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Abstract

The Upper Mississippi River (UMR) represents one invasion front to bigheaded carps Hypopthalmichthys spp. in North Amer-

ica. Agencies often sample larvae to determine the conditions that bigheaded carp reproduction occurs, but the ability for

conventional ichthyoplankton sampling to detect bigheaded carp reproduction compared to native fish is unknown. We used

occupancy models to estimate larval bigheaded carp and native fish larvae detection probabilities and assessed how habitat

type, Julian date, river discharge, and water temperature affect occupancy. We sampled larvae in pools 18-20 of the UMR

every two weeks at the Iowa, Skunk, and Des Moines River confluences in backwater, side channel, and thalweg habitats.

Detection probabilities increased with water volume filtered and was lower for larval bigheaded carp than freshwater drum,

gizzard shad, and percids. Freshwater drum and bigheaded carp larvae had higher detection in thalweg and channel border

habitats compared to backwaters. Occupancy of bigheaded carp peaked on June 19 th at 20°C, increased with discharge, and

declined with coefficient of variation (CV) of water temperature and discharge. Gizzard shad and percids occupancy peaked on

May 24 th and increased with CV of water temperature while occupancy of freshwater drum peaked on July 3 rd, decreased

with CV of water temperature, and increased with water temperature. Our results indicate bigheaded carp are more difficult

to detect than native larvae and identified conditions associated with larval occupancy that can be used to maximize detection

and better understand when, where, and under what conditions larvae are present while accounting for imperfect detection.
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Abstract: The Upper Mississippi River (UMR) represents one invasion front to bigheaded carps Hypopthal-
michthys spp. in North America. Agencies often sample larvae to determine the conditions that bigheaded
carp reproduction occurs, but the ability for conventional ichthyoplankton sampling to detect bigheaded carp
reproduction compared to native fish is unknown. We used occupancy models to estimate larval bigheaded
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carp and native fish larvae detection probabilities and assessed how habitat type, Julian date, river discharge,
and water temperature affect occupancy. We sampled larvae in pools 18-20 of the UMR every two weeks
at the Iowa, Skunk, and Des Moines River confluences in backwater, side channel, and thalweg habitats.
Detection probabilities increased with water volume filtered and was lower for larval bigheaded carp than
freshwater drum, gizzard shad, and percids. Freshwater drum and bigheaded carp larvae had higher detec-
tion in thalweg and channel border habitats compared to backwaters. Occupancy of bigheaded carp peaked
on June 19th at 20°C, increased with discharge, and declined with coefficient of variation (CV) of water
temperature and discharge. Gizzard shad and percids occupancy peaked on May 24th and increased with CV
of water temperature while occupancy of freshwater drum peaked on July 3rd, decreased with CV of water
temperature, and increased with water temperature. Our results indicate bigheaded carp are more difficult
to detect than native larvae and identified conditions associated with larval occupancy that can be used to
maximize detection and better understand when, where, and under what conditions larvae are present while
accounting for imperfect detection.

Key Words: ichthyoplankton, Silver Carp, Bighead Carp, Freshwater Drum, Gizzard Shad, percids, distri-
bution models, sampling efficiency

1 | INTRODUCTION

Aquatic invasions have become common and are one of the greatest threats to aquatic ecosystems worldwide
( Alexander et al., 2015; Gherardi, 2007; Sala et al., 2000) by altering nutrient cycling (Vanni, 2021), food
webs (DeBoer et al., 2018), and abundance and distribution of native species (Gallardo et al., 2016; Weber
& Brown, 2011). Currently, bigheaded carps (Hypothalmichthys moltrix andHypopthalmichthys nobilis ) are
some of the most problematic aquatic invasive species that have spread rapidly and broadly in North America
with adverse ecosystem effects (DeBoer et al., 2018; Solomon et al., 2016; Tillotson et al., 2022). Pelagic
planktivores native to China and a small portion of eastern Russia (Kolar et al., 2007), bigheaded carp were
introduced to the United States for aquaculture and sewage treatment resulting in their eventual escapement
to natural waters where populations rapidly increased (Kolar et al., 2005). Since their initial escapement
in the early 1980s, the Mississippi River has served as an invasion highway throughout the central United
States. The Upper Mississippi River (UMR) is currently one of the primary invasion fronts for bigheaded
carp in the Midwestern United States due to a series of locks and dams that have slowed their upstream
expansion (Fritts et al., 2021; Tripp et al., 2013; Whitledge et al., 2019). Lock and Dam 19 specifically
represents a major barrier to their northern expansion ( Larson et al., 2017; Fritts et al., 2021; Tripp et al.,
2013), although adults have been captured as far north as pool 2 (U.S. Geological Survey, 2022).

