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Abstract

Environmental gradients can influence morpho-physiological and life-history differences in natural populations. It is unclear,
however, to what extent such gradients can also modulate phenotypic differences in other organismal characteristics such as the
structure and function of host-associated microbial communities. In this work, we addressed this question by assessing intra-
specific variation in the diversity, structure and function of environmental-associated (sediment and water) and animal-associated
(skin and gut) microbiota along an environmental gradient of pollution in one of the most urbanized coastal areas in the world.
Using the tropical sea cucumber Holothuria leucospilota, we tested the interplay between deterministic (e.g., environmental/host
filtering) and stochastic (e.g., random microbial dispersal) processes underpinning host-microbiome interactions and microbial
assemblages. Overall, our results indicate that microbial communities are complex and vary in structure and function between
the environment and the animal hosts. However, these differences are modulated by the level of pollution across the gradient
with marked clines in alpha and beta diversity. Yet, such clines and overall differences showed opposite directions when
comparing environmental- and animal-associated microbial communities. In the sea cucumbers, intrinsic characteristics (e.g.,
body compartments, biochemistry composition, immune systems), may underpin the observed intra-individual differences in
the associated microbiomes, and their divergence from the environmental source. Such regulation favours specific microbial
functional pathways that may play an important role in the survival and physiology of the animal host, particularly in high
polluted areas. These findings suggest that the interplay between both, environmental and host filtering underpins microbial
community assembly in H. leucospilota along the pollution gradient in Hong Kong.
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Environmental gradients can influence morpho-physiological and life-history differences in natural populati-
ons. It is unclear, however, to what extent such gradients can also modulate phenotypic differences in other
organismal characteristics such as the structure and function of host-associated microbial communities. In
this work, we addressed this question by assessing intra-specific variation in the diversity, structure and
function of environmental-associated (sediment and water) and animal-associated (skin and gut) microbio-
ta along an environmental gradient of pollution in one of the most urbanized coastal areas in the world.
Using the tropical sea cucumber Holothuria leucospilota , we tested the interplay between deterministic
(e.g., environmental/host filtering) and stochastic (e.g., random microbial dispersal) processes underpinning
host-microbiome interactions and microbial assemblages. Overall, our results indicate that microbial com-
munities are complex and vary in structure and function between the environment and the animal hosts.
However, these differences are modulated by the level of pollution across the gradient with marked clines in
alpha and beta diversity. Yet, such clines and overall differences showed opposite directions when comparing
environmental- and animal-associated microbial communities. In the sea cucumbers, intrinsic characteristics
(e.g., body compartments, biochemistry composition, immune systems), may underpin the observed intra-
individual differences in the associated microbiomes, and their divergence from the environmental source.
Such regulation favours specific microbial functional pathways that may play an important role in the sur-
vival and physiology of the animal host, particularly in high polluted areas. These findings suggest that the
interplay between both, environmental and host filtering underpins microbial community assembly in H.
leucospilota along the pollution gradient in Hong Kong.

Keywords: Microbial community, holothurian, nutrient pollution, environmental gradient, host-microbiome

Introduction

Metazoans harbour diverse and dynamic microbial communities (microbiome) that play essential roles in the
ecology and function of their animal host (Apprill, 2017). Symbiotic microorganisms influence host metabolic
processes (Egerton et al., 2018; Hakim et al., 2016; Hanning & Diaz-Sanchez, 2015), development (Carrier
& Reitzel, 2018), immune responses (de Araujo et al., 2019; Krediet et al., 2013), reproduction (Brucker
& Bordenstein, 2013; Sharon et al., 2010), behaviour (Sherwin et al., 2019) and survival (Kešnerová et al.,
2020). However, microbial communities and the interactions with their hosts are not static and can vary
across time (e.g., host’s development or seasonality, Kešnerová et al., 2020; Shoemaker & Moisander, 2017)
and space (e.g., host’s body plan or geography, Griffiths et al., 2019; McKnight et al., 2020). Thus, to
understand the ecological dynamics of animal hosts in a changing world, it is becoming more important to
understand the mechanisms and drivers underpinning the origin and regulation (functional and structural)
of their associated microbial communities (Kohl, 2020).

