sensor node covers other aspects of the node without special security considerations, it has no mechanisms or design deci-
sions. To deliver security features to a sensor node, it is necessary to apply additional components to encrypt data, log events,
and perform authentication and authorization processes with other nodes of the WSN.

4 STUDY DESIGN

This section outlines our methodology for evaluating the effects of specific IoT security patterns on IoT-edge-based applications.
We first define our RQs and subsequently provide details on the experimental design and the metrics used to assess the impact
of the patterns.

4.1 Research Questions(RQs):
Our research aims to address the following RQs:

• RQ1: To what extent does the utilization of IoT security patterns improve the security of IoT-edge-based applica-
tions?
We undertake an analysis of both in-pair and combined patterns (i.e., all patterns) to assess the security aspects of the
applications deployed within the IoT network. The security is assessed using a penetration test, which involves launching
simulated attacks against the applications. By adopting this approach, we aim to assess the effectiveness of the security
patterns and identify any vulnerabilities that need to be addressed to enhance the security of IoT networks for particular
implementation of applications.

8 Jamshidi ET AL

• RQ2: How does the utilization of security patterns in IoT edge-based applications impact energy consumption,
CPU usage, and CPU load? We conduct an empirical study on three IoT applications to investigate the impact of in-pair
and the combined patterns on energy consumption, CPU usage, and CPU load. We measure these metrics with/without
patterns and under the attacks.

4.2 Experimental Design
In this subsection, we present the experimental setup of our study. We conduct an empirical investigation on three IoT-edge-
based applications to assess six IoT security patterns: PZH, TCP, OOC, BL, WL, and SSN. To answer RQ1, we conducted a
thorough investigation using multiple communication frameworks and IoT devices. A testbed was created, consisting of three
Raspberry Pis and various sensors. Each device established an IoT-edge-based application configuration in conjunction with its
sensor nodes. Our methodology involved implementing six distinct security patterns in the three applications and conducting a
penetration test to evaluate their effectiveness in enhancing the security of the applications. We performed the penetration tests
(i.e., launching attacks) using Kali Linux.
For RQ2, we measure energy consumption, CPU usage, and CPU load with/without patterns under the attacks simulated by the
penetration tests. We created three IoT hubs with the sensors. To work with each sensor’s data in each IoT hub, we developed
individual applications and implemented related security patterns.

• Smart Home: The first experimental setup is called the smart home automation method using Raspberry Pi as the edge
device33. It consists of a Motion sensor, an AC supply, a DHT22 sensor, a Module M-Q9, and an MCP3008 converter. By
utilizing a smart home, we can exercise control over the internet-connected home equipment in our testbed. The application
can measure the home’s temperature and humidity and control the home’s light and gas sensors. This application can also
capture and identify intruders’ presence. If the motion is detected, the edge will process, and the Raspberry Pi will send
a notification to the user.
In this paper, we targeted three IoT-edge-based applications:

• Smart City: The second experimental configuration involves the implementation of an advanced smart city34 infrastruc-
ture that is purposefully tailored to facilitate real-time pollution monitoring. In this setup, the Raspberry Pi functions as an
edge computing device, playing a vital role in processing and analyzing data at the local level. To achieve comprehensive
air quality monitoring, a set of cutting-edge sensors is integrated into this smart city system. Specifically, the employed
sensors comprise the DHT22, Module M-Q9, MCP3008 converter, pressure air sensor, and Module MQ135 sensor. These
sensors collectively enable measuring and tracking various critical air quality parameters. The recorded environmental
metrics encompass essential factors such as temperature, atmospheric pressure, altitude, humidity, carbon dioxide levels,
carbon monoxide levels, methane concentration, and ammonium levels.

• HealthCare: The third experimental setup is an healthcare35,36 application that incorporates ECG and heartbeat sensor
monitoring system. The AD8382 ECG sensor to read patient’s data, Arduino ESP8266 Wi-Fi module. Implementing the
proposed ECG healthcare system enables the doctor to monitor the patient remotely using IoT. The data is then processed
using a Raspberry Pi, and useful information is saved to the IoT edge. The system would primarily extract the biosignal
ECG using an ECG and heartbeat sensor. Through continuous monitoring and graphical representation of the patient’s
information, doctors/nurses/relatives can remotely check the patient’s condition.

Fig. 7 illustrates the topology of our configured testbed. All the data collection and interaction applications were written
in Python and C++. The server side was developed using Flask37 and Nginx38, a lightweight web server. We used an SQLite
database to store sensor data and the Google Chart API39 to create visual representations of the sensor data and Plotly40 for
graphical sensor data analysis. Our application sends the data to the edge server. Also, only the authorized server maintainer
can control the data, and the users can see or manipulate the data.

4.3 Implementation of patterns
In this section, we delve into the practical aspects of how these patterns are implemented.
OOC: We implemented the OOC pattern via the Uncomplicated Firewall (UFW)41. The UFW tool aims to clarify the complex-
ities associated with IP tables. The UFW was adjusted to effectively refuse all unsolicited incoming connections by executing

Jamshidi ET AL 9

FIGURE 7 Testbed topology.

the command:
"sudo ufw default deny incoming"
This command serves as the basis of our defense strategy, guaranteeing that only connections started by the device in ques-
tion are authorized. Simultaneously, we executed the following command to preserve the operational capabilities of the device,
thereby enabling it to establish connections with trustworthy services for essential updates and data transfers:
"sudo ufw default to allow outgoing"
The implementation of a dual configuration that employs two complementary security measures to bolster its overall protection,
while simultaneously maintaining the operational functionality of the network. The use of a dual configuration in this context
serves to guarantee a resilient level of safeguarding, all the while maintaining the operating functionalities of the item. The UFW
firewall enables us to selectively control incoming connections, by the strict demands of the OOC pattern, as exemplified by the
following command:
"sudo ufw allow from [Server IP] to any port [Port Number] proto [Protocol]"
To optimize the configuration of the firewall, we can integrate precise rules. For instance, we can employ a directive to establish
exact access restrictions, guaranteeing multi-tiered and resilient protection against potential risks.
PHZ: We implemented the PHZ by focusing on making a chosen whitelist. This whitelist is different because it includes devices
that can be recognized by their Media Access Control (MAC) addresses. This makes sure that network communications are safe
because the MAC addresses are a safe way to identify devices because they are unique. There are strict rules for controlling
who can access our network equipment, which is made up of routers and switches. Only devices on the whitelist are allowed
to connect to the network because of this strategy. One important part of our plan is to separate IP devices that are unknown.
To do this, we considered several levels of protection. In the very strict network authentication process, the MAC addresses of
devices trying to join the network are checked against a whitelist as part of a verification step. This method successfully finds
and blocks devices that are not explicitly allowed, protecting our network from devices that are not supposed to be there.
TCP: The identification process of probable communication partners was initiated by employing Nmap42, a comprehensive net-
work scanning tool, rigorously. This process enabled a comprehensive record of authorized devices, including their MAC and
IP addresses, to be securely documented. A Virtual Private Network (VPN) was implemented utilizing the OpenVPN protocol43
to ensure the confidentiality and integrity of distant communications. This establishment of a VPN enables the creation of an
encrypted channel, hence safeguarding the data exchange process and minimizing the potential vulnerability to interception.
BL: We implemented the BL management tool by constructing the Python and the Flask framework and merged it into the IoT
network infrastructure. Using Python’s libraries and the Flask framework, we were able to build a data-gathering module that
can independently detect cases of network abuse. Python’s implementation of SQLite proved capable of efficiently managing
a blacklist dataset without jeopardizing its integrity44. Python scripts were used to establish connections with network devices
to enforce the BL and put access rules into effect. The application made use of Flask’s session management for encrypted web

10 Jamshidi ET AL

TABLE 1 List of equipment for the testbed.
TestBed Name Description

Smart Home

Edge device Raspberry Pi
Node 1 DHT22 sensor
Node 2 Module M-Q9
Node 3 AC supply
Node 4 MCP3008 converter
Node 5 Motion sensor

User Connecting using Any device
Router Wireless Hub/ Connection Point
Hacker Intruder/ Cyber Attacker

Smart City

Edge device Raspberry Pi
Node 1 DHT22 sensor
Node 2 Module M-Q9
Node 3 BMP 280 (Air Pressure)
Node 4 MCP3008 converter
Node 5 Module MQ135 Sensor

User Connecting using Any device
Router Wireless Hub/ Connection Point
Hacker Intruder/ Cyber Attacker

Health Care

Edge device Raspberry Pi
Node 1 ESP32
Node 2 AD8232 ECG Sensor
Node 3 Heartbeat Sensor
Node 4 DHT22 Sensor
Node 5 Microcontroller ESP32 Module

User Connecting using Any device
Router Wireless Hub/ Connection Point
Hacker Intruder/ Cyber Attacker

communications and the Python cryptography tools to safeguard user data.
WL: To make our applications more secure, we have included a WL system built on top of the Flask framework45. At the
heart of our WL system, there is a SQLite database. This database stores the API keys or user IDs of each user, together with
the access privileges that the user has been granted. It also preserves a log of all modifications such as adding, removing, and
updating user entries, so we will always know when they were made and who made them. Our WL performs a check against a
predetermined list of authorized users at each attempted login. A user can proceed if they are on the approved list and have the
necessary privileges. If they do not, they will not be able to enter.
SSN: We implemented the SNN by OpenSSL46 to provide a comprehensive security architecture. Drawing from the work given
in47, we customized the current configuration to match the unique requirements of our testbed. To protect the sensor data dur-
ing transmission, we set up a secured socket layer. This was crucial in establishing an encrypted connection between the sensor
nodes and the database, protecting the privacy and security of the collected data. To ensure confidential exchanges, we made
use of a dual encryption method, generating SSL keys (both public and private) with the help of RSA-204848. Additionally,
AES-25649 was implemented to guarantee a high level of security for stored information. The data communication by the sensor
nodes was made much more secure by employing a dual-layer encryption strategy.