While adult bigheaded carp have been captured up to pool 2, reproduction has only been documented to
pool 16 (Camacho et al., 2023; Larson et al., 2017). Fish reproductive phenology is the product of many envi-
ronmental conditions (Krabbenhoft et al., 2014; Yang et al. 2021) and quantifying fish reproduction provides
critical temporal, spatial, population, and community metrics in relation to environmental conditions (Pritt
et al., 2015; Quist et al. 2004). Seasonality in concert with water temperature is often considered necessary
for successful reproduction by triggering the release of gametes (Pankhurst & Porter, 2003; Werner, 2002).
Bigheaded carp require water temperatures > 17°C to initiate reproduction, with reproductive activity oc-
curring up to 30°C (DeGrandchamp et al., 2007; Kocovsky et al., 2012; Schrank et al., 2001). Alternatively,
reproduction of native fishes is generally initiated at cooler temperatures and occurs over a more narrow
range (e.g., walleyeSander vitreus , 5 to 10°C; Bozek et al., 2011; gizzard shadDorosoma cepedianum , 10
to 21°C; Becker, 1983; freshwater drumAplodinotus grunniens , 18 to 25°C; Swedberg and Walburg, 1970).
Beyond temperature, changing river discharge strongly affects reproductive activity in many invasive and
native lotic fishes (Humphries et al., 2002; King et al., 2016; Dudley & Platania, 2007) including bigheaded
carp (e.g., Kolar et al., 2007; Schrank et al., 2001).

Beyond environmental conditions, spatial variation in riverine habitats can influence where invasive and
native fish reproduce (Camacho et al., 2023; Kolar et al., 2007). In rivers, spawning habitat relates to
channel position such as channel border, thalweg, and backwaters due to differences in river discharge and
species spawning requirements. Larval habitat use often corresponds to their reproductive guild (Holland,
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1986). Some species such as bigheaded carp and freshwater drum spawn in the open water environments
of the thalweg where eggs passively drift until they hatch and reach sizes that allow increased mobility to
escape the current (Becker, 1983). Other species reproduce in the lower velocities in channel borders and
backwaters that provide cover for eggs and developing larvae (e.g., walleye) or passively drift downstream
(e.g., gizzard shad; Holland, 1986; Simon, 1998). Consequently, while most lotic larval fish assessments focus
on thalweg collections, larval occupancy may vary among taxa and habitats.

Given the network of environmental conditions for fish reproduction, along with the uncertainty of ich-
thyoplankton sampling, determining occurrence of riverine fish reproductive events can be difficult. High
spatio-temporal variability in larval catches is common (Cyr et al., 1992; Leonardsson et al., 2016; Micha-
letz & Gale, 1999; Weber et al., 2021). Therefore, it is difficult to determine when, where, and under what
conditions fish reproduction occurs, particularly when detection probability is imperfect. Additionally, adult
bigheaded carps are difficult to capture compared to adult native fishes (Bouska et al., 2017), but whether or
not differences in sampling efficiency also exist at the larval phase is unknown. Occupancy (Ψ) and detection
(p ) modeling offers a quantitative method of estimating the true presence of species in a system by account-
ing for imperfect detections based on discrete encounters over temporal or spatial scales (MacKenzie et al.,
2002). Within fisheries, occupancy and detection modeling has been primarily used to describe distribution
of adult fishes (Potoka et al., 2016; Schumann et al., 2020; Sullivan et al., 2018;), but models are plastic and
have been adapted to evaluate age-0 fish habitat use (Burdick et al., 2008; Falke et al., 2010, 2012), timing
of reproduction events associated with environmental conditions (Falke et al., 2010; Peoples and Frimpong,
2011; Pritt et al., 2014), and recruitment of cryptic invaders (Weber & Brown, 2019). These models also
provide sample size requirements to achieve desired detection probabilities, improving sampling designs and
monitoring programs (Kelly et al., 2021; Kuehne & Olden, 2016; Rodtka et al., 2015). Consequently, occu-
pancy models can serve as a useful tool for assessing reproductive dynamics of bigheaded carp along leading
edges of invasion where reproduction may be limited, and spawning events can be brief and difficult to detect.

Our objectives were to estimate occupancy and detection probability of bigheaded carp larvae and native fish
taxa in relation to spatial and environmental variation. Next, we quantified cumulative detection probabilities
to estimate sampling effort required to detect bigheaded carp larvae compared to native species. First, we
hypothesized bigheaded carp larval occupancy would be higher in the thalweg compared to other habitats
and positively related to water temperature and river discharge. Second, we hypothesized bigheaded carp
larval occupancy would be lower than native fishes and lower in Mississippi River pools along the leading
edge of population expansion than already established native fish populations. Finally, we hypothesized
larval detection probabilities would be lower for bigheaded carp than native taxa.

