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Abstract

Targets with rotating components generate micro-motion (MM) modulation effect in addition to the main body. Extracting

MM parameters is challenging due to interference from the target’s main body, necessitating the separation of modulation

signals. This letter proposes a robust complex local mean decomposition (RCLMD) method with self-adaptive sifting stopping,

aiming at the problem of component redundancy due to multiple iterations during break and the loss of modulation components

during the separation process. The proposed method sets the objective function and self-adaptive stopping criterion, combined

with the modulation signal characteristics, enhancing the accuracy and efficiency of MM component extraction. Simulation

experiments indicate that at a low signal-to-noise ratio (SNR) of 3 dB, the separation effect of RCLMD is still 14.72\% higher

than that of the conventional complex local mean decomposition (CLMD) method, and the separation efficiency is improved

by 54.92\%. Furthermore, the measured radar signals verify the effectiveness of the proposed method in real scenarios.
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A robust complex local mean decomposition
method with self-adaptive sifting stopping
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HaoRan Du1,2
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2College of Electronic Science, National University of Defense
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Targets with rotating components generate micro-motion (MM) modu-
lation effect in addition to the main body. Extracting MM parameters
is challenging due to interference from the target’s main body, neces-
sitating the separation of modulation signals. This letter proposes a
robust complex local mean decomposition (RCLMD) method with self-
adaptive sifting stopping, aiming at the problem of component redun-
dancy due to multiple iterations during break and the loss of modulation
components during the separation process. The proposed method sets
the objective function and self-adaptive stopping criterion, combined
with the modulation signal characteristics, enhancing the accuracy and
efficiency of MM component extraction. Simulation experiments indi-
cate that at a low signal-to-noise ratio (SNR) of 3 dB, the separation
effect of RCLMD is still 14.72% higher than that of the conventional
complex local mean decomposition (CLMD) method, and the separa-
tion efficiency is improved by 54.92%. Furthermore, the measured radar
signals verify the effectiveness of the proposed method in real scenar-
ios.

Introduction: The vibration or rotation outside the target main body,
is a phenomenon called the micro-Doppler (m-D) effect [1–3]. Par-
ticularly for low-altitude targets, micro-motion (MM) phenomena are
predominantly attributed to rotating components, such as helicopter
blades. These MM modulations are distinct for different targets, mak-
ing them crucial for target identification and classification. Extracting
target-specific parameter information, especially the modulation details
of rotating parts, is imperative for characterizing MM parameters [4, 5].
Nevertheless, when the body echo signal is powerful, it can be challeng-
ing to accurately obtain the rotating component’s parameter information.
Consequently, it is necessary to separate the rotating component echo
and the body echo according to their echo characteristics.

Time-frequency analysis methods have demonstrated considerable
efficacy in separating MM modulation signals of low-altitude targets,
as evidenced in recent studies [6, 7]. A notable example is the empiri-
cal mode decomposition (EMD) method [8], which is mainly used for
MM signal separation. In comparison, the local mean decomposition
(LMD) method [9] yields product function (PF) components, each bear-
ing significant physical relevance. This relevance provides a more accu-
rate reflection of the original signal’s intrinsic characteristics, thereby
enhancing the analysis of modulated signals. However, a limitation of
the LMD method is its phase information loss due to the necessity of
adopting the modal value of echoes. Addressing this, Park et al.[10]
evolved the actual signal LMD method to cater to complex signals. They
introduced the complex local mean decomposition (CLMD) method,
which adaptively decomposes echo signals into complex PF components
of varying frequencies. This advancement facilitates a more nuanced
analysis of MM modulated signals, effectively separating rotating parts
from target echo signals.

End effect and mode mixing problems are the two main factors
limiting the performance of the CLMD method. Appropriate parame-
ter choices for boundary conditions, envelope estimation, and sifting-
stopping criteria can mitigate these limitations[11]. Boundary condi-
tions and envelope estimation are the two main research hotspots in the
last decade, while the sifting stopping criterion has not received enough
attention so far. Smith [12] has defined the principle of sifting stopping
criterion. However, the principle could be better implemented with inac-
curate signals. Xu et al [13]. have introduced the orthogonality criterion
on this basis and transformed the principle of sifting stopping criterion
into a method of practical expression. Nonetheless, a critical limitation
of these methods is their reliance on pre-specified thresholds, which pre-
cludes the possibility of self-adaptive signal decomposition.