Jamshidi ET AL 11

TABLE 2 Patterns selected for experimentation.
Pattern Abbreviation Code
Personal Zone Hub PZH 𝑃1
Trusted Communication Partner TCP 𝑃2
Outbound-Only Connection OOC 𝑃3
Blacklist BL 𝑃4
Whitelist WL 𝑃5
Secure Sensors SSN 𝑃6
Without Pattern - 𝑃0

4.4 Metrics
We use the following metrics to capture the impact of the studied patterns on the edge systems.
CPU load refers to the amount of processing power that is currently being used by the CPU of a computer system. This mea-
surement is typically expressed as a percentage of the CPU’s total processing capacity, with a reading of 100% indicating that
the CPU is fully occupied and has no remaining capacity. The CPU load can fluctuate depending on the tasks that the computer
is performing, and it can be monitored using various system monitoring tools. When the CPU load is high, it can cause the com-
puter to slow down or become unresponsive, especially if it persists for an extended period. Additionally, high CPU loads can
result in increased power consumption and heat generation, which can be problematic for systems with limited cooling capabili-
ties. It is crucial to keep a close watch on the CPU load to ensure that it remains within reasonable limits and does not negatively
impact system performance or stability. Therefore, regular monitoring and analysis of the CPU load can help identify potential
issues and take necessary steps to optimize system performance.
In the context of assessing the effects of attacks on applications, CPU load can be used to detect whether an application is under
stress due to an attack. If an attacker is launching a DDoS attack, for example, the application’s CPU load will likely increase
significantly as it struggles to handle a large amount of traffic being directed at it. By monitoring the CPU load of an application,
system administrators can detect and respond to attacks promptly, taking steps to mitigate the effects of the attack and prevent
further damage. Monitoring CPU load can also help identify performance issues in an application that may be unrelated to an
attack. By tracking CPU usage over time, administrators can identify trends and patterns that may indicate problems with the
application’s design or infrastructure, allowing them to make targeted improvements to improve overall performance and stabil-
ity.
In this study, we employ PowerTOP8 a widely used and effective tool for measuring and monitoring energy consumption, to
quantify the energy consumption of specific processes or patterns.

4.5 Analysis method for energy consumption and CPU usage
In this study, we employ the Mann-Whitney U test, also known as the Wilcoxon rank-sum test, as it was used in similar studies
Khomh and Abtahizadeh50. It is used to test whether there is a significant difference in the distribution of a continuous variable
between two independent groups. Since the findings indicate differences between several independent groups, we use the Mann-
Whitney U test51 to examine 𝐻1

𝑥 ,𝐻
2
1,3,𝐻

3
𝑥 ,𝐻

4
1,3, etc. Moreover, we used Cliff’s 𝛿 effect size to determine the importance of

the differences between metric values. Cliff’s 𝛿 is a non-parametric effect-size measure that indicates the extent to which two
sampling distributions overlap. All of our tests are performed at a 95% level of confidence (i.e., the 𝑝-value is less than 0.05).
Because we conduct multiple tests of the null hypothesis, we use a Bonferroni correction52 to deal with the issue of multiple
comparisons, which involves dividing the threshold 𝑝-value by the number of tests.

4.6 Designed attacks
In this section, we analyze the attacks we launched within our testbed environment to the efficiency and resilience of the secu-
rity patterns employed.
- DDoS: DDoS attacks remain a significant danger in IoT networks due to the vast number of devices that could be compromised
and utilized to launch such attacks53. IoT devices are frequently developed with insufficient processing capacity and security

12 Jamshidi ET AL

TABLE 3 The name of patterns and method of implementing.
Pattern Implementation

OOC UFW firewall
PZH Configure the network infrastructure,

Implement isolation measures

measures, which leaves them open to exploitation by malicious actors. Many IoT devices operate in highly distributed envi-
ronments, such as smart cities or industrial control systems. In these setups, a single susceptible device can become a point of
entry for attackers, allowing them to access the wider network. Attackers frequently utilize DDoS to take advantage of weak IoT
devices54 55 56.
- SSH-MITM: This attack is still critical in an IoT network because it enables an attacker to secretly intercept and control the
communication between IoT devices, applications, and servers without raising any suspicions. IoT devices generally commu-
nicate with one another over wireless networks, which, compared to wired networks, will not offer the same level of security
citation required. An adversary may employ a variety of tactics to intercept the communication and attain unauthorized access
to the data that these devices are sending. Many IoT devices are not built with robust security safeguards throughout the design
process, making them especially susceptible to MITM attacks. This can be particularly concerning when IoT devices are used
in essential infrastructure, such as healthcare or transportation, where a security breach can have serious repercussions57 58.
- Brute-Force: Since the deployment of IoT applications has proliferated in recent years, connecting various devices to the inter-
net is oftentimes without adequate security measures. Consequently, such devices are vulnerable to exploitation by malicious
actors, who can launch brute-force attacks due to their worldwide accessibility. These attacks can be automated through the
utilization of software tools, enabling cybercriminals to launch large-scale attacks with ease. This indicates that the hacker can
target numerous devices simultaneously, increasing the likelihood that they will successfully acquire access to at least one of
the targeted devices. After the hacker has gained access to an IoT device, they can use it as a gateway to access other IoT devices
connected to the same network. This can provide them access to sensitive information or even give them control over the key
infrastructure. Attacks using the brute-force pose a substantial risk to IoT networks. As such, they should be treated seriously
by all parties involved, including manufacturers, developers, and end users59 60.

5 EXPERIMENTAL RESULTS

This section presents the results of our experiments, followed by a thorough analysis of the findings obtained through the
utilization of the six selected patterns discussed in Section 3.2.

5.1 OOC and PZH security patterns
5.1.1 RQ1: The impact of OOC and PZH security patterns on security
To address RQ1, we conducted a penetration test on the applications available on our testbeds. The penetration test was executed
using DDoS and MITM61 attacks. Moreover, We selected these attacks for these patterns based on the concept of the OOC and
PZH62.

We have implemented the OOC pattern by installing the Uncomplicated Firewall (UFW) on devices. The UFW is the front
end for the network filter firewall built on the Linux kernel. The UFW rules define which network traffic should be allowed or
denied. Rules can be defined based on IP addresses, port numbers, and protocols of source and destination. In addition, as net-
work traffic enters or exits the system, it is inspected by the network filter firewall. The firewall compares each packet against the
defined UFW rules to determine whether it should be allowed or denied. If the packet matches a rule allowing traffic, it can pass
through the firewall. If the packet matches a rule that denies the traffic, it is blocked, and a response is sent back to the source of
the traffic.
Implementation:
The present study aims to implement the PZH pattern that involves identifying and isolating unidentified IP devices and allow-
ing only recognized devices into the IoT network. To achieve this, we first identified the IP address range of the IoT network
and then determined the range of IP addresses used in the network. This method enabled us to identify devices that were not

Jamshidi ET AL 13

FIGURE 8 The CPU load for a smart home application with OOC, PZH patterns, without OOC, PZH patterns, and under
DDoS and MITM attack.

recognized by the network.
Subsequently, we configured the IoT network infrastructure, including the router and switch, to permit only recognized devices
to enter the network. To achieve this, we employed MAC address filtering as a security measure. Furthermore, we employed
network monitoring tools such as Wireshark to detect devices that were not recognized by the network. These tools enabled us
to isolate the devices that needed to be removed from the network.
It is worth noting that certain IoT devices may have dynamic IP addresses or utilize IP addresses that fall outside the recognized
range of the IoT network. In such cases, alternative methods such as device fingerprinting or network traffic monitoring may be
necessary to identify and isolate them. However, these approaches are beyond the scope of this research. The implementation
of OOC and PZH patterns is summarized in Table 3 .
The findings of the experiment reveal that the tested applications exhibit resilience against DDoS attacks, albeit with a conse-
quential increase in CPU load. While the applications experienced a slowdown in performance, they were able to withstand the
attack due to the presence of OOC and PZH patterns. However, the experiment also highlights that the applications were vul-
nerable to MITM attacks. The MITM attack spoofed the address protocol by assuming the identity of the router to receive the
target’s packets, thereby bypassing the protective measures of the PZH pattern. The experiment’s results indicate that the PZH
pattern may not be an effective defense mechanism against MITM attacks, as this type of attack can forge the router’s MAC
address. Furthermore, the experiment demonstrates that the OOC and PZH patterns proved ineffective in IoT applications due to
sensor data loss. Therefore, our findings suggest that alternative security measures be considered for IoT applications to address
the vulnerabilities highlighted in the experiment.
Next, the CPU load of smart home, smart city, and healthcare applications was evaluated under normal conditions and during a
DDoS attack. Results are shown in Fig. 8 , 9 and 10 those were obtained through simulation using a DDoS and MITM attack.
The OOC and PZH patterns were identified in the simulation as affecting the applications’ CPU load. Without the presence of
these patterns, the CPU loads of the applications ranged between 0.5% and 2.75%. However, the introduction of OOC and PZH
patterns resulted in a significant increase in CPU load, with values ranging from 1% to 16%. This represents an approximately
six-fold increase in CPU load compared to normal conditions (that means in a normal running condition). During the attack, the
CPU load with OOC and PZH patterns was found to be between 16.5% and 19%. This increase in CPU load caused the applica-
tions to respond slowly as the additional resources needed to serve these loads were being allocated. The presence of OOC and
PZH patterns significantly increases the CPU load of a smart home, smart city, and healthcare applications, even without any
attack. With the presence of any attack, the impact on CPU load is even greater.

14 Jamshidi ET AL

FIGURE 9 The CPU load for smart city applications with OOC, PZH patterns, without OOC, PZH patterns, and under DDoS
and MITM attacks.