2 | METHODS

2.1 | Study Area

The Upper Mississippi River extends from the Mississippi River headwaters in Minnesota to its confluence
with the Missouri River just north of St. Louis, MO. This portion of the river is impounded by 29 locks
and dams and highly channelized to allow for barge traffic. Our study focuses on pools 18 to 20 from just
upstream of the Iowa River confluence to just downstream of the Des Moines River confluence (Figure 1).
Along this reach, there are three main tributaries: the Iowa River on pool 18, the Skunk River on pool 19,
and the Des Moines River on pool 20 (Figure 1). These locations represent the furthest upstream extent
of most bigheaded carp reproduction in the Upper Mississippi River (Camacho et al., 2023; La Hood et al.,
2023; Larson et al., 2017), with some evidence of reproduction up to Pool 16 (Larson et al., 2017).

2.2 | Ichthyoplankton Sampling

We collected ichthyoplankton samples every 10 days during daylight hours from late April to September in
2014 to 2018. Sites were located 1 km upstream and downstream and at the confluence of each tributary for
a total of nine sample locations (Figure 1). Each site consisted of three tows, one at each different habitat
types including a backwater, thalweg, and channel border. We used ichthyoplankton tows (0.5 m diameter,
2.5 m length, and 500 μm mesh net) to collect larval fishes by conducting tows parallel to the flow at speeds to
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maintain no upstream or downstream movement for a total of four minutes. We preserved larval samples in
95% ethanol and recorded water flow through each net using a General Oceanics 2030R flowmeter mounted
at the mouth of the ichthyoplankton net which we used to calculate water volume (m3) filtered through the
net. Across all sites and years, we collected a total of 1,776 ichthyoplankton samples.

In the laboratory, we sorted and cleared ichthyoplankton samples from debris with a minimum of two different
individuals until no further larvae were found. We identified larvae to the lowest taxonomic level possible with
visual identification using techniques described by Auer (1982) and Chapman (2006). We identified larval
fishes (ventral fin-folds present) to family apart from certain taxa such as bigheaded carp and freshwater
drum that could be identified down to genus or species. We selected bigheaded carp, freshwater drum,
gizzard shad, and Percidae for analysis due to variable reproductive strategies and frequency of occurrence
in our samples. We were only able to visually identify larvae down to family Clupeidae, but are referenced
as ‘shad’ hereafter, as gizzard shad are the dominant taxa found in the study reach. Bigheaded carp and
drum are both pelagic broadcast spawners while shad and percids tend to spawn in lower water velocity
environments of channel borders and backwaters (Kolar et al., 2007; Holland 1986). Shad and percids tend
to spawn earlier during cooler water temperatures, bigheaded carps tend to spawn later in the year during
warmer water temperatures, and freshwater drum spawning tends to be protracted across a broad range of
water temperatures (Becker, 1983; Bozek et al., 2011; Kocovsky et al., 2012; Swedberg & Walburg, 1970).

2.3 | Environmental Data

We collected temporal, hydrological, and thermal conditions associated with each ichthyoplankton sample.
We used Julian date to account for temporal variation in larval fish presence based on seasonal variation in
spawning for each taxon, regardless of environmental conditions. Next, we acquired hydrological data from
United States Geological Survey and United States Army Corps of Engineers gauging stations nearest each
site (Supplemental data). We calculated average weekly river discharge (m3/s) and coefficient of variation
(CV) of each sample to estimate the magnitude and variability in hydrological conditions prior to sampling.
Finally, we calculated average and CV of weekly river temperature (°C) using linear regression for each
tributary based on field water temperature observations compared to gauging station values (Supplemental
data).

2.4 | Statistical Analysis

We developed occupancy and detection models using Program MARK accounting for imperfect detection
(MacKenzie et al., 2002). There are four main assumptions for occupancy and detection modeling (MacKenzie
et al., 2018). First, we assume populations are closed; our sampling on a day and at the three sites associated
with a tributary (nine ichthyoplankton tows) all occurred within an hour to meet the assumption of no
births, deaths, immigration, or emigration during a sampling event. The next assumption states occupancy
and detection probabilities are constant among sites or that heterogeneity in these parameters is accounted
for using covariates; we used spatial and environmental covariates to account for spatial and temporal
heterogeneity of both parameters. The third assumption is detection histories are independent among sites;
we accounted for this assumption through temporal replication where we sampled every 10 d and larvae
were < 7 d old (Camacho et al., 2023; M. Weber, unpublished data), ensuring we did not repetitively sample
the same larval across multiple sampling events. Finally, the model assumes no false positive detections; we
selected taxa that had low ambiguity in visual identification and genetically identified a subset of bigheaded
carp larvae to verify identification accuracy (see Camacho et al., 2023 for more details).