Host-associated microbiomes are shaped by a diversity of evolutionary and ecological processes that can be
explored through the framework used in community ecology. Under this framework, the formation of micro-
bial communities is seen as the outcome of selective processes in which a larger species pool is subjected
to a set of biotic and abiotic filters (Hardy et al., 2012). For instance, habitat/environmental filtering is
usually considered one of the dominant forces in structuring communities consisting of habitat-specialized
species (Cavender-Bares et al., 2009). In this case, the habitat/environment is part of the selective processes
as it plays a dual role acting as a source for the hosts’ microbiome and also influencing the composition
and dynamics of the established microbial community (Johnke et al., 2020). As a result, host intra- and
interspecific variation in microbiome composition is expected to be lower for organisms inhabiting similar
environments in comparison to their counterparts living in more divergent conditions (Johnke et al., 2020).
Hosts, however, can also influence associated microbiomes in several ways, such as through selective feeding
or filtering (Gao et al., 2014; Theis et al., 2016). This may result from evolutionary processes that produce
patterns in which closely related host species harbour similar microbiota even if they inhabit different en-
vironments (San Juan et al., 2020; Sanders et al., 2015). In any case, environmental and host filtering are
aligned with the fundamental idea that deterministic processes dictate the microbial community assembly in
natural populations (Näpflin & Schmid-Hempel, 2018; J. Wang et al., 2013; Weigel, 2020; Yan et al., 2016).

Previous studies have also suggested that stochastic processes can influence microbial community assembly
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(Oliphant et al., 2019; Zhou et al., 2013). These processes include random dispersal potential and colonization
chance of microbes (Zhou & Ning, 2017), random arrival sequence to host from the environment during
dispersal (Burns et al., 2017), changes in community abundance and survival due to random speciation,
extinction and ecological drift (Chase & Myers, 2011). Under this paradigm, species present in the microbial
community would be independent and unpredictable, with no specific occurrence pattern or relation with the
respective niche (Rosindell et al., 2012). This provides us with a wider perspective when studying processes
underpinning microbial community assembly. What is worth mentioning is that deterministic and stochastic
processes are not mutually exclusive (Bordenstein & Theis, 2015). Both processes work together in structuring
microbial communities although a stronger contribution of a particular process during the assembly may
occur depending on the investigated model and ecosystem (Yan et al., 2016).

In marine environments, the interplay between deterministic and stochastic factors is an important driver
of inter- and intra-specific differences in organismal characteristics across heterogeneous seascapes. In these
systems, gradients of environmental conditions are known to influence geographic variation in attributes such
as physiology (Gaitán-Espitia et al., 2014; Gaitán-Espitia, Villanueva, et al., 2017), life-history (Pecuchet
et al., 2018), zonation (Mangialajo et al., 2012), behaviour (Cornwell et al., 2019), intra- and inter-specific
genetic diversity (Zhong et al., 2024), stress tolerance and phenotypic plasticity (Gaitán-Espitia, Bacigalupe,
et al., 2017) in natural populations. As such, it would be expected that environmental gradients would also
influence variation and phenotypic differences in other organismal characteristics, including the structure
and function of host-associated microbial communities. In fact, gradients in sea surface temperature and
salinity are known to influence symbiotic microbial assemblages in benthic marine species (Capistrant-Fossa
et al., 2021; Ketchum et al., 2021; Osman et al., 2020) and coastal ecosystems (Bolhuis et al., 2013; Z.
Wang et al., 2019; Zäncker et al., 2018; G. Zhang et al., 2021). While these natural environmental gradients
may have a fundamental role in modulating ecological patterns of marine microbiomes, anthropogenic-
mediated gradients (e.g., nutrient pollution) can potentially induce drastic changes in these patterns by
altering ecological dynamics, the origin, and regulation of host-associated microbial communities (Degregori
et al., 2021; Milan et al., 2018; Stevick et al., 2021; Ziegler et al., 2019).