FIGURE 10 The CPU load for a healthcare application with OOC, PZH patterns, without OOC, PZH patterns, and under DDoS
and MITM attacks.

5.1.2 RQ2: Impact on energy consumption and CPU usage
The following set of null hypotheses are defined to answer RQ2: 𝐻𝑥, 𝑥 ∈ {1....6}. Hypotheses are defined as follows where 𝑃0
corresponds to the version of application that does not use patterns, 𝑃1,3 indicates the applied patterns, namely PZH and OOC
(see Table 2), 𝑃1,3 − 𝐷𝐷𝑜𝑆 and 𝑃1,3 −𝑀𝐼𝑇𝑀 represent the occurrence or presence of the DDoS and the MITM attacks in
𝑃1,3, respectively:
𝐻1

1,3: There exists no difference in the average energy consumption between 𝑃1,3 and 𝑃0.
𝐻2

1,3: There is no difference in the average energy consumption between 𝑃1,3 and 𝑃1,3 −𝐷𝐷𝑜𝑆.

Jamshidi ET AL 15

TABLE 4 P-value of Mann–Whitney U test and Cliff’s 𝛿 effect size for the average energy consumption under MITM and
DDoS attack.

Version
Avg. Energy consumption

SmartHome SmartCity HealthCare
P-Value Effect Size P-Value Effect Size P-Value Effect Size

𝑃0 vs. 𝑃1,3 0.0001 0.1 0.0001 0.0 0.0001 0.0
𝑃1,3 vs. 𝑃1,3 −𝑀𝐼𝑇𝑀 0.0226 0.493 0.3173 0.218 0.9840 0.112
𝑃1,3 vs. 𝑃1,3 −𝐷𝐷𝑜𝑆 0.0120 0.542 0.0238 0.428 0.0794 0.578

TABLE 5 P-value of Mann–Whitney U test and Cliff’s 𝛿 effect size for the average CPU usage under MITM and DDoS attack.

Version
Avg. CPU Usage

SmartHome SmartCity HealthCare
P-Value Effect Size P-Value Effect Size P-Value Effect Size

𝑃0 vs. 𝑃1,3 0.0105 0.73 0.3320 0.213 0.0818 0.738
𝑃1,3 vs. 𝑃1,3 −𝑀𝐼𝑇𝑀 0.0004 0.165 0.0009 0.667 0.0054 0.747
𝑃1,3 vs. 𝑃1,3 −𝐷𝐷𝑜𝑆 0.0001 1.0 0.0001 1.0 0.0001 1.0

𝐻3
1,3: The average amount of energy consumed by 𝑃1,3 is not different from the energy consumed by 𝑃1,3 −𝑀𝐼𝑇𝑀 .

𝐻4
1,3: There is no difference between the average amount of CPU usage of 𝑃1,3 and 𝑃0.

𝐻5
1,3: There is no difference between the average CPU usage 𝑃1,3 and the CPU usage observed for 𝑃1,3 −𝐷𝐷𝑜𝑆.

𝐻6
1,3: The average amount of CPU usage in 𝑃1,3 is not different from 𝑃1,3 −𝑀𝐼𝑇𝑀 .
Table 4 reports the P-values of the Mann-Whitney U test and Cliff’s 𝛿 effect size for energy consumption evaluation. The

table specifically compares the average energy consumption observed during two distinct attack scenarios (MITM and DDoS),
with/without security patterns.
According to the P-value in Table 4 , we reject 𝐻1

1,3 for all applications. Based on the data, the evidence suggests that a statis-
tically significant disparity exists in the average energy consumption levels across three distinct applications when comparing
the utilization of OOC and PZH patterns without them.
According to the P-value for the MITM attack, we reject 𝐻3

1,3 for the smart home application since the data analysis reveals a sta-
tistically significant difference in the energy consumption by 𝑃1,3 −𝑀𝐼𝑇𝑀 . However, we cannot reject 𝐻3

1,3 for the smart city
and healthcare cases. The data analysis reveals no statistically significant difference in the energy consumption by 𝑃1,3−𝑀𝐼𝑇𝑀 .
According to the P-value for the DDoS attack, we reject 𝐻2

1,3 for the smart home and smart city applications. The findings indi-
cate a statistically significant difference in the energy consumption of by 𝑃1,3 −𝐷𝐷𝑜𝑆. However, we cannot reject 𝐻2

1,3 for the
healthcare applications, implying that there is no significant difference from the energy consumed by 𝑃1,3 −𝐷𝐷𝑜𝑆.
Fig. 11 , 12 , and 13 show the results obtained for all the implementations of the OOC and PZH patterns. The examination of
energy consumption patterns reveals a discernible escalation in energy utilization. This effect becomes more pronounced when
subjecting the applications (with patterns) are under DDoS and MITM attacks, further exacerbating energy consumption lev-
els. Nonetheless, a statistically noteworthy disparity in energy consumption becomes evident when comparing the with/without
patterns in all applications. Additionally, the disparity in energy consumption attains statistical significance when assessing the
impact of an MITM attack on a smart home environment. Furthermore, statistical significance manifests in energy consumption
discrepancies when the smart home and city confront DDoS attack scenarios.
Table 5 reports the P-values of the Mann-Whitney U test and the Cliff’s 𝛿 effect size for CPU usage evaluation. The table specif-
ically compares the average CPU usage levels observed during two distinct attack scenarios (MITM and DDoS), with/without
security patterns.
According to the P-value in Table 5 , we reject 𝐻4

1,3 for smart home application. Our analysis indicates a statistically signif-
icant difference in the average CPU usage when OOC and PZH patterns are applied in the smart home application. However,
we cannot reject 𝐻4

1,3 smart city and healthcare applications. There is no statistically significant difference between the average
amount of CPU usage under different conditions with OOC and PZH patterns and without them in the two applications.

16 Jamshidi ET AL

FIGURE 11 Energy consumption for a smart home application with OOC, PZH patterns, without OOC, PZH patterns, and
under DDoS and MITM attacks.

FIGURE 12 Energy consumption for a smart city application with OOC, PZH patterns, without OOC, PZH patterns, and under
DDoS and MITM attacks.

For the MITM attack, we reject 𝐻6
1,3 for all applications. Upon conducting the statistical tests, it is evident that there is a statis-

tically significant difference in CPU usage by 𝑃1,3 −𝑀𝐼𝑇𝑀 .
In the case of the DDoS attack, we reject 𝐻6

1,3 for all applications. After conducting the statistical tests, compelling evidence
arises, indicating a statistically significant difference in CPU usage caused by 𝑃1,3 −𝐷𝐷𝑜𝑆.
Fig. 14 , 15 , and 16 summarize the results obtained for all the implementations of the OOC and PZH patterns. The exam-
ination of CPU usage during DDoS attacks reveals an increase when patterns are introduced. In addition, it is imperative to
emphasize that a statistically significant variance in CPU usage is observed between scenarios for the smart home with and with-
out patterns unless for the smart city and healthcare case. Moreover, a statistically significant variance in CPU usage is observed
when applications are under DDoS and MITM attacks.

Jamshidi ET AL 17

FIGURE 13 Energy consumption for a healthcare application with OOC, PZH patterns, without OOC, PZH patterns, and under
DDoS and MITM attacks.

FIGURE 14 CPU usage for a smart home application with OOC, PZH patterns, without OOC, PZH patterns, and under DDoS
and MITM attack.

Finding 1:
The PZH mechanism exhibits limitations in effectively countering MITM attacks. Additionally, the pattern’s impact
on energy consumption in all applications becomes evident in diverse situations, including those involving attacks and
non-attack circumstances, except the smart city and healthcare under MITM attack and healthcare under DDoS attack.
Furthermore, the patterns’ impact on CPU usage in all applications becomes evident in diverse situations, including
attacks and non-attack circumstances, except for the smart city and healthcare with/without patterns.

5.2 WL, BL and TCP
5.2.1 RQ1: The impact of WL, BL, and TCP security patterns on security
To address RQ1, three applications were developed with and without the utilization of WL and BL62 patterns. The implemen-
tation involved the integration of an authentication system on both the Raspberry Pis and the server. The efficacy of the security

18 Jamshidi ET AL

FIGURE 15 CPU usage for smart city applications with OOC, PZH patterns, without OOC, PZH patterns, and under DDoS
and MITM attacks.

FIGURE 16 CPU usage for a healthcare application with OOC, PZH patterns, without OOC, PZH patterns, and under DDoS
and MITM attacks.

TABLE 6 The name of patterns and method of implementation.
Pattern Implementation
Whitelist List of users, Device authentication
Blacklist Forbidden List, Limit login attempts

measures was evaluated through the use of a penetration test as a brute-force63 attack against the developed applications. This
approach was adopted to evaluate the effectiveness of the WL and BL patterns, which informed the selection of this particular
security testing methodology.
Implementation:
The present study outlines the implementation of SQLite database in IoT-based-edge applications to incorporate WL and BL.
Specifically, a new attribute named access level was added to the database schema, enabling control and limitation of user acces-
sibility within the system64. In cases where a user with WL privileges misuses their access rights, the administrator of the system

Jamshidi ET AL 19

FIGURE 17 CPU load for a smart home application with WL, BL without WL, BL, and under BF attack.

can revoke their privileges and assign them to the BL. The administrator can also exercise control over the access of WL users.
Additionally, high-performance computers were deployed to execute attacks that involved a large number of calculations per
second, thereby enabling the testing of numerous combinations of usernames and passwords in the shortest possible time. More-
over, a limit was imposed on the number of login attempts to prevent unlimited password combinations by potential attackers.
Table 6 illustrates the implementation of WL and BL patterns in the considered applications. The experimental results con-
firmed that stronger passwords, with a minimum length of 12 characters and a mix of uppercase and lowercase letters, numbers,
and symbols, can enhance the security of the applications47. Overall, the incorporation of WL and BL functionalities has been
found to enhance the security of IoT-based-edge applications.
Results:
Fig. 17 , 18 and 19 depict the three states of the smart home, smart city, and healthcare applications, respectively. The depicted
CPU load highlights the potential impact of the WL and BL pattern under the brute-force attack on the normal state of the appli-
cations. Notably, the CPU load of the considered applications without WL and BL patterns ranges from 0.5% to 1.75%. The
introduction of the WL and BL patterns increases the CPU load to a range of 1% to 2.5%. Under the brute-force attack, the CPU
load increases to a range of 2% to 5.5%. Thus, the findings demonstrate the varying impact of WL and BL patterns on CPU load
in different contexts.