We developed encounter histories for each larval taxon and sample date as presence/absence (0 or 1) at
each site upstream, downstream, or at the confluence of the major tributary. For example, an encounter
history could be comprised of bigheaded carp only collected at the Des Moines River confluence and not
at upstream or downstream locations (encounter history 010) or upstream and downstream but not within
the confluence (encounter history 101). Occupancy modeling allows the use of covariates to improve model
estimates and evaluate occupancy and detection under a range of environmental conditions. We assessed the
effect of water volume filtered through the ichthyoplankton net as an effect of sampling effort on detection
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probability. We also assessed the effects of Julian date, mean and CV of weekly water temperature (°C),
and discharge (m3/s) on site occupancy. We evaluated collinearity of covariates with a Pearson’s product-
moment correlation analysis (all r < 0.6) before including them in occupancy and detection models. To
ensure normality, we centered and scaled all covariates using z-scores prior to analysis. We assessed quadratic
effects of Julian date and weekly river temperature on occupancy probability, as we sampled prior to and
after hypothesized peak spawning periods and linear models would be inappropriate. We assessed all other
covariates as linear effects. We assessed detection models by first comparing species and habitat models before
adding additional effects of environmental covariates. Next, we retained the most supported detection model
to evaluate species and habitat effects on occupancy. Finally, we assessed potential effects of environmental
covariates on occupancy while retaining the most supported species and habitat effects. We ranked models
based on Akaike’s Information Criterion corrected for sample size (ΔAICc ) and AICc model weight (wi ;
Burnham et al., 2011). We considered models ranked [?] 2 ΔAICc from the top model as competitive in
analyses. Finally, we calculated detection probabilities under increasing sampling size (cumulative detection
probability) using the most supported detection model (e.g., Kelly et al., 2021).

3 | RESULTS

We collected bigheaded carp larvae in pools 18 to 20 of the Mississippi River in 53 of 592 sample site-years
(näıve Ψ = 0.09). Native larvae were captured more frequently, with freshwater drum (n = 223 of 592 site-
years; näıve Ψ = 0.38) captured most frequently followed by shad (n = 141 of 592 site-years; näıve Ψ = 0.24)
and percids (n = 132 of 592 site-years; näıve Ψ = 0.22). Thalweg and channel border habitats accounted
for the most bigheaded carp (77%) and drum (78%) collections while shad and percids had similar overall
collections among habitats (29 to 36%). We captured the most bigheaded carp between Julian days 138 to
240 when water temperatures ranged from 17.6 to 26.6°C and during the highest weekly discharge conditions
(mean = 4,124 m3/s, SD = 1,057). We captured percids the earliest (day 113) during the narrowest time
(range = 113 to 228, mean = 160, SD = 32), coldest temperatures (mean = 19.9°C, SD = 5), and second
highest weekly discharge (mean = 3,629 m3/s, SD = 1,251). We captured freshwater drum the latest (day
256) across the widest range of days (range = 122 to 256, mean = 189, SD = 33) associated with highest
weekly temperatures (mean = 23.4 °C, SD = 2.9) and lower discharge (mean = 3,321 m3/s, SD = 1,061).
Finally, we collected shad on a similar time frame as freshwater drum (range = 120 to 256, mean = 174, SD
= 29), with similar water temperature to bigheaded carp (range = 15.1 to 27.7°C, mean = 22.2 °C, SD =
3), under similar discharge conditions to percids (mean = 3,587 m3/s, SD = 1,100).

3.1 | Detection Models

Our most supported detection probability model while assessing taxa effects indicated differences in bighea-
ded carp and freshwater drum detections while shad and percids had similar detection (ΔAICc = 0.00, wi

= 0.69; Table 1). The second ranked model with each taxonomic group estimated separately also received
support (ΔAICc = 1.62,wi = 0.31; Table 1). Next, we assessed potential variation in detection probability for
taxa among habitats. Our most supported model indicated detection of bigheaded carp and freshwater drum
was similar between thalweg and channel border habitats combined that had different detection compared
to backwater habitats (ΔAICc = 0.00, wi = 0.33; Table 1). In contrast, detection probability was similar
among habitats for shad and percids (Table 1). Other model combinations receiving support include thalweg
and channel border habitats combined for all taxa (ΔAICc = 1.20, wi = 0.18) and all habitats separate for
carp and freshwater drum (ΔAICc = 1.29, wi = 0.17; Table 1). The final step of detection model selection
was assessing the effect of water volume filtered (i.e., sampling effort) to the top taxa model. The addition of
water volume filtered to all taxa (ΔAICc =0.00,wi = 0.35; Table 1) was the most supported model, whereas
water volume filtered applied to only bigheaded carp and shad and percids (ΔAICc = 1.48,wi = 0.17) or only
to drum and shad/percids (ΔAICc = 2.00, wi = 0.33; Table 1) were also considered competitive models.