In this study, we aimed to assess to what extent deterministic and/or stochastic processes along an
anthropogenic-mediated gradient of pollution influence intra-specific variation in diversity, structure, and
function of host-associated microbial communities in marine organisms. Here, our model system was
Holothuria leucospilota, a tropical sea cucumber that dominates shallow waters in Hong Kong and the
Indo-Pacific region. H. leucospilota is a deposit-feeding species that assimilates organic matter from sur-
face sediments (including bacteria, benthic phytoplankton, meiofauna, and organic detritus), which serves
as a constant environmental source for microbe acquisition (Gao et al., 2014; Pagán-Jiménez et al., 2019).
However, H. leucospilota is characterised by the capacity to secrete secondary metabolites from the skin,
gonads, and guts, which have antibacterial and antifouling properties (Darya et al., 2020), potentially allowi-
ng them to regulate the influence of environmental microbial reservoirs. Based on 16S amplicon sequencing,
we examined both sea cucumber (skin and intestine) and environment (sediment and water) microbiomes
along a pollution gradient in Hong Kong, one of the busiest ports and highly urbanized areas in the world.
If environmental filtering is the main driver of microbial community assemblies along the pollution gradient,
then similar host and environmental microbiomes will be observed within sites whilst higher microbiome
variation would be expected across the gradient. In this context, microbial dispersal patterns and ecological
drift might also play an important role in shaping inter-individual microbiome variation within sites (Sto-
thart et al., 2021). Conversely, if host filtering and specificity are the main drivers of microbial community
assembly in H. leucospilota , then low inter-individual variation in sea cucumber microbiome composition
would be expected along the pollution gradient independently of the variation in the environmental microbi-
al communities. However, intra-individual variation would be expected as sea cucumber skin and guts have
different antibacterial properties (Darya et al., 2020).

2. Materials and Methods

2.1 Sampling sites and environmental data

3
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In Hong Kong, the Tolo Harbour (TH; 22°43’ N, 114° 22’ W) is characterised by a gradient of chemical polluti-
on that has profound implications for the diversity and distribution of benthic organisms, from corals (Duprey
et al., 2016) to microbial communities in the sediments (J. Chen et al., 2019). For our experimental design,
we first assessed environmental parameters along the pollution gradient in the Channel Water Control Zone
of TH. This information was obtained from the marine water quality database of the Hong Kong Environ-
mental Protection Department (EPD) (available from: https://cd.epic.epd.gov.hk/EPICRIVER/marine/).
Parameters such as salinity, total phosphorus, total nitrogen, total Kjeldahl nitrogen, nitrite, nitrate, am-
monia, chlorophyll-a, dissolved oxygen, and 5-day Biological Oxygen Demand (BOD) on the surface water
across ten years (2010-2020) were used for comparisons. Based on this information, we established three ex-
perimental localities, including Starfish Bay (SFB) (22° 26’ 3.0” N, 114° 14’ 45.6” E), Lai Chi Chong (LCC)
(22° 27’ 22.4” N, 114° 17’ 59.4” E) and Tung Ping Chau (TPC) (22° 32’ 34.1” N, 114° 26’ 6.5” E) (Figure
1). A principal component analysis (PCA) was conducted to visualize the differentiation of water quality
between the experimental sites along the pollution gradient in TH.

2.2 Animals and sample collection

Samples from adult sea cucumbers Holothuria leucospilota and their surrounding environments (water and
sediments) were collected in December 2019 from each of the field sites. Sea cucumbers (5 animals per site,
separated at least by 10m) were isolated in Ziploc bags filled with water from the collection site. In addition,
surface sediment samples of the top 3 cm (n = 3 per site) were collected around the sampled animals using
sterile 15 mL falcon tubes. In parallel, 2L seawater samples (n = 3 per site) were also collected using sterile
plastic bottles wrapped with aluminium foil. All samples were immediately stored in ice for transportation
and processed immediately in the laboratory at the University of Hong Kong.