5.2.2 RQ2: Impact on energy consumption and CPU usage
The following set of null hypotheses are defined to answer RQ2: 𝐻𝑥, 𝑥 ∈ {1....6}. Hypotheses are defined as follows where 𝑃0
corresponds to the version of applications that do not use patterns, 𝑃4,5 indicates the applied patterns, namely WL and BL (see
Table 2), 𝑃4,5 − 𝐵𝐹 indicates the occurrence or presence of brute-force attack in 𝑃4,5, respectively:
𝐻1

4,5: There is no difference between the average energy consumption of 𝑃4,5 and 𝑃0.
𝐻2

4,5: The average amount energy consumption of 𝑃4,5 is not different from 𝑃4,5 − 𝐵𝐹 .
𝐻3

4,5: There is no difference between the average amount of CPU usage of 𝑃4,5 and 𝑃0.
𝐻4

4,5: The average amount of CPU usage by 𝑃4,5 is not different from the 𝑃4,5 − 𝐵𝐹 .
Table 7 reports the P-values of the Mann-Whitney U test and Cliff’s 𝛿 effect size for energy consumption evaluation. The

table specifically compares the average energy consumption levels observed during distinct attack scenarios (brute-force),
with/without security patterns.
According to the P-value in Table 7 , we reject 𝐻1

4,5; the analysis reveals a statistically significant difference in the average
energy consumption when WL and BL patterns were applied in all applications.
For the brute-force attack, we reject 𝐻2

4,5 for all applications. The results reveal that there is a statistically significant difference

20 Jamshidi ET AL

FIGURE 18 CPU load for a smart city application with WL, BL without WL, BL, and under BF attack.

FIGURE 19 CPU load for a healthcare application with WL, BL without WL, BL, and under BF attack.

between the average amount of energy consumed when using WL and BL patterns for all examined applications under 𝑃4,5−𝐵𝐹 .
Fig. 20 , 21 , and 22 illustrates the results obtained for all the implementations of the WL and BL patterns. The analysis of
energy consumption during a brute-force attack indicates an escalation when patterns are introduced. Also, our results show a
statistically significant difference in any of the cases under investigation.
Table 8 reports the P-values of the Mann-Whitney U test and the Cliff’s 𝛿 effect size for CPU usage evaluation. The table
specifically compares the average CPU usage observed during distinct attack scenarios (i.e., brute-force) with/without security
patterns.
According to the P-value in Table 8 , we reject 𝐻3

4,5 in smart home and smart city applications. The analysis unequivocally
demonstrates a statistically significant difference in the average CPU usage across various cases, considering the presence of
WL and BL patterns, compared to cases without WL and BL in smart home and smart city applications. Moreover, we cannot

Jamshidi ET AL 21

TABLE 7 P-value of Mann–Whitney U test and Cliff’s 𝛿 effect size for the average energy consumption under brute-force attack.

Version
Avg. Energy Consumption

SmartHome SmartCity HealthCare
P-Value Effect Size P-Value Effect Size P-Value Effect Size

𝑃0 vs. 𝑃4,5 0.0001 0.0 0.0001 0.0 0.0001 0.867
𝑃4,5 vs. 𝑃4,5 − 𝐵𝐹 0.0008 0.819 0.0001 0.929 0.0018 0.809

TABLE 8 P-value of Mann–Whitney U test and Cliff’s 𝛿 effect size for the average CPU usage under brute-force attack.

Version
Avg. CPU Usage

SmartHome SmartCity HealthCare
P-Value Effect Size P-Value Effect Size P-Value Effect Size

𝑃0 vs. 𝑃4,5 0.0028 0.782 0.0057 0.391 0.2996 0.471
𝑃4,5 vs. 𝑃4,5 − 𝐵𝐹 0.0001 1.0 0.0001 1.0 0.0001 0.996

FIGURE 20 Energy consumption for a smart home application with WL, BL without WL, BL, and under BF attack.

reject 𝐻4
4,5 for healthcare applications as there is no statistically significant difference in the CPU usage with/without WL, and

BL patterns.
For the brute-force attack, we reject 𝐻3

4,5 in all applications. The analysis unequivocally demonstrates a statistically significant
difference in the average CPU usage across various cases when using 𝑃4,5 − 𝐵𝐹 .
Fig. 23 , 24 , and 25 show the results obtained for all the implementations of the WL and BL patterns. The analysis of
CPU usage during a brute-force attack indicates an escalation when patterns are introduced. However, our analysis identifies a
statistically significant difference in any of the cases under investigation, except healthcare with/without patterns.

Finding 2:
Our experimental findings suggest the efficacy of WL and BL patterns against brute-force attacks. Notably, incorporating
patterns impacts CPU usage and energy consumption in active-attack scenarios and the absence of attacks. Also, results
show a statistically significant difference in any of the cases under investigation.

22 Jamshidi ET AL

FIGURE 21 Energy consumption for a smart city application with WL, BL without WL, BL, and under BF attack.

FIGURE 22 Energy consumption for a healthcare application with WL, BL without WL, BL, and under BF attack.

FIGURE 23 CPU usage for a smart home application with WL, BL without WL, BL, and under BF attack.

Jamshidi ET AL 23

FIGURE 24 CPU usage for a smart city application with WL, BL without WL, BL, and under BF attack.

FIGURE 25 CPU usage for a healthcare application with WL, BL without WL, BL, and under BF attack.

5.3 WL, BL and SSN
5.3.1 RQ1: The impact of WL, BL, and SSN security patterns on security
This section encompasses an empirical evaluation aimed at assessing the efficacy of two distinct security patterns in the con-
text of attack management. We aimed to answer RQ1 by implementing two applications with and without WL and BL patterns.
In addition, we added an SSN pattern to ensure secure data transmission over an unsecured network. Brute-force and MITM
attacks were implemented to assess the application’s effectiveness. Table 9 provides a comprehensive overview of the imple-
mented SSN pattern. However, the penetration test revealed that MITM was not able to log all entered data, including the user’s
password, which could not be returned to the legitimate user. The findings showed that the WL, BL, and SSN combination effec-
tively managed brute-force and MITM attacks, which we will show in the following sections.
Implementation:
To implement the SSN and OpenSSL IoT security patterns in our testbed, we adapted the configuration discussed by48. Addi-
tionally, a secured socket was employed to facilitate the transfer of sensor data to the database. We used a combination of
RSA-204849 and AES-25665 to generate SSL keys (i.e., public and private keys for communication). During the implementa-
tion of the security patterns, measures were taken to ensure that the IoT hubs depicted in Fig. 1 were not directly accessible by
external users. The implementation of these measures involved configuring the firewall at each of the Raspberry Pis’ interfaces

24 Jamshidi ET AL

TABLE 9 The name of patterns and method of implementation.
Pattern Implementation

Secure Sensor Node RSA-2048, AES-256

FIGURE 26 CPU load for smart home applications with WL, BL, SSN, without WL, BL, SSN, and under BF attack as well
as MITM.

in such a way that only communication from the server IP address was permitted. Consequently, any user seeking to access the
IoT hubs was required to go through the main server, which is responsible for managing the functions of the IoT hubs and stor-
ing the sensor data collected from different hubs. This approach guarantees a higher level of security, thereby reducing the risk
of unauthorized access to IoT devices, which could potentially compromise sensitive data.
Results:
Fig. 26 , 27 and 28 , illustrate the impact of two security patterns, namely WL, BL, and SSN, on the performance of a smart
home, smart city, and healthcare applications, respectively. Specifically, we investigate the CPU load of these applications in
two different scenarios, i.e., normal operation under brute-force and MITM attacks. The findings indicate that the absence of the
aforementioned security patterns results in a CPU load ranging from 0.5% to 2%. Conversely, the employment of these security
patterns findings in a CPU load ranging from 2% to 3.5%. Notably, under the MITM attack, the CPU load increases from 2.5%
to 4.5%.

5.3.2 RQ2: Impact on energy consumption and CPU usage
The following set of null hypotheses are defined to answer RQ2: 𝐻𝑥, 𝑥 ∈ {1....6}. Hypotheses are defined as follows where 𝑃0
corresponds to the version of application that does not use patterns, 𝑃4,5,6 indicates the applied patterns, namely WL, BL, and
SSN (see Table 2), 𝑃4,5,6 − 𝐵𝐹 and 𝑃4,5,6 −𝑀𝐼𝑇𝑀 indicate the occurrence or presence of brute-force and MITM attacks in
𝑃4,5,6, respectively:
𝐻1

4,5,6: There exists no difference between the average amount of energy consumed by 𝑃4,5,6 and 𝑃0.
𝐻2

4,5,6: There is no difference in the average energy consumption between 𝑃4,5,6 and 𝑃4,5,6 −𝑀𝐼𝑇𝑀 .
𝐻3

4,5,6: The average amount of the CPU usage by 𝑃4,5,6 is not different from 𝑃4,5,6 − 𝐵𝐹 .
𝐻4

4,5,6: There is no difference between the average amount of CPU usage by 𝑃4,5,6 and 𝑃0.
𝐻5

4,5,6: The average CPU usage of 𝑃4,5,6 exhibits no difference when compared to 𝑃4,5,6 −𝑀𝐼𝑇𝑀 .
𝐻6

4,5,6: The average CPU usage in 𝑃4,5,6 is not different from 𝑃4,5,6 − 𝐵𝐹 .