The most supported model estimated bigheaded carp detection probabilities higher in the thalweg and
channel border habitat (p= 0.15, 95% CI = 0.09 to 0.22) than in the backwater (p = 0.09, 95% CI = 0.05
to 0.17), but estimates had overlapping confidence intervals (Figure 2). Drum detection probability was also
higher in the thalweg and channel border (p = 0.40, 95% CI = 0.35 to 0.45) compared to the backwater (p =
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0.20, 95% CI = 0.15 to 0.26) while shad and percid detection probability was similar across all three habitats
(p = 0.27, 95% CI = 0.23 to 0.31; Figure 2). Detection of bigheaded carp within each habitat tended to be
lower than native fishes (Figure 2). Water volume filtered had a positive effect on detection estimates for all
taxa/habitat combinations (β = 0.12, 95% CI = 0.01 to 0.23) where detection probability of bigheaded carp
increased from 0.15 to 0.48, detection of freshwater drum increased from 0.34 to 0.77, and detection of shad
and percids increased from 0.24 to 0.34 as water volume filtered increased from 30 m3 to 50 m3 (Figure 3).

Differences in detection probabilities among taxa resulted in differences in cumulative detection curves and
the number of ichthyoplankton samples needed to detect each taxonomic group. Under the average water
volume filtered (30.12 m3), bigheaded carp required the most ichthyoplankton samples (25 backwater or 14
thalweg/channel border) to reach a 90% detection probability, 1.4 to 5 times as many samples as native
taxa (Figure 4). Freshwater drum required 5 to 10 samples and shad/percids required 8 samples to reach a
90% probability of detection. By increasing the water volume filtered to 40 m3 we observed a 60% to 108%
decrease in the samples required to achieve a 90% detection probability compared to the average sample
volume (9 to 15 samples for bigheaded carp, 4 to 8 samples for freshwater drum, and 7 samples for shad and
percids (Figure 4).

3.2 | Occupancy Models

We retained the most supported detection probability model structure for each taxa when assessing various
larval fish occupancy model combinations. Similar to detection models, the combination of shad and percids,
with carp and freshwater drum occupancy estimated separately, received the most support (ΔAICc = 0.00,wi

= 0.44; Table 2). Other likely combinations include all taxa estimated separately (ΔAICc = 1.63, wi = 0.20)
and freshwater drum estimated separately from bigheaded carp, shad, and percids (ΔAICc = 1.78, wi = 0.18;
Table 2). Through the addition of habitat to this taxa model structure, the most supported model included
backwater estimated separately and thalweg combined with channel border habitats for shad and percids
(ΔAICc = 0.00, wi = 0.21; Table 2). Two of the six top and competitive model structures incorporated this
habitat grouping among different taxa (Table 2). Finally, we added environmental covariates to determine
the combination that best improved the taxa × habitat model. The most supported taxa × habitat ×
environmental covariate model (ΔAICc = 0.00, wi = 0.69) incorporated Julian date and CV temperature for
all taxa with the added effect of temperature on bigheaded carp and freshwater drum (Table 2). Bigheaded
carp were the only taxonomic group to retain both discharge and CV discharge in the top model (Table 2).

Freshwater drum occupancy among all habitats (Ψ = 0.84, 95% CI = 0.73 to 0.91) was higher than bigheaded
carp (Ψ = 0.29, 95% CI = 0.15 to 0.47) and shad and percids in backwaters (Ψ = 0.53, 95% CI = 0.41
to 0.66) or thalweg/channel border (Ψ = 0.42, 95% CI = 0.34 to 0.51). Julian day had a quadratic effect
on occupancy probability for all taxa: shad and percids occupancy was highest on day 144 (May 24th)
followed by bigheaded carp on day 170 (June 19th) and freshwater drum on day 184 (July 3rd; Figure 5).
Bigheaded carp (β = -0.63, 95% CI = -1.03 to -0.23) and freshwater drum (β = -0.89, 95% CI = -1.24 to -0.55)
occupancy declined with increased variation in weekly water temperature while shad and percids occupancy
increased with increasing water temperature CV (β = 0.33, 95% CI = 0.16 to 0.51; Figure 5). Weekly water
temperatures also had a quadratic effect on occupancy of bigheaded carp and freshwater drum: bigheaded
carp occupancy was highest at 20.7°C and drum was highest at 23.9°C (Figure 5). Bigheaded carp occupancy
was also positively related to mean weekly discharge (β = 1.29, 95% CI = 0.19 to 2.39) whereas the slope
estimate of CV discharge incorporated zero (β = -0.01, 95% CI = -0.35 to 0.36; Figure 5).