Sea cucumbers were dissected to obtain microbial samples from the body surface and guts. For this, animals
were rinsed under sterile seawater twice to remove particulates such as sand, algae and other loose organic
matter loosely attached to the surface. Then, a sterile cotton swab was rolled over the whole outer body
surface to collect microbial samples from the skin. For the gut microbiome collection, the outer surface of
the sea cucumbers was first sterilized with 70 % ethanol to reduce contamination. After that, the ventral
part of the animal was cut open with a sterile scalpel. A 2 cm segment of the midgut including the luminal
epithelium was then collected from each animal. All skin and gut samples were individually placed into
sterile 1.5 mL microcentrifuge tubes, snap-frozen in liquid nitrogen, and stored at -80 until required for
further analysis. For the seawater samples, a two-step filtering process was conducted. First, samples were
passed through Millipore membrane filters of 0.45μm pore size to remove large particles, and water was then
filtered again using Millipore membrane filters of 0.22 μm pore size. These last filters were transferred to 15
mL falcon tubes. Sediment samples were centrifuged (4,000 g x 5 minutes), and the supernatant of excess
seawater was removed without disturbing the sediment. Sediment and water samples were stored at -80 until
required for further analysis.

2.3 DNA extraction and 16s rRNA amplicon sequencing

DNA from sediment and sea cucumber (skin and gut) samples was extracted using the DNeasy PowerLyzer
PowerSoil Kit (Qiagen, Germantown, MD). DNA from seawater samples was extracted using the DNeasy
PowerWater Kit (Qiagen, Germantown, MD), following the manufacturer’s instructions. In both cases,
the same batch of DNA extraction kits was used for all the samples. Overall, we followed guidelines for
sequence-based analyses of microbial communities (Eisenhofer et al., 2019) to avoid any potential contami-
nation of samples originating from reagents or the laboratory environment. As part of this, DNA extractions
were performed in the Marine Molecular Lab (HKU) under a sterilised laminar flow hood. After extrac-
tions, DNA concentrations were verified using BioDrop (Biochrom, UK), and DNA quality was checked via
agarose gel electrophoresis. Total genomic data was submitted to Novogene Bioinformatics Technology Co.,
Ltd., Beijing, China for amplicon sequencing. The V3-V4 hypervariable region of the 16S ribosomal RNA
gene was amplified with the primers 341F (5’- CCTACGGGNGGCWGCAG-3’) and 806R (5’- GGACTACN-
NGGGTATCTAAT -3’) (Y. Yu et al., 2005). PCR reactions were carried out with Phusion® High-Fidelity
PCR Master Mix (New England Biolabs, US) following the manufacturer’s instructions. Amplicons from
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different samples were mixed in equidensity ratios and purified with the Qiagen Gel Extraction Kit (Qiagen,
Germany). NEBNext® Ultra DNA Library Prep Kit for Illumina(r) (New England Biolabs, US) was used
to construct DNA libraries (paired-end), following the manufacturer’s recommendations. Index codes were
added, and the library quality was assessed on the Qubit(r) 2.0 Fluorometer (Thermo Scientific, US) and
2100 Bioanalyzer system (Agilent, US). Amplicons from different samples were mixed in equimolar amounts
and sequenced on the Illumina NovaSeq 6000 platform with sequencing strategy PE250. Two negative con-
trols were included during library preparation to check potential contamination. However, these controls
were not sequenced as they did not generate any product during PCR amplification. Primary processing
was done by removing barcodes, adaptor sequences and indices.

2.4 Sequence and data processing

Raw sequence data from seawater, sediments, skin, and intestinal microbiota were processed with QIIME2
version 2021.11. After visualizing interactive quality plots and checking the reads’ quality, the DADA2
(Callahan et al., 2016) pipeline was applied to demultiplex and merge pair-end reads. Quality control was
performed by DADA2 on trimming, sequence error elimination, detection, and removal of chimaeras follow-
ing these parameters: -p-trim-left-f 8 -p-trunc-len-f 225 -p-trunc-len-r 213. Then, a naive Bayes classifier was
trained following the RESCRIPt pipeline (Robeson II et al., 2020) using the non-redundant SSU reference
dataset at 99 % identity of the full SILVA 138 release (Quast et al., 2013) on the specific 16S rRNA V3-V4
amplicon region with the pair of primers stated above. Amplicon sequence variants (ASVs) classified as
mitochondria, chloroplasts, archaea, eukaryotes, and unassigned taxon were subsequently excluded. Single-
tons and ASVs with less than 10 reads across all samples were removed (control of spurious artefacts of
the PCR amplification process and/or potential sequencing errors). Samples were then clr -transformed to
retain the compositional nature of microbiome datasets (Gloor et al., 2017) for further downstream analysis.
Raw sequences have been deposited at the National Centre for Biotechnology Information (NCBI) under the
project accession number PRJNA731335.