Jamshidi ET AL 25

FIGURE 27 CPU load for smart city applications with WL, BL, SSN, without WL, BL, SSN, and under BF attack as well as
MITM.

FIGURE 28 CPU load for healthcare applications with WL, BL, SSN, without WL, BL, SSN, and under BF attack as well as
MITM.

Table 10 reports the P-values of the Mann-Whitney U test and Cliff’s 𝛿 effect size for energy consumption evaluation. The
table specifically compares the average energy consumption observed during two distinct attack scenarios (MITM, brute-force)
with/without security patterns.
According to the P-value reported in Table 10 , we reject 𝐻1

4,5,6 for all applications; based on the observed data, there exists
a statistically significant disparity in the average energy consumption across various cases when considering the presence or
absence of WL, BL, and SSN patterns in all applications.
For the MITM attack, We also reject 𝐻2

4,5,6 for smart home and smart city applications as the data-driven analysis corroborates
the belief that there is a statistically significant difference in the energy consumed by 𝑃4,5,6 − 𝑀𝐼𝑇𝑀 . Moreover, we cannot

26 Jamshidi ET AL

FIGURE 29 Energy consumption for smart home applications with WL, BL, SSN, without WL, BL, SSN, and under BF attack
as well as MITM.

FIGURE 30 Energy consumption for smart city applications with WL, BL, SSN, without WL, BL, SSN, and under BF attack
as well as MITM.

reject 𝐻2
4,5,6 for the healthcare application. The analysis unequivocally demonstrates no statistically significant difference in the

average CPU usage by using 𝑃4,5,6 −𝑀𝐼𝑇𝑀 .
For the brute-force attack, we reject 𝐻3

4,5,6 in all applications. The data reveals a statistically significant difference in the energy
consumed by 𝑃4,5,6 − 𝐵𝐹 . Fig. 29 , 30 , and 31 show the results obtained for all investigated scenarios for WL, BL, and
SSN patterns. The analysis of energy consumption during brute-force and MITM attacks reveals a jump when patterns are
introduced; however, there is a statistically significant variance in energy consumption. This consistent observation applies to
three applications under investigation, irrespective of with and without patterns and under attack, except healthcare under MITM
attack.

Table 11 reports the P-values of the Mann-Whitney U test and Cliff’s 𝛿 effect size for CPU usage evaluation. The table
specifically compares the average CPU usage observed during two distinct attack scenarios (MITM, brute-force) with/without
security patterns.
According to the P-value we reported in Table 11 , we reject 𝐻4

4,5,6 for all applications, as there is a statistically significant
difference between the average amount of CPU usage with and without WL, BL, and SSN patterns in all cases.
In the case of the MITM attack, we reject 𝐻5

4,5,6 for all applications. The analysis reveals a statistically significant disparity in

Jamshidi ET AL 27

FIGURE 31 Energy consumption for healthcare applications with WL, BL, SSN, without WL, BL, SSN, and under BF attack
as well as MITM.

TABLE 10 P-value of Mann–Whitney U test and Cliff’s 𝛿 effect size for the average energy consumption under MITM and
brute-force attacks.

Version
Avg. Energy Consumption

SmartHome SmartCity HealthCare
P-Value Effect Size P-Value Effect Size P-Value Effect Size

𝑃0 vs. 𝑃4,5,6 0.0001 1.0 0.0009 1.0 0.0005 1.0
𝑃4,5,6 vs. 𝑃4,5,6 −𝑀𝐼𝑇𝑀 0.0002 1.0 0.0001 0.893 0.6599 0.098
𝑃4,5,6 vs. 𝑃4,5,6 − 𝐵𝐹 0.0001 1.0 0.0001 1.0 0.0006 1.0

TABLE 11 P-value of Mann–Whitney U test and Cliff’s 𝛿 effect size for the average CPU usage under MITM and brute-force
attacks.

Version
Avg. CPU Usage

SmartHome SmartCity HealthCare
P-Value Effect Size P-Value Effect Size P-Value Effect Size

𝑃0 vs. 𝑃4,5,6 0.0008 1.0 0.0007 1.0 0.0001 1.0
𝑃4,5,6 vs. 𝑃4,5,6 −𝑀𝐼𝑇𝑀 0.0001 1.0 0.0002 0.893 0.0007 0.098
𝑃4,5,6 vs. 𝑃4,5,6 − 𝐵𝐹 0.0001 1.0 0.0003 1.0 0.0005 1.0

the CPU usage of 𝑃4,5,6 −𝑀𝐼𝑇𝑀 .
For the brute-force attack, we reject 𝐻6

4,5,6 for all applications. The data does indicate a statistically significant difference in the
CPU usage of 𝑃4,5,6 − 𝐵𝐹 .
Fig. 32 , 33 , and 34 illustrate the results we obtained for all implementations of WL, BL, and SSN patterns. The investigation
of CPU usage during brute-force and MITM attacks yields an escalation when patterns are introduced. However, it is crucial
to emphasize that there is a statistically significant variance in CPU usage and every consumption among scenarios under
attack. This observation holds true for three applications under investigation, except healthcare under MITM attack in energy
consumption.

28 Jamshidi ET AL

FIGURE 32 CPU usage for smart home applications with WL, BL, SSN, without WL, BL, SSN, and under BF attack as well
as MITM.

FIGURE 33 CPU usage for smart city applications with WL, BL, SSN, without WL, BL, SSN, and under BF attack as well as
MITM.

FIGURE 34 CPU usage for healthcare applications with WL, BL, SSN, without WL, BL, SSN, and under BF attack and MITM.

Jamshidi ET AL 29

FIGURE 35 CPU load for smart home application with combination patterns, without combination patterns, and three attacks
DDoS, MITM, and BF.

Finding 3:
The gathered experimental results show the efficacy of WL, BL, and SSN patterns in effectively mitigating BF and
MITM attacks. Importantly, the incorporation of patterns during these attacks exhibits a discernible impact on CPU
usage and energy consumption in all applications, with/without patterns and under attacks.

5.4 Evaluating combination patterns
5.4.1 RQ1: The impact of combination patterns on security
To address RQ1, we compared two applications, each with/without combined patterns. The aforementioned applications were
subjected to a battery of attacks, including DDoS, MITM, and BF, which were carried out using Kali. These attacks were selected
to ensure consistency with prior sections conducted in this area.
Results:
The findings of the study demonstrate that the CPU load of the examined systems exhibits a relatively low level in the absence of
the combined patterns, measuring at a mere 2%. Nevertheless, the application of the comprehensive pattern leads to a substantial
escalation in CPU load, reaching 5%. Moreover, the CPU load of applications under different types of attacks is further analyzed.
Specifically, under the MITM and BF attacks, the CPU load of applications with the whole pattern increases to 15%. In contrast,
the CPU load of applications under a DDoS attack with all patterns rises to a substantial 50%. These findings highlight the
importance of considering the combined patterns in system design to ensure optimal performance and resilience against cyber
threats.
The findings of our study indicate that the smart home, smart city, and healthcare are capable of managing various types of
attacks. However, it is noteworthy that the application’s performance is considerably hampered when it comes under a DDoS
attack, causing a significant slowdown in its operations. The findings are presented in Fig. 35 , 36 , and 37 depicting the
functioning of the smart home, city, and healthcare applications across three different situations. The analysis of the CPU
load reveals that the entire patterns of usage, including normal state and attack scenarios, have a considerable impact on the
application’s performance.

30 Jamshidi ET AL

FIGURE 36 CPU load for a smart city application with combination patterns, without combination patterns, and three attacks
DDoS, MITM, and BF.

FIGURE 37 CPU load for a healthcare application with combination patterns, without combination patterns, and three attacks
DDoS, MITM, and BF.

5.4.2 RQ2: Impact on energy consumption and CPU usage
The following set of null hypotheses are defined to answer RQ2: 𝐻𝑥, 𝑥 ∈ {1....8}. Hypotheses are defined as follows where
𝑃0 corresponds to the version of the applications that do not use patterns, 𝑃𝑎𝑙𝑙 indicates the scenario of applying all patterns,
namely PZH, OOC, WL, BL, and SSN (see Table 2), 𝑃𝑎𝑙𝑙 −𝑀𝐼𝑇𝑀 , 𝑃𝑎𝑙𝑙 −𝐵𝐹 and 𝑃𝑎𝑙𝑙 −𝐷𝐷𝑜𝑆 are indicate the occurrence
or presence of MITM, brute-force, and DDoS attacks in 𝑃𝑎𝑙𝑙, respectively:
𝐻1

𝑎𝑙𝑙: There is no difference between the average amount of energy consumed by 𝑃𝑎𝑙𝑙 and 𝑃0.
𝐻2

𝑎𝑙𝑙: There is no difference between the average energy consumption of 𝑃𝑎𝑙𝑙 and the 𝑃𝑎𝑙𝑙 −𝑀𝐼𝑇𝑀 .

Jamshidi ET AL 31

FIGURE 38 Energy consumption for smart home application with combination patterns, without combination patterns, and
three attacks DDoS, MITM, and BF.

FIGURE 39 Energy consumption for a smart city application with combination patterns, without combination patterns, and
three attacks DDoS, MITM, and BF.

𝐻3
𝑎𝑙𝑙: There is no difference in the average energy consumed by 𝑃𝑎𝑙𝑙 when compared to 𝑃𝑎𝑙𝑙 − 𝐵𝐹 .

𝐻4
𝑎𝑙𝑙: The average amount of energy consumed by 𝑃𝑎𝑙𝑙 is not different from 𝑃𝑎𝑙𝑙 −𝐷𝐷𝑜𝑆.

𝐻5
𝑎𝑙𝑙: There is no difference between the average CPU usage by 𝑃𝑎𝑙𝑙 and 𝑃0.