Considering this issue, this letter proposes a novel approach: the
robust complex local mean decomposition (RCLMD) method with a
self-adaptive sifting stopping. An objective function related to the char-
acteristics of the target signal is defined, based on which a self-adaptive
stopping iteration mechanism is proposed to determine the optimal num-
ber of sifting iterations automatically. Finally, based on the RCLMD
method and the CLMD method, the separation ability and efficiency
under simulation and measured data is verified, which proves the effec-
tiveness of the proposed method. This advancement holds considerable
practical significance.

m-D modulation model: A single rotating blade usually consists of mul-
tiple scattering centers for rotary-wing targets such as helicopters. That
is, The overall echo of a target with a rotating component can be consid-
ered as a linear superposition of the echo components of the 𝑘 scattering
centers, which can be expressed as the modulated echo complex vector
shown in equation (1) below:

𝑠 (𝑡 ) =
𝑃∑︁
𝑘=1

𝜎
𝑘

exp
(
𝑗𝜓

𝑘
(𝑡 )

)
=

𝑃∑︁
𝑘=1

𝜎
𝑘

exp[ 𝑗𝜔0 (𝑡 −
2𝑟

𝑖
(𝑡 )
𝑐

) ] (1)

where 𝜎
𝑘

represents the amplitude of the 𝑘-th scattering center, 𝜓
𝑘
(𝑡 )

means the phase of the 𝑘-th scattering center, 𝜔0 = 2𝜋 𝑓0 , 𝑓0 is the carrier
frequency of the radar, and 𝑟

𝑖
(𝑡 ) is the distance of the 𝑘-th scattering

center from the radar at time 𝑡 .
Based on the MM modulation signal model, it is recognized that the

radial movement of any scatterer on a rotating part relative to the radar
induces alterations in both amplitude and phase of the echo signal.This
dynamic results in the generation of MM modulation components that
are external to the main body signal.

Proposed method: CLMD method aims to extract a set of "best-fit"
PF components of pure FM and envelope signals. Still, the end effect
and mode-mixing problems can limit its decomposition performance.
To alleviate this limitation, this letter proposes RCLMD method based
on the sifting stopping criterion, the basic process is shown in Figure 1.

The self-adaptive sifting stopping criterion proposed in this letter
aims to achieve robust decomposition around the following two objec-
tives:

1. Determine the sifting-stopping objective function in combination
with the modulated signal characteristics.

2. Adaptively stop the sifting according to the iterative update value of
the objective function.

The following are the implementation steps of RCLMD method with
self-adaptive sifting stopping.

Step 1: The continuous complex signal 𝑠 (𝑡 ) is sampled at sam-
pling frequency 𝑓𝑠 to obtain the discrete complex signal 𝑠

𝑖,𝑘
(𝑛) , where

𝑖 denotes the serial number of the product function, 𝑘 denotes the
serial number of the iteration in the decomposition process, and 𝑛 =

1, 2, · · · , 𝑁 denotes the number of sampling points. Let 𝑝0 (𝑛) and
𝑝

𝜋/2 (𝑛) be the real and imaginary parts of the discrete complex signal
𝑠
𝑖,𝑘
(𝑛) , respectively:

𝑝0 (𝑛) = Re
(
𝑒

− 𝑗0
𝑠
𝑖,𝑘
(𝑛)

)
(2)

𝑝
𝜋/2 (𝑛) = Re

(
𝑒

− 𝑗 𝜋/2
𝑠
𝑖,𝑘
(𝑛)

)
(3)

Assumptions 𝑚̃0(𝑖,𝑘) (𝑛) and 𝑎̃0(𝑖,𝑘) (𝑛) represent the smoothed mean
and envelope of 𝑝0 (𝑛); 𝑚̃𝜋/2(𝑖,𝑘) (𝑛) and 𝑚̃

𝜋/2(𝑖,𝑘) (𝑛) represent the
smoothed mean and envelope of 𝑝

𝜋/2 (𝑛) .
Step 2: The smoothed mean function 𝑀

𝑖,𝑘
(𝑛) of the complex sig-

nal can be obtained from the smoothed mean functions of the real and
imaginary parts of the signal:

𝑀
𝑖,𝑘
(𝑛) = 𝑚𝑐0(𝑖,𝑘) (𝑛) +𝑚𝑐𝜋/2(𝑖,𝑘) (𝑛) (4)

where the real part of the smoothed mean function is denoted as
𝑚𝑐0(𝑖,𝑘) (𝑛) = 𝑒 𝑗0𝑚̃0(𝑖,𝑘) (𝑛) and the imaginary part as 𝑚𝑐

𝜋/2(𝑖,𝑘) (𝑛) =

𝑒 𝑗 𝜋/2𝑚̃
𝜋/2(𝑖,𝑘) (𝑛) .