4 | DISCUSSION

Our study demonstrates differences in our ability to detect invasive and native larval fish presence accounting
for various environmental conditions. Detection probabilities for bigheaded carp were lower than native
taxa and required more samples to detect their presence. Detection probability estimates increased with
water volume filtered for all species, but detection also varied among habitats for carp and freshwater
drum, indicating spatial differences in sampling efficiency. Similar to detection, bigheaded carp occupancy
was generally lower than native species, suggesting they have a narrower range of environmental conditions
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suitable for reproduction. Temporal and thermal environmental covariates improved occupancy probabilities
among all species, while hydrological covariates were only beneficial to bigheaded carp occupancy.

Occupancy and detection models indicate some habitat separation among taxa. On average, bigheaded carp
and drum detection probabilities were higher in thalweg and channel border habitats, whereas detection
probability of shad and freshwater drum was similar among habitats. Pelagophil fishes, such as bigheaded
carp and drum, reproduce in open water conditions (Balon, 1975; Welcomme et al., 2006) associated with
the higher velocity thalweg and channel border river channel habitats. Larval fishes in these habitats are
likely younger and passively drifting with the current (Holland, 1986), potentially making them easier to
capture. Alternatively, larval bigheaded carp can migrate out of the main channel to areas with lower velocity
at 5 to 6 days of age and larger, more developed larvae that are better swimmers may be more likely to
avoid the ichthyoplankton net (Chapman and George, 2011; Roth et al., 2023). In contrast to detection,
occupancy of carp and freshwater drum was similar among habitats, suggesting that all habitats are used
by larval carp and drum. Thus, if the objective is to simply document bigheaded carp reproductive success,
focusing sampling efforts in the thalweg would be more efficient. Alternatively, shad and percid detection was
similar among habitats but occupancy was higher in backwater habitats than thalweg and channel borders,
consistent with conventional reproductive guild classification for both shad (litho-pelagophil) and percids
(lithophil; Simon, 1998). While not directly considered in this study, larval habitat selection can change
during later developmental stages due to gas bladder inflation and increased horizontal mobility (Chapman
and George, 2011). While we limited our occupancy and detection models to sub-juvenile stages, there may
exist occupancy and detection habitat variation among sizes, ages, and developmental stages due to changes
in mobility.

Native and invasive larval occupancy both varied temporally and were influenced by environmental con-
ditions. Bigheaded carp reproduce in rivers during May through June when water temperatures exceed
17°C, with peak reproduction occurring at 22 to 26°C (Schrank et al., 2001), though protracted spawning
documented into the fall can occur in some systems (Coulter et al., 2013; Papoulias et al., 2006). Freshwater
drum typically spawn between May and June in the Upper Mississippi River (Butler, 1965) when water
temperatures are between 18 to 25°C (Swedberg & Walburg, 1970). Shad spawn over a broad temporal win-
dow with reproduction occurring from late April into early August with water temperatures between 10 to
21°C (Becker, 1983), whereas percids,such as walleye, spawn the earliest from late April to early May with
water temperatures ranging from 5 to 10°C (Becker, 1983; Bozek et al., 2011). Similarly, we found maximum
occupancy estimates corresponded with Julian dates for bigheaded carp (June 19th), freshwater drum (July
3rd), and shad and percids (May 24th) that were typically at the upper limits of their documented spaw-
ning periods. This trend was mirrored in maximum occupancy occurring from freshwater drum when water
temperatures was 23.9°C, whereas the water temperature for carp (20.7°C) was well within their recorded
temperature limits and even lower than the cited temperature range for peak reproduction (22-26°C; Schrank
et al., 2001). Maximum bigheaded carp occupancy in the Upper Mississippi River occurring below the peak
reproduction threshold is likely due to stability of water temperatures in this region throughout our sampling
period (mean water temperature of 22°C from April to August). In addition to mean temperature, increasing
temperature variation led to lower occupancy probabilities for carp and drum, but an increase in occupancy
probability for shad/percids. Fluctuations in water temperature can negatively influence bigheaded carp
reproduction due to disruption in oogenesis (Majdoubi et al., 2022) and can reduce egg viability of other
fishes (Van Der Kraak & Pankhurst, 2011), indicating post-spawning temperature stability could promote
larval survival.