𝐻6
𝑎𝑙𝑙: There is no difference between the average CPU usage of 𝑃𝑎𝑙𝑙 and 𝑃𝑎𝑙𝑙 −𝑀𝐼𝑇𝑀 .

𝐻7
𝑎𝑙𝑙: There is no difference in the average CPU usage by 𝑃𝑎𝑙𝑙 when compared to 𝑃𝑎𝑙𝑙 − 𝐵𝐹 .

𝐻8
𝑎𝑙𝑙: The average amount of CPU usage in 𝑃𝑎𝑙𝑙 is not different from 𝑃𝑎𝑙𝑙 −𝐷𝐷𝑜𝑆.

Table 12 reports the P-values of the Mann-Whitney U test and Cliff’s 𝛿 effect size for energy consumption evaluation. The table
specifically compares the average energy consumption observed during three distinct attack scenarios (MITM, brute-force, and
DDoS), with/without security patterns.
According to the P-value in Table 12 , we reject 𝐻1

𝑎𝑙𝑙 in all applications; the analysis suggests that there is a trace of statistically
significant differentiation in the average energy consumption in the domains of all applications.
According to the P-value for all applications under the MITM attack, we reject 𝐻2

𝑎𝑙𝑙 for smart home and smart city applica-
tions. Upon statistical examination, a significant variation is found in the energy consumed by 𝑃𝑎𝑙𝑙 −𝑀𝐼𝑇𝑀 compared to 𝑃𝑎𝑙𝑙.
However, we cannot reject 𝐻6

𝑎𝑙𝑙 for healthcare application. The analysis indicates no statistically significant difference in energy

32 Jamshidi ET AL

FIGURE 40 Energy consumption for a healthcare application with combination patterns, without combination patterns, and
three attacks DDoS, MITM, and BF.

FIGURE 41 CPU usage for smart home application with combination patterns, without combination patterns, and three attacks
DDoS, MITM, and BF.

consumed by 𝑃𝑎𝑙𝑙 −𝑀𝐼𝑇𝑀 .
According to the P-value for all applications under the brute-force attack, we cannot reject 𝐻3

𝑎𝑙𝑙 for all applications. The analysis
uncovers no statistically significant effect on the energy consumed by 𝑃𝑎𝑙𝑙 − 𝐵𝐹 .
According to the P-value for all applications under the DDoS attack, we reject 𝐻4

𝑎𝑙𝑙 for all applications as a statistically signifi-
cant difference is observed in the energy consumption of 𝑃𝑎𝑙𝑙 −𝐷𝐷𝑜𝑆 for this application.
Fig. 38 , 39 , and 40 show the outcomes achieved across various implementations of the combined patterns. The examina-
tion of energy consumption during DDoS, brute-force, and MITM attacks reveals an increase when all patterns are introduced.
Nevertheless, it is imperative to underscore that a statistically significant variance in energy consumption exists between scenar-
ios with/without all patterns. Furthermore, there is a statistically significant variance in energy consumption under brute-force
attacks in the smart home and in smart home and healthcare during MITM attack as well as all patterns during DDoS attack.

Table 13 reports the P-values of the Mann-Whitney U test and the Cliff’s 𝛿 effect size for CPU usage evaluation. The table
specifically compares the average CPU usage levels observed during three distinct attack scenarios (MITM, brute-force, and
DDoS) with/without security patterns.
According to the P-value in Table 13 , we reject 𝐻5

𝑎𝑙𝑙 for all applications; as there is a statistically significant difference between

Jamshidi ET AL 33

FIGURE 42 CPU usage for a smart city application with combination patterns, without combination patterns, and three attacks
DDoS, MITM, and BF.

FIGURE 43 CPU usage for a healthcare application with combination patterns, without combination patterns, and three attacks
DDoS, MITM, and BF.

the average amount of CPU usage under different conditions with/without a combination of patterns in three applications.
According to the P-value for all applications under the MITM attack, we cannot reject 𝐻6

𝑎𝑙𝑙 for all applications. The analysis
indicates no statistically significant difference in CPU usage by 𝑃𝑎𝑙𝑙 −𝑀𝐼𝑇𝑀 .
According to the P-value for all applications under the brute-force attack, we cannot reject 𝐻7

𝑎𝑙𝑙 for smart home and healthcare
applications. The data reveals no significant disparity in CPU usage by 𝑃𝑎𝑙𝑙 − 𝐵𝐹 . Moreover, we also reject 𝐻7

𝑎𝑙𝑙 for smart city
application.The data reveals a significant disparity in CPU usage by 𝑃𝑎𝑙𝑙 − 𝐵𝐹 .
For the case of the DDoS attack, we reject 𝐻8

𝑎𝑙𝑙 for the smart city and healthcare applications. A careful analysis leads us to
affirm that statistically significant variation is found in the CPU usage by 𝑃𝑎𝑙𝑙 −𝐷𝐷𝑜𝑆. However, we cannot reject 𝐻8

𝑎𝑙𝑙 for the
smart home application as a statistically significant variation is not found in the CPU usage by 𝑃𝑎𝑙𝑙 −𝐷𝐷𝑜𝑆.
Fig. 41 , 42 , and 43 illustrate the results obtained for all implementations of the combined patterns. The analysis of CPU
usage during DDoS, brute-force, and MITM attacks demonstrates an increase when all patterns are introduced. However, it
is essential to emphasize that there is a statistically significant variance in CPU usage between scenarios with and without all
patterns. Moreover, there is no statistically significant variance in CPU usage during the brute-force attack in the smart city and
during the DDoS attack in the smart city and the healthcare.

34 Jamshidi ET AL

TABLE 12 P-value of Mann–Whitney U test and Cliff’s 𝛿 effect size for the average energy consumption under MITM, BF,
and DDoS attacks.

Version
Avg. Energy Consumption

SmartHome SmartCity HealthCare
P-Value Effect Size P-Value Effect Size P-Value Effect Size

𝑃0 vs. 𝑃𝑎𝑙𝑙 0.0001 1.0 0.0001 1.0 0.0001 1.0
𝑃𝑎𝑙𝑙 vs. 𝑃𝑎𝑙𝑙 −𝑀𝐼𝑇𝑀 0.0001 0.893 0.0001 1.0 0.3953 1.0
𝑃𝑎𝑙𝑙 vs. 𝑃𝑎𝑙𝑙 − 𝐵𝐹 0.1096 0.347 0.3173 0.210 0.1428 0.529
𝑃𝑎𝑙𝑙 vs. 𝑃𝑎𝑙𝑙 −𝐷𝐷𝑜𝑆 0.0001 1.0 0.0001 0.1 0.0001 1.0

TABLE 13 P-value of Mann–Whitney U test and Cliff’s 𝛿 effect size for the average CPU usage under MITM, BF, and DDoS.

Version
Avg. CPU Usage

SmartHome SmartCity HealthCare
P-Value Effect Size P-Value Effect Size P-Value Effect Size

𝑃0 vs. 𝑃𝑎𝑙𝑙 0.0012 0.813 0.0001 0.813 0.0002 0.804
𝑃𝑎𝑙𝑙 vs. 𝑃𝑎𝑙𝑙 −𝑀𝐼𝑇𝑀 0.8014 0.369 0.3400 0.458 0.1770 0.031
𝑃𝑎𝑙𝑙 vs. 𝑃𝑎𝑙𝑙 − 𝐵𝐹 0.3400 0.458 0.0114 0.547 0.9044 0.293
𝑃𝑎𝑙𝑙 vs. 𝑃𝑎𝑙𝑙 −𝐷𝐷𝑜𝑆 0.3400 0.982 0.0001 1.0 0.0002 0.804

Finding 4:
Our results indicate the efficacy of all patterns (when combined) in effectively mitigating BF, MITM, and DDoS attacks.
Importantly, we observe a discernible impact on CPU usage and energy consumption, both in the attack scenarios and
with and without all patterns with statistically significant differences.

6 DISCUSSION

The intersection of security, energy consumption, and CPU usage poses a multifaceted trade-off for developers and practitioners
striving to select an appropriate IoT security pattern. Thus, prudent caution is essential when choosing patterns for IoT applica-
tions.
An optimal IoT system should have the ability to proactively predict risky situations and intelligently use different security pat-
terns based on the context to keep the system safe energy and CPU usage within limits. Unforeseen circumstances, such as
abrupt mode shifts or environmental uncertainties, might lead to indifferent behavior in a selected security pattern. Hence, the
system’s adaptability is crucial, necessitating the integration of experiential learning from such occurrences to continually refine
the decision-making processes for enhanced efficiency. Activating all security patterns over the application’s lifespan impacts
performance, energy consumption, and CPU usage, so a more judicious approach involves tailoring security patterns to specific
contextual scenarios. Furthermore, the challenge of identifying the most appropriate security pattern can be analogously likened
to the renowned "Robot in the Grid World" problem66. In this conceptualization, the software architecture assumes the role of a
navigating robot within a grid. The overarching objective involves determining an optimal grid position that maximizes system
efficiency concerning security, CPU, and energy thresholds. To illustrate, consider a scenario featuring three distinct security
patterns aimed at countering DDoS attacks, each characterized by unique advantages and drawbacks, including resource con-
sumption implications. Consequently, the IoT application’s dynamic selection of an apt security pattern becomes imperative,
as it strategically responds to prevailing conditions – encompassing factors like IoT application resource availability – to avert
CPU efficiency and energy consumption losses.
Our research underscores the importance of prudent pattern selection in IoT applications due to the intricate interplay between

Jamshidi ET AL 35

security, energy consumption, and CPU usage. The experimental findings provide crucial insights for developers and practi-
tioners to make informed decisions when implementing IoT security patterns. For comprehensive details, we refer the reader to
Table 14 , which outlines the effects of the six IoT security patterns on security, energy efficiency, and CPU usage.