Step 3: Separate the complex smoothed mean function 𝑀
𝑖,𝑘
(𝑛) from

the original complex signal 𝑠
𝑖,𝑘
(𝑛):

𝐻
𝑖,𝑘
(𝑛) = 𝑠

𝑖,𝑘
(𝑛) − 𝑀

𝑖,𝑘
(𝑛) (5)
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Fig. 1 Robust complex local mean decomposition method with self-adaptive sifting stopping process

Step 4: The real and imaginary parts of the complex signal can be
demodulated separately to obtain demodulated signals of 𝑠

𝜋/2(𝑖,𝑘) (𝑛) and
𝑠
𝜋/2(𝑖,𝑘) (𝑛) .

𝑠0(𝑖,𝑘) (𝑛) = Re(𝑒 𝑗0𝐻
𝑖,𝑘
(𝑛) )/𝑎̃0(𝑖,𝑘) (𝑛) (6)

𝑠
𝜋/2(𝑖,𝑘) (𝑛) = Re(𝑒− 𝑗 𝜋/2𝐻

𝑖,𝑘
(𝑛) )/𝑎̃

𝜋/2(𝑖,𝑘) (𝑛) (7)

where loop 1 stops on the condition that the demodulated signal is a
pure FM signal, i.e., to determine whether 𝑎̃0(𝑖,𝑘) (𝑛) and 𝑎̃

𝜋/2(𝑖,𝑘) (𝑛) are
equal to 1.

Based on this principle, the proposed method defines 𝑤̃0(𝑖,𝑘) (𝑛) =

𝑎̃0(𝑖,𝑘) (𝑛) −1 and 𝑤̃
𝜋/2(𝑖,𝑘) (𝑛) = 𝑎̃𝜋/2(𝑖,𝑘) (𝑛) −1 as the real and imaginary

parts of the zero-mean envelope signal. It transforms the selection of
the number of sifting stop iterations into a judgment of the value of the
sifting objective function by loop 2. Combined with the characteristics
of the modulated signal, the sifting objective function is designed as
follows:

𝑧0(𝑖,𝑘) = 𝑆𝐷 (𝑤̃0(𝑖,𝑘) (𝑛) ) +
��𝐸𝐾 (𝑤̃0(𝑖,𝑘) (𝑛) )

�� (8)

𝑧
𝜋/2(𝑖,𝑘) = 𝑆𝐷 (𝑤̃

𝜋/2(𝑖,𝑘) (𝑛) ) +
��𝐸𝐾 (𝑤̃

𝜋/2(𝑖,𝑘) (𝑛) )
�� (9)

The standard deviation 𝑆𝐷 =

√√
1
𝑁

𝑁∑︁
𝑛=1

(
𝑤̃0(𝑖,𝑘) (𝑛) − 𝑤̃0(𝑖,𝑘)

)2
char-

acterizes the degree of discretization of the zero-mean envelope signal
at each iteration of the loop, from which the smoothness of the signal is
judged.

Excess kurtosis 𝐸𝐾 =

1
𝑁

𝑁∑︁
𝑛=1

(
𝑤̃0(𝑖,𝑘) (𝑛) − 𝑤̃0(𝑖,𝑘)

)4


1
𝑁

𝑁∑︁
𝑛=1

(
𝑤̃0(𝑖,𝑘) (𝑛) − 𝑤̃0(𝑖,𝑘)

)2
2 − 3 indicates

a measure of the possible local spikiness of the whole signal, excluding
the minimum 3 poles required for decomposition.

Step 5: In each iteration, the objective function values 𝑧0(𝑖,𝑘) and
𝑧
𝜋/2(𝑖,𝑘) can be calculated by their definitions in the equation. The deci-

sion is made based on the objective function results of the last three iter-
ations of the self-adaptive stopping process of the proposed screening

iteration. Taking the real part of the signal as an example, if 𝑧0(𝑖,𝑘+2) >

𝑧0(𝑖,𝑘+1) and 𝑧0(𝑖,𝑘+1) > 𝑧0(𝑖,𝑘) , then the screening process stops, and the
corresponding result 𝑎̃0(𝑖,𝑘) (𝑛) at the 𝑘-th iteration is returned; oth-
erwise, the screening process continues until the number of iterations
reaches a predefined value 𝑘max , which represents the maximum number
of iterations allowed in each screening process.