2.5 Statistical analysis

Statistical analysis was conducted on the ASV level of theclr -transformed 16S rRNA dataset. Prokaryotic
community profiles were constructed at the phylum level, and the relative abundance of major phyla (> 0.1
% of the total microbial community) in environmental samples was compared between sites by Analysis of
Compositions of Microbiomes with Bias Correction (ANCOM-BC) (Lin & Peddada, 2020). Alpha diversity
metrics including the abundance-based coverage estimator (ACE), diversity (Shannon diversity index), and
evenness (Inverse Simpson’s diversity index) were computed. A comparison between each of the alpha
diversity indices by sites and source was performed by two-way ANOVA followed by a post-hoc Tukey
honestly significant difference (Tukey HSD) test after ensuring data normality and homogeneity with tests
as above.

To address the community variation between samples collected from different sites and sources, we adopted
a permutational multivariate analysis of variance (PERMANOVA) analysis and Analysis of Similarity
(ANOSIM) with 999 permutations to compare their compositions. A distance matrix based on the ASVs
was first constructed with the distancefunction in the “vegan” R package (Oksanen et al., 2022) with the Eu-
clidean distance (Gloor et al., 2017). Then, the Adonis method via theadonis function with 999 permutations
was used for the comparison of communities. Pairwise PERMANOVA was carried out withpairwise.adonis
with the “pairwiseAdonis” package (Arbizu, 2023). Permutation tests for homogeneity of multivariate dis-
persions (PERMDISP) were conducted using betadisper and permutestto verify significant PERMANOVA
outcomes. Principal Component Analysis (PCA) was used to visualize the beta diversity matrix in the
“phyloseq” package (McMurdie & Holmes, 2013).

2.6 Core analysis, differentially abundant taxa and functional prediction

Shared ASVs among sources of each site were visualized with the “MicEco” package. Core communities were
defined to facilitate the interpretation of host and environmental microbiota. ASVs being present in at least
70 % of samples were considered as core and rare ASVs were those that were present in fewer than 30 % of
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samples (Björk et al., 2018). All other ASVs were considered transient. Indicator ASVs were identified with
the multipatt function with the “indicspecies” package (Cáceres et al., 2023). Differentially abundant ASVs
between sources were also identified with the ANOVA-Like Differential Gene Expression Analysis (ALDEx2)
with the “ALDEx2” package (Fernandes et al., 2014).

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) was used to
predict physiological and metabolic functions of the host and environment microbiota based on ASVs gene-
rated from the QIIME2 DADA2 pipeline (Douglas et al., 2020; Langille et al., 2013). This procedure predicts
the relative abundance of functional genes (expressed as Kegg Orthologs–KOs) in a 16S ASV community
from the phylogenetic conservation of these genes in all currently sequenced and assembled prokaryotic geno-
mes. Quality control was implemented by computing weighted nearest sequenced taxon index (NSTI) values
of each ASV. NSTI evaluates the prediction accuracy of PICRUSt because it reflects the average genetic
distance (measured as number of substitutions per site) between each ASV against a reference genome (Dou-
glas et al., 2020; Langille et al., 2013). NSTI values higher than 2 were eliminated following the developer’s
guidelines (Douglas et al., 2020). PERMANOVA with 999 permutations was adopted to compare functional
pathways between sources and sites. Potential differentially abundant functional MetaCyc pathways between
sources were analysed by ALDEx2. Those that were significantly differentially abundant (p < 0.01) were
then visualized with the “ComplexHeatmap” package (Gu et al., 2016). All R packages mentioned were im-
plemented in RStudio ver. 1.2.5019. In order to support and facilitate scientific reproducibility, all analyses
performed were included in the script as part of the supplementary materials.