Security: The deployment of applications at the edge of IoT has given rise to several security concerns and risks, primarily
due to the lack of established security protocols, insufficient authentication and authorization mechanisms, and data privacy and
confidentiality issues. The nature of IoT-edge-based applications necessitates communication between multiple devices, and
with the cloud, a high probability of security breaches exists. The limited computational power and memory of many devices
at the edge of the IoT pose a significant challenge in deploying robust security measures, thereby rendering them vulnerable to
attacks such as DDoS. Despite the availability of IoT security patterns, which aim to secure applications and resources and can
handle most critical attacks in IoT-edge-based applications, novel security patterns with advanced effectiveness are necessary.
Energy consumption and CPU usage: The IoT ecosystem includes edge devices that are typically small, compact and pos-
sess limited resources, such as batteries and processors. These limitations, in turn, lead to a restricted capacity for energy and
computing power delivery. In addition, such devices are designed to be cost-effective and accessible, which often necessitates
lower-end hardware components, further limiting their energy consumption and computational capabilities. It becomes crucial
to consider and optimize the trade-offs between functionality and cost while designing IoT edge devices, taking into account the
available resources.
Our experiments indicate that the employing of security patterns has an impact on energy consumption and CPU usage. Hence,
IoT developer architects should refer to the guidelines provided in Table 15 , which includes the six patterns studied on IoT
security, to choose suitable patterns during application development.

7 THREATS TO VALIDITY

Empirical research inevitably encounters issues related to the validity of findings. In light of this, the present section seeks to
identify and discuss possible threats to our research’s validity, per the recommendations of67.

7.1 Internal
Our empirical study is vulnerable to various internal threats. We specifically examine one implementation of the analyzed secu-
rity patterns in three IoT applications. The particularity of this could impact the applicability of our findings, since diverse
implementations may produce various results in terms of security, energy consumption, and CPU usage. We detailed our imple-
mentation in Section 4. Another threat is the precision of our measurement of CPU usage and the efficacy of security patterns
stand out. The real-time behavior of IoT components, such as the Raspberry Pis, often diverges from their theoretical models,
which makes it challenging to ensure accuracy in performance measurement. To minimize the potential influence of network or
hardware perturbations and environmental interference on our tracing, we conducted each experiment fifteen times and com-
puted average values. This approach allowed us to mitigate potential biases and enhance the sustainability of our results. The
security algorithms we selected for our study can also suffer from some internal threats like configuration and accuracy. For dif-
ferent attack scenarios, the security algorithms and patterns may behave differently in terms of attack detection and prevention
accuracy. To minimize these threats, we adapted the standard configuration of the algorithms used in different academic and
industry publications. At the same time, we adapted the attacks with the standard configurations used in different research. Thus,
our present study is bias-free for any of the internal threats related to encryption algorithms and security breaching attacks.

7.2 External
In the selection of subject systems and analysis methods, it is crucial to address potential threats to the validity and reliability
of research findings. In this study, we have mitigated such threats by choosing three IoT-edge-based applications that are widely
adopted and referenced in the related literature. However, it should be noted that the findings of our analysis may be influenced
by various factors such as hardware, sensors, and environmental conditions, including power fluctuations. In addition, we have
also implemented commonly used IoT security patterns and cryptography algorithms to enhance the credibility of our results.
Additionally, to ensure the transparency and reproducibility of our study, we have provided detailed information about the

36 Jamshidi ET AL

TA
BL

E
14

Im
pac

to
fse

cur
ity

pat
ter

ns
on

sec
uri

ty,
ene

rgy
effi

cie
ncy

,an
dC

PU
usa

ge.
C

on
te

xt
Pr

ob
le

m
Pa

tte
rn

Se
cu

ri
ty

En
er

gy
C

PU
us

ag
e

Se
cur

ity
,N

oO
pen

Po
rts

,F
ire

wa
lls,

Lo
wE

ner
gy

OO
C

Im
pro

ved
inc

rea
sed

inc
rea

sed
Ce

ntr
ali

zed
Ac

ces
sC

on
tro

l,U
ser

Co
ntr

ol,
Tru

st
PZ

H
No

teff
ect

ive
inc

rea
sed

inc
rea

sed
Ex

pli
cit

Al
low

anc
e,F

lex
ibi

lity
,T

rus
t,S

im
pli

cit
y,C

om
ple

ten
ess

WL
Im

pro
ved

inc
rea

sed
inc

rea
sed

Fle
xib

ilit
y,E

xp
lic

itB
loc

kin
g,

Sim
pli

cit
y,O

utd
ate

dE
ntr

ies
BL

Im
pro

ved
inc

rea
sed

inc
rea

sed
Se

cur
eC

om
mu

nic
ati

on
,A

cce
ss

Co
ntr

ol
SS

N
Im

pro
ved

inc
rea

sed
inc

rea
sed

*
Th

eT
CP

pat
ter

ni
sn

ot
me

nti
on

ed
bec

aus
eth

isp
att

ern
isg

ene
ral

lyu
sed

alo
ng

wi
th

WL
and

BL
pat

ter
ns,

and
we

did
no

tan
aly

ze
the

im
pac

to
fa

ni
sol

ate
di

mp
lem

ent
ati

on
of

thi
sp

att
ern

.

Jamshidi ET AL 37

TABLE 15 Guideline for selecting the six patterns.
Applications most important
non-functional requirement OOC PZH WL BL SSN

Security
Energy efficiency

CPU usage

experimental setup and made our testbed and results publicly available for further research64. By adopting these measures, we
have attempted to provide robust validation and increase the inability to reject our findings among practitioners and researchers.

8 CONCLUSIONS

This research aims to investigate the impact of six IoT security patterns, namely Personal Zone Hub, Trusted Communication
Partner, Outbound-Only Connection, Blacklist, Whitelist, and Secure Sensor Node, on energy consumption, CPU usage, and
CPU load and provide guidance to developers in selecting and using them. We implemented three IoT-edge-based applications,
i.e., smart home, smart city, and healthcare. We applied the patterns in isolation and also combined them in all applications.
Each application with/without patterns and under different attacks was examined. The results indicate that while employing
these patterns improves security, usually, there is a jump in energy efficiency and CPU usage of the IoT-edge-based application
when examined, which is statistically significant in many cases. However, the scalability and response time of these patterns is
still unknown. Additionally, our study highlights the need for more comprehensive security patterns covering all IoT security
aspects.

8.1 Bibliography
References

1. Laghari AA, Wu K, Laghari RA, Ali M, Khan AA. A review and state of art of Internet of Things (IoT). Archives of
Computational Methods in Engineering 2021: 1–19.

2. Mohanta BK, Jena D, Satapathy U, Patnaik S. Survey on IoT security: Challenges and solution using machine learning,
artificial intelligence, and blockchain technology. Internet of Things 2020; 11: 100227.

3. Schiller E, Aidoo A, Fuhrer J, Stahl J, Ziörjen M, Stiller B. Landscape of IoT security. Computer Science Review 2022; 44:
100467.

4. Fernandez EB, Washizaki H, Yoshioka N, Okubo T. The design of secure IoT applications using patterns: State of the art
and directions for research. Internet of Things 2021; 15: 100408.

5. Reinfurt L, Breitenbücher U, Falkenthal M, Fremantle P, Leymann F. Internet of Things security patterns. In: ; 2017: 20.
6. Orellana C, Fernandez EB, Astudillo H. A pattern for a Secure Sensor Node. In: ; 2020.
7. Allen L, Heriyanto T, Ali S. Kali Linux, Assuring security by penetration testing. Packt Publishing Ltd . 2014.
8. Ven v. dA. Powertop. https://github.com/fenrus75/powertop; .
9. Syed MH, Fernandez EB, Ilyas M. A pattern for Fog computing. In: ; 2016: 1–10.

10. Seitz A, Thiele F, Bruegge B. Fogxy: An architectural pattern for Fog computing. In: ; 2018: 1–8.
11. Fernandez EB. A pattern for a secure cloud-based IoT architecture. In: ; 2020.
12. Pahl C, El Ioini N, Helmer S, Lee B. An architecture pattern for trusted orchestration in IoT edge clouds. In: IEEE. ; 2018:

63–70.

https://github.com/fenrus75/powertop

38 Jamshidi ET AL

13. Fysarakis K, George S, Petroulakis N, Soultatos O, Bröring A, Marktscheffel T. Architectural patterns for secure IoT
orchestrations. In: IEEE. ; 2019: 1–6.