Step 6: The real and imaginary envelope signals of the complex sig-
nal are obtained by multiplying all the smoothed envelope estimation
functions generated during the iteration process, respectively:

𝑎0(𝑖) (𝑛) =
∏
𝑘

𝑎̃0(𝑖,𝑘) (𝑛) (10)

𝑎
𝜋/2(𝑖) (𝑛) =

∏
𝑘

𝑎̃
𝜋/2(𝑖,𝑘) (𝑛) (11)

The robust complex product function can be expressed as:

RCPF
𝑖
(𝑛) = 𝑎0(𝑖) (𝑛)𝑠0(𝑖,𝑘) (𝑛)𝑒

𝑗0 + 𝑎
𝜋/2(𝑖) (𝑛)𝑠𝜋/2(𝑖,𝑘) (𝑛)𝑒

𝑗 𝜋/2
(12)

At this point, the residual signal 𝑢
𝑖
(𝑛) can be represented as:

𝑢
𝑖
(𝑛) = 𝑠

𝑖,𝑘
(𝑛) − RCPF

𝑖
(𝑛) (13)

Determine whether the residual signal 𝑢
𝑖
(𝑛) exists in an oscillatory

mode and process it through loop 3 until the residual signal doesn’t exist
in an oscillatory mode. The final residual signal is indicated by 𝑢(𝑛) .

Step 7: A complete representation of the complex local mean decom-
position of the signal is obtained by summing all complex product func-
tions and the final residual signal:

𝑥 (𝑛) =
∑︁
𝑖

RCPF
𝑖
(𝑛) + 𝑢(𝑛) (14)

Simulation and real implementation results: In this section, the validity
of the proposed method is verified with simulated and measured data.

Firstly, in order to quantitatively measure the separation effect, sim-
ulation modulated signals (simulation parameters are set similarly to
measured data) are used to analyze the comparative test between the
RCLMD and CLMD methods under the same hardware conditions

2 ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el



(CPU: i5-11300H@3.10GHz, Memory: 16GB) for Monte Carlo 100
simulations.

The effect ratio of echo m-D separation can be defined as:

𝑃𝑒𝑟 =

∑︁
𝑟

|Modulation(𝑟 ) |∑︁
𝑟

|Total(𝑟 ) |
(15)

where 𝑟 is the number of rotating paddles, Total(𝑟 ) denotes the sum of
the energies of the scattering points of the rotating components of the
original echo, Modulation(𝑟 ) denotes the energy of the signal of the
scattering points of the rotating components obtained by separation.
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(a) (b)

Fig. 2 Monte Carlo simulations compare the separation effect and time con-
sumption of RCLMD and CLMD (a) Comparison of MM separation effect (b)
Comparison of MM separation time consuming

From Figure 2, it can be seen that RCLMD method can separate
the modulation components more efficiently and with better separation
results compared to the CLMD method. The advantage of the RCLMD
method is more evident under the condition of low SNR. When the SNR
is 3dB, the separation effect of the RCLMD method is 14.72% better
than that of the CLMD method, and the separation efficiency is 54.92%
higher.

Secondly, the validity of this algorithm is verified by measured data.
The measured target is the civil aviation helicopter Robinson R44, which
has a pair of rotating blades on the top with a rotational speed of 6.8
Hz. The radar-transmitting waveforms of the data acquisition scenario
are linear frequency modulation pulse signals and relevant parameters
are as follows: the carrier frequency is 3.133 GHz, the bandwidth is 120
MHz, the pulse width is 2.084 𝜇s, the pulse repetition frequency is 3.720
kHz, the distance dimension sampling points are 8192, and the sampling
frequency is 20 kHz.
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(a) (b)

Fig. 3 Pre-separation overall echo (a) overall echo time-frequency spectrum
(b) overall echo autocorrelation

Figure 3a displays the time-frequency analysis of the overall echo,
captured from 1024 pulses in the target’s 1841st distance cell, before
separation process. It shows the modulation components generated by
the paddles during the target’s hovering state, which are evident on both
sides of the dominant echo. The asymmetry in positive and negative fre-
quencies arises from the disparate scattering areas encountered during
the approach and retreat phases, attributable to the physical structure of
the target paddles.