Results

3.1 Environmental gradient based on water quality

The averaged environmental parameters in the PCA analysis reflected a water quality trend from TM6 (SFB)
to MM5 (TPC) (Figure 1, Table S1). The seven environmental parameters varied between sites. Nitrogen
(nitrite and nitrate) and salinity have a greater contribution to the variation in TPC whilst ammonia and
phosphorus to LCC. Overall, PC1 explained most of the variation observed (79.6 %) among sites and this
was consistent with the geographic distribution, supporting the occurrence of a pollution gradient along Tolo
Harbour (Figure 1). Based on the environmental data, sites were categorized into three relative pollution
levels along the Tolo Harbour Channel (SFB as highly polluted, LCC as moderately polluted, and TPC as
low polluted site).

3.2 Sequencing results

A total of 2,117,314 sequences were obtained after quality control from all 48 samples (sediment, seawater,
sea cucumber skin, and guts) from each of the three sites (SFB, LCC, and TPC) along the pollution gradient.
The effective reads ranged from 14,872 to 76,342 with an average of 44,110 (± 17,337 SD) reads per sample.
The maximum total number of ASVs generated was approximately 300 (Figure S1) after filtering unwanted
taxa and annotating sequences to the genus level.
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Figure 1. Sampling sites and water stations (A). PCA analysis for eight environmental parameters in the
respective water station of each site (B).
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Figure S1. Rarefaction curve of all samples. The horizontal dashed line in grey represents the maximum
number of observed taxa.

3.3 Microbial community composition in environmental and host samples

The taxonomic composition of microbial community abundance on the phylum level of environmental samples
showed Pseudomonadota (ClassAlphaproteobacteria, 56.7 %), Actinobacteriota (23.6 %),Bacteroidota (11.4
%), Firmicutes (4.9 %), andGammaproteobacteria (1.3 %), as the most abundant phyla in seawater. For sedi-
ments, Actinobacteriota (35.6 %),Alphaproteobacteria (32.9 %), Bacteroidota (10.9 %),Gammaproteobacteria
(6.0 %), and Chloroflexi (4.0 %) were the main groups (Table S2). However, the microbial composition varied
between sites, with more accentuated differences in the contribution of major phyla (> 0.1 % of the total
microbial community) in more polluted sites. These differences in microbial composition between seawater
and sediments gradually declined in moderated and less polluted sites, particularly forAlphaproteobacteria
and Actinobacteriota (Figure 2 and 3, Table S3), albeit some site-specific and source-specific departures
of the trend. In the moderately polluted site, Campilobacterota andChloroflexi increased their overall con-
tribution to the sediment microbiota while remaining invariable in the seawater (Figure 2). In the sea
cucumber host, the microbiota was also dominated byAlphaproteobacteria , Bacteroidota ,Actinobacterio-
ta , Firmicutes, andGammaproteobacteria (Table S2). This community composition differed from the local
environment and varied along the cline (Figure 2), with a major contribution of the family Rhodobactera-
ceae(Alphaproteobacteria ; Figure S2) and species from the associated genera Ruegeria , Dinoroseobacter,
and Oceanicella(Figure S3).
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Figure 2. Taxonomic plot showing the community composition of the major phyla (class for Proteobacteria),
which are those present in more than 0.1 % of the total microbial community. “Others” denote phyla of less
than 0.1 % of the total microbial community.
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Figure S2. Taxonomic plot showing the community composition of the major families, which are those
present in more than 0.1 % of the total microbial community.
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Figure S3. Taxonomic plot showing the community composition of the major genera, which are those
present in more than 0.1 % of the total microbial community.
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Figure 3. Phyla that are statistically significant between sites in sediment (asterisk annotation), seawater
(caret annotation) or both (in bold) samples.

3.4 Community structure along the pollution gradient

A comparison of alpha diversity indices revealed statistically significant differences between samples from
skin and gut, as well as between sites (Table 1, Table S4). Significant interaction was detected between these
two experimental factors. Seawater microbiota evidenced lower species richness and diversity, while the other
three sources shared a similar richness and diversity regardless of sites (Figure S4). Overall, environmental
samples from the highly polluted site (SFB) were higher