14. Lee WT, Law PJ. A case study in applying security design patterns for IoT software system. In: IEEE. ; 2017: 1162–1165.
15. Fernandez EB, Yoshioka N, Washizaki H. Secure distributed publish/subscribe (P/S) pattern for IoT. Procs. of AsianPLoP

2020.
16. Syed MH, Fernandez EB, Moreno J. A misuse Pattern for DDoS in the IoT. In: ; 2018: 1–5.
17. Fernandez EB, Romero VM. A security reference architecture for cargo ports. Internet of Things and Cyber-Physical Systems

2022; 2: 120–137.
18. Papa R, Fernandez EB, Cardei M. A pattern for a UAV-aided wireless sensor network. In: ; 2019: 1–9.
19. Pape S, Rannenberg K. Applying privacy patterns to the Internet of Things(IoT) architecture. Mobile Networks and

Applications 2019; 24(3): 925–933.
20. Mahamat M, Jaber G, Bouabdallah A. Achieving efficient energy-aware security in IoT networks: a survey of recent solutions

and research challenges. Wireless Networks 2023; 29(2): 787–808.
21. Prakasam P, Madheswaran M, Sujith K, Sayeed MS. An enhanced energy efficient lightweight cryptography method for

various IoT devices. ICT Express 2021; 7(4): 487–492.
22. Yeh LY, Chen PJ, Pai CC, Liu TT. An energy-efficient dual-field elliptic curve cryptography processor for Internet of Things

applications. IEEE Transactions on Circuits and Systems II: Express Briefs 2020; 67(9): 1614–1618.
23. Yazdinejad A, Parizi RM, Dehghantanha A, Zhang Q, Choo KKR. An energy-efficient SDN controller architecture for IoT

networks with blockchain-based security. IEEE Transactions on Services Computing 2020; 13(4): 625–638.
24. Tekin N, Acar A, Aris A, Uluagac AS, Gungor VC. Energy consumption of on-device machine learning models for IoT

intrusion detection. Internet of Things 2023; 21: 100670.
25. Harris K. 7 challenges in IoT and how to overcome them. https://www.hologram.io/blog/challenges-in-iot/; 2021.
26. D’mello A. 5 challenges still facing the Internet of Things (IoT). https://www.iot-now.com/2020/06/03/

103228-5-challenges-still-facing-the-internet-of-things/; 2020.
27. Bhoyar P, Sahare P, Dhok SB, Deshmukh RB. Communication technologies and security challenges for the Internet of

Things(IoT): A comprehensive review. AEU-International Journal of Electronics and Communications 2019; 99: 81–99.
28. Kimani K, Oduol V, Langat K. Cyber security challenges for IoT-based smart grid networks. International Journal of

Critical Infrastructure Protection 2019; 25: 36–49.
29. Tawalbeh L, Muheidat F, Tawalbeh M, Quwaider M. IoT Privacy and security: Challenges and solutions. Applied Sciences

2020; 10(12): 4102.
30. Hameed S, Khan FI, Hameed B. Understanding security requirements and challenges in Internet of Things (IoT): A review.

Journal of Computer Networks and Communications 2019; 2019.
31. Zikria YB, Kim SW, Hahm O, Afzal MK, Aalsalem MY. Internet of Things (IoT) operating systems management:

Opportunities, challenges, and solution. Sensors 2019; 19(8): 1793.
32. D’mello A. Top 4 Challenges in IoT Data Collection and Management. https://www.firstpoint-mg.com/blog/

top-4-challenges-in-IoT-data-collection-and-management/; 2021.
33. Patchava V, Kandala HB, Babu PR. A smart home automation technique with Raspberry pi using IoT. In: IEEE. ; 2015: 1–4.
34. Toma C, Alexandru A, Popa M, Zamfiroiu A. IoT solution for smart cities’ pollution monitoring and the security challenges.

Sensors 2019; 19(15): 3401.

https://www.hologram.io/blog/challenges-in-iot/
https://www.iot-now.com/2020/06/03/103228-5-challenges-still-facing-the-internet-of-things/
https://www.iot-now.com/2020/06/03/103228-5-challenges-still-facing-the-internet-of-things/
https://www.firstpoint-mg.com/blog/top-4-challenges-in-IoT-data-collection-and-management/
https://www.firstpoint-mg.com/blog/top-4-challenges-in-IoT-data-collection-and-management/

Jamshidi ET AL 39

35. Rahman A, Rahman T, Ghani NH, Hossain S, Uddin J. IoT-based patient monitoring system using ECG sensor. In: IEEE.
; 2019: 378–382.

36. Hasan D, Ismaeel A. Designing ECG monitoring healthcare system based on Internet of Things(IoT) blink application.
Journal of applied science and technology trends 2020; 1(3): 106–111.

37. Flask . https://palletsprojects.com/p/flask/; 2023.
38. Nginx . NGINX: Advanced Load Balancer, Web Server, & Reverse Proxy. https://www.nginx.com/; 2023.
39. Chart G. https://developers.google.com/chart/; 2023.
40. Plotly . https://plotly.com/python/; 2023.
41. Guchu MW. A Representational state transfer web tool for firewall service management and monitoring in a Local Area

Network. PhD thesis. Strathmore University, ; 2020.
42. Lyon GF. Nmap network scanning: The official Nmap project guide to network discovery and security scanning. Insecure .

2009.
43. Coonjah I, Catherine PC, Soyjaudah K. Experimental performance comparison between TCP vs UDP tunnel using

OpenVPN. In: IEEE. ; 2015: 1–5.
44. Rastogi V, Shao R, Chen Y, Pan X, Zou S, Riley RD. Are these Ads Safe: Detecting Hidden Attacks through the Mobile

App-Web Interfaces.. In: ; 2016.
45. Mufid MR, Basofi A, Al Rasyid MUH, Rochimansyah IF, others . Design an mvc model using python for flask framework

development. In: IEEE. ; 2019: 214–219.
46. Yarom Y, Genkin D, Heninger N. CacheBleed: a timing attack on OpenSSL constant-time RSA. Journal of Cryptographic

Engineering 2017; 7: 99–112.
47. Sreesailam VB, Pentakota DG, Pappala T, Kopanati S, Siripurapu CP. A Novel Methodology Proposed To Produce A Secure

Password. Journal of Pharmaceutical Negative Results 2022: 5142–5150.
48. Takahashi A, Tibouchi M. Degenerate fault attacks on elliptic curve parameters in OpenSSL. In: IEEE. ; 2019: 371–386.
49. Mezher AE. Enhanced RSA cryptosystem based on a multiplicity of public and private keys. International Journal of

Electrical and Computer Engineering 2018; 8(5): 3949.
50. Khomh F, Abtahizadeh SA. Understanding the impact of cloud patterns on performance and energy consumption. Journal

of Systems and Software 2018; 141: 151–170.
51. Sheskin DJ. Handbook of parametric and nonparametric statistical procedures. Chapman and Hall/CRC . 2003.
52. Dmitrienko A, Molenberghs G, Chuang-Stein C, Offen W. Analysis of Clinical Trials Using SAS: A Practical Guide. SAS

Institute, 2005. http://www.google.ca/books.
53. Doshi K, Yilmaz Y, Uludag S. Timely detection and mitigation of stealthy DDoS attacks via IoT networks. IEEE

Transactions on Dependable and Secure Computing 2021; 18(5): 2164–2176.
54. Vishwakarma R, Jain AK. A survey of DDoS attacking techniques and defence mechanisms in the IoT network. Telecom-

munication systems 2020; 73(1): 3–25.
55. Kumari P, Jain AK. A Comprehensive Study of DDoS Attacks over IoT Networks and Their Countermeasures. Computers

& Security 2023: 103096.
56. Kumar P, Bagga H, Netam BS, Uduthalapally V. Sad-IoT: Security analysis of DDoS attacks in IoT networks. Wireless

Personal Communications 2022; 122(1): 87–108.

https://palletsprojects.com/p/flask/
https://www.nginx.com/
https://developers.google.com/chart/
https://plotly.com/python/
http://www. google. ca/books

40 Jamshidi ET AL

57. Salem O, Alsubhi K, Shaafi A, Gheryani M, Mehaoua A, Boutaba R. Man-in-the-Middle attack mitigation in the Internet
of Medical Things. IEEE Transactions on Industrial Informatics 2021; 18(3): 2053–2062.

58. Thomas J, Cherian S, Chandran S, Pavithran V. Man in the middle attack mitigation in LoRaWAN. In: IEEE. ; 2020:
353–358.

59. Saputro ED, Purwanto Y, Ruriawan MF. Medium interaction honeypot infrastructure on the Internet of Things(IoT). In:
IEEE. ; 2021: 98–102.

60. Stiawan D, Idris M, Malik RF, et al. Investigating Brute force attack patterns in IoT network. Journal of Electrical and
Computer Engineering 2019; 2019.

61. Salvati M. SSH-MITM. https://github.com/byt3bl33d3r/MITMf; 2018.
62. Reinfurt L, Breitenbücher U, Falkenthal M, Leymann F, Riegg A. Internet of Things(IoT) patterns. In: ; 2016: 1–21.
63. SecLists . Brute-force. https://github.com/danielmiessler/SecLists/tree/master/Passwords; 2022.
64. Jamshidi S. Data of experiments. https://github.com/saeidjam/DataSecurityPattern; 2023.
65. Abdullah AM, others . Advanced encryption standard (AES) algorithm to encrypt and decrypt data. Cryptography and

Network Security 2017; 16: 1–11.
66. Tokic M, Ammar HB. Teaching reinforcement learning using a physical robot. In: ; 2012.
67. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A. Experimentation in software engineering. Springer

Science & Business Media . 2012.

How to cite this article: Williams K., B. Hoskins, R. Lee, G. Masato, and T. Woollings (2016), A regime analysis of Atlantic
winter jet variability applied to evaluate HadGEM3-GC2, Q.J.R. Meteorol. Soc., 2017;00:1–6.

https://github.com/byt3bl33d3r/MITMf
https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://github.com/saeidjam/DataSecurityPattern

	Understanding the Impact of IoT Security Patterns on CPU Usage and Energy Consumption on IoT Devices
	Abstract
	Introduction
	Related works
	Secured IoT Architecture
	IoT Security Patterns
	Energy Consumption in IoT devices

	Background
	Designing IoT applications
	IoT patterns

	Study Design
	Research Questions(RQs):
	Experimental Design
	Implementation of patterns
	Metrics
	Analysis method for energy consumption and CPU usage
	Designed attacks

	Experimental Results
	OOC and PZH security patterns
	RQ1: The impact of OOC and PZH security patterns on security
	RQ2: Impact on energy consumption and CPU usage

	WL, BL and TCP
	RQ1: The impact of WL, BL, and TCP security patterns on security
	RQ2: Impact on energy consumption and CPU usage

	WL, BL and SSN
	 RQ1: The impact of WL, BL, and SSN security patterns on security
	RQ2: Impact on energy consumption and CPU usage

	Evaluating combination patterns
	RQ1: The impact of combination patterns on security
	RQ2: Impact on energy consumption and CPU usage

	Discussion
	Threats to validity
	Internal
	External

	Conclusions
	Bibliography

	References