The raw echo autocorrelation of range cell 1841, calculated to reveal
more about the rotating components, is depicted in Figure 3b. The anal-
ysis shows that accurately estimating the frequency of these components

is problematic, primarily due to the superimposition of the m-D effects
from the rotating components over the main body echoes.
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Fig. 4 Comparison of MM separation effect for measured data (a) Time-
frequency spectrum of main body after CLMD separation (b) Time-frequency
spectrum of modulation component after CLMD separation (c) Time-
frequency spectrum of main body after RCLMD method separation (d) Time-
frequency spectrum of modulation component after RCLMD method separa-
tion (e) Comparison of autocorrelation function of modulation component

According to Figure 4a-d, there are still more residual components
in the main body component after the separation of the CLMD method.
In contrast, almost no modulation component remains in the main body
after separation by the RCLMD method, and the modulated echo energy
of the rotating part is uniformly distributed on both sides of the main
body frequency. Figure 4e shows the autocorrelation function of the
modulated echo after separating the MM modulation components of the
two methods. The autocorrelation function of the proposed method is
smoother, i.e., the periodicity of the rotating part is more apparent. The
rotational period (i.e., the time interval between the point of the max-
imum peak and the point of the second-largest peak) can be estimated
from the autocorrelation to be 0.074s. The corresponding rotational fre-
quency is estimated to be 13.514Hz, which is in accordance with the
target actual parameters (the actual rotational frequency is the product
of blade speed and number of blades: 6.8 × 2 = 13.6Hz).

Conclusion: To prevent component redundancy from multiple itera-
tions and loss of modulated components during the separation of tar-
get’s rotating parts. This letter proposes the RCLMD method with self-
adaptive sifting stopping. The method employs an objective function
designed for sifting stopping, integrating modulated signal characteris-
tics to efficiently and accurately separate components. Both simulation
and empirical data validate its effectiveness. Consequently, the RCLMD
with self-adaptive sifting stopping demonstrates enhanced robustness in
MM modulation signal separation, which is of great significance for the
subsequent application areas with target feature extraction of rotating
parts.

ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el 3



References
1. Tian, X. ed.: Fusion recognition of space targets with micromotion.

Electron. Syst. 58(4), 3116–3125 (2022)
2. Han, L.X., Feng, C.Q.: Parameter Estimation for Precession Cone-

Shaped Targets Based on Range-Frequency-Time Radar Data Cube.
Remote Sens. 14(7), 1548 (2022)

3. Wang, H.B. ed.: Micro-Doppler effect removal in inverse synthetic
aperture radar imaging based on UNet. Electron. Lett. 59(9), 12814
(2023)

4. Shao, D. ed.: Noise suppression of distributed acoustic sensing vertical
seismic profile data based on time–frequency analysis. Acta Geophys.
70, 1539–1549 (2022)

5. Han, L.X., Feng, C.Q.: High-Resolution Imaging and Micromotion
Feature Extraction of Space Multiple Targets. IEEE Trans. Aerosp.
Electron. Syst. 59(5), 6278–6291 (2023)

6. Xu, X. ed.: A Method for the Micro-Motion Signal Separation and
Micro-Doppler Extraction for the Space Precession Target. IEEE
Access. 8, 130392–130404 (2020).

7. Zeng, Z.X. ed.: Automatic Arm Motion Recognition Based on Radar
Micro-Doppler Signature Envelopes. IEEE Sens. J. 20(22), 13523–
13532 (2020).

8. Zhao, Y., Su, Y.: The Extraction of Micro-Doppler Signal With EMD
Algorithm for Radar-Based Small UAVs’ Detection. IEEE Trans.
Instrum. Meas. 69(3), 929–940 (2020).

9. Dai, T. ed.: Extraction of Micro-Doppler Feature Using LMD Algo-
rithm Com-bined Supplement Feature for UAVs and Birds Classifica-
tion. Remote Sens. 14(9), 2196 (2022)

10. Yuan, B. ed.: Micro-Doppler Analysis and Separation Based on Com-
plex Local Mean Decomposition for Aircraft With Fast-Rotating Parts
in ISAR Imaging. IEEE Trans. Geosci. Electron. 52(2), 1285–1298
(2014)

11. Li, Y.B. ed.: A new rotating machinery fault diagnosis method based on
improved local mean decomposition. IEEE Trans. Circuits Syst. 46(C),
201–214 (2015)

12. Smith, J.S.: The local mean decomposition and its application to EEG
percep-tion data. J. R. Soc. Interface. 2, 443–454 (2005)

13. Xu, Y. ed.: Optimized LMD method and its applications in rolling bear-
ing fault diagnosis. Meas. Sci. Technol. 30(12), 125017 (2019)

4 ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el