Larval occupancy among taxonomic groups was primarily affected by temporal and thermal variation; ho-
wever, bigheaded carp occupancy also increased with mean river discharge and may have been negatively
affected by variability in discharge. Discharge and water temperature are central catalysts of bigheaded carp
reproduction (Camacho et al., 2023; Kolar et al., 2007; Lohmeyer & Garvey, 2009; Schrank et al., 2001). Adult
bigheaded carp move upstream in spring with increasing discharge and spawn during peak flows when water
temperature exceeds 17°C (DeGrandchamp et al., 2007; Kocovsky et al., 2012; Schrank et al., 2001). Effects
of variation in discharge on bigheaded carp reproduction are less understood. With increasing variation in
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discharge, our models suggested a slight negative effect on bigheaded carp larval occupancy, although the
slope overlapped zero. Schaick et al., (2023) observed a similar relationship between larval bigheaded carp
densities and variable discharge and theorized sustained, high magnitude discharged events were preferred
for bigheaded carp reproduction. While discharge is also often cited as a major driver of reproduction for
lotic fishes (Dudley & Platania, 2007; King et al., 2016; Humphries et al., 2002), we did not find an effect of
discharge on native larval fish occupancy, potentially because peaks in discharge were not synchronized with
appropriate spawning temperatures or because native taxa are more adapted to flow regimes (Lytle & Poff,
2004). Alternatively, discharge may not affect the occurrence of reproduction (e.g., occupancy), but could
affect the magnitude of reproduction (e.g., larval densities) and still be responsible for large versus small
year-classes (Weber et al., 2021).

Understanding when, where, and under what conditions larval fishes are present is strongly dependent
on successfully capturing them given they occur at a site. Drum, shad, and percids had higher detection
probabilities than bigheaded carp. Adult bigheaded carp are difficult to capture (Bouska et al., 2017; Collins
et al., 2015), but our results are the first to document challenges associated with lower capture success of
invasive larvae compared to native taxa. Low detection of bigheaded carp larvae can make it difficult to
document reproductive events, particularly along invasion fronts, resulting in misinformed population status
assessments with implications for management decisions. For instance, efforts are underway in the Upper
Mississippi River to install barriers to slow or stop adult upstream movements into areas where reproduction
has not yet been documented. Sampling effort strongly influenced our ability to detect larval fishes, but
effects varied among taxa. Biologists can improve larval detection probabilities by 1) focusing sampling in
the thalweg, 2) increasing the water volume filtered per tow, and 3) increasing the number of tows collected
per site visit. While we collected three tows per site visit, cumulative detection curves indicated we would need
to collect 14 thalweg/channel border samples to achieve 90% detection probability of bigheaded carp larvae.
Alternatively, increasing the water volume filtered by 33% would reduce the sample size to 9 thalweg/channel
border tows. These results provide an adaptable and flexible framework to determine how many samples to
collect and how much water to filter based on river conditions (e.g., debris load) and acceptable uncertainty
in bigheaded carp presence. Further, sampling could also be adjusted to determine successful reproduction
through targeted sampling based on habitat, temporal, thermal, and hydrological effects on occupancy to
optimize future sampling to assess reproduction of cryptic invaders.
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TABLE 1. Detection probability (p) models ranked by ΔAICc. We compared 39 models and presented
those with ΔAICc [?] 3. All models included constant occupancy [Ψ (.)]. We used top ranked species models
for carp (bigheaded carp), drum (freshwater drum), shad (Clupeidae), and percids to formulate habitat
models and top ranked habitat models to form environmental models. Covariates include backwater (BW),
thalweg (TH), channel border (CB), and water volume filtered (VOL). (+) indicates additive effects, (x)
indicates interactive effects, and (=) indicates combined variables.

Model Structure Parameters ΔAICc wi

Species
p[carp + drum + (shad = percids)], Ψ[.] 4 0.00 0.69
p[carp + drum + shad + percids], Ψ[.] 5 1.62 0.31
Habitat
p[((BW + (TH = CB)) × (carp + drum)) + ((BW = TH = CB) × shad = percids)], Ψ[.] 6 0.00 0.33
p[(BW + (TH = CB)) × (carp + drum + shad = percids)], Ψ[.] 7 1.20 0.18
p[((BW + TH + CB)) × (carp + drum)) + ((BW = TH = CB) × shad = percids)], Ψ[.] 8 1.29 0.17
p[((BW + TH + CB)) × drum) + ((BW = TH = CB)) × carp × shad = percids)], Ψ[.] 6 2.38 0.10
p[((BW + (TH = CB)) × drum) + ((BW = TH = CB)) × carp × shad = percids)], Ψ[.] 5 2.44 0.10
Environmental
p[VOL × ((BW + (TH = CB)) × (carp + drum)) + ((BW = TH = CB)) × shad = percids)], Ψ[.] 7 0.00 0.35
p[(VOL × (BW + (TH = CB)) × carp) + ((BW +(TH = CB)) × drum) + (VOL × (BW = TH = CB)) × shad = percids)], Ψ[.] 7 1.48 0.17
p[((BW + (TH = CB)) × carp) + (VOL × (BW + (TH = CB)) × drum) + (VOL × (BW = TH = CB)) × shad = percids)], Ψ[.] 7 2.00 0.13
p[(VOL × (BW + (TH = CB)) × (carp + drum)) + ((BW = TH = CB)) × shad = percids)], Ψ[.] 7 2.10 0.12
p[(VOL × (BW + (TH = CB)) × carp) + ((BW +(TH = CB)) × drum) + ((BW = TH = CB)) × shad = percids)], Ψ[.] 7 2.91 0.08

Model Structure Parameters ΔAICc wi

Species
Ψ[ςαρπ + δρυμ + (σηαδ = περςιδς)] 9 0.00 0.44
Ψ[ςαρπ + δρυμ + σηαδ + περςιδς)] 10 1.63 0.20
Ψ[δρυμ + (ςαρπ = σηαδ = περςιδς)] 8 1.78 0.18
Ψ[ςαρπ + περςιδς + (δρυμ = σηαδ)] 9 2.92 0.10
Habitat
Ψ[ςαρπ + δρυμ + «ΒΩ + (ΤΗ = ῝Β» × shad = percids)] 10 0.00 0.21
Ψ[ςαρπ + «῝Β + (ΒΩ=ΤΗ) × drum) + ((BW + (TH = CB)) × shad = percids)] 11 1.55 0.10
Ψ[ςαρπ + «ΒΩ + ΤΗ + ῝Β) × (drum + shad = percids))] 11 1.58 0.10
Ψ[ςαρπ + δρυμ + «ΤΗ + (ΒΩ = ῝Β» × (shad = percids))] 10 1.83 0.09
Ψ[ςαρπ + δρυμ + (σηαδ = περςιδς)] 9 1.91 0.08
Ψ[ςαρπ + «ΒΩ + (ΤΗ = ῝Β» × (drum + shad = percids))] 11 1.93 0.08
Environmental
Ψ[ΘΥΛ × CVTEMP × ((TEMP × DIS × CVDIS × carp) + (TEMP × drum) + (shad = percids))] 14 0.00 0.69
Ψ[ΘΥΛ × CVTEMP × ((TEMP × DIS × carp) + (TEMP × drum) + (shad = percids))] 14 2.71 0.17

TABLE 2. Occupancy models evaluating species, habitat, and environmental effects ranked by Akaike’s
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information criterion (ΔAICc). We assessed 67 models but just present models with ΔAICc [?] 3. All
models were made with the top ranked detection model p[VOL × ((BW + (TH = CB)) × carp × drum)
+ ((BW = TH = CB)) × shad = percids)]. We used top ranked species models for carp (bigheaded carp),
drum (freshwater drum), shad (Clupeidae), and percids to formulate habitat models and top ranked habitat
models to form environmental models. Covariates include backwater (BW), thalweg (TH), channel border
(CB), Julian date (JUL), weekly water temperature (TEMP), CV of temperature (CVTEMP), weekly river
discharge (DIS), CV of discharge (CVDIS). (+) indicates additive effects, (x) indicates interactive effects,
and (=) indicates combined variables.

FIGURE 1 . Ichthyoplankton sampling locations (stars) in pools 18-20 and associated major tributaries
of the Upper Mississippi River (UMR) during 2014-2018. Mississippi River sites are located 1 km upstream
and 1 km downstream of tributary confluences. Tributary sites are located 1 km upstream of the confluence.
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FIGURE 2 . Detection (top panel) and occupancy (bottom panel) probability estimates (± 95% confidence
intervals) across species, habitat, and mean environmental covariates from the top ranked model.
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FIGURE 3 . Invasive carp (top panel), freshwater drum (middle panel), and gizzard shad and percids
(bottom panel) detection (p) probability (95% confidence intervals, grey shaded region) in relation to water
volume (m3) filtered through an ichthyoplankton tow net.
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FIGURE 4 . Cumulative detection probability (CDP ± 95% confidence intervals) for bigheaded carp (top
panels), freshwater drum (middle panels), and gizzard shad and percids (bottom panels) based on the number
of samples collected if 30 m3 (left column) or 40 m3 (right column) of filtered water.
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FIGURE 5 . Occupancy (Ψ ± 95% confidence intervals, grey shaded region) of bigheaded carp (bottom),
freshwater drum (middle row), and gizzard shad and percids (top row) in relation to covariates identified as
important predictors for each taxa during model selection.
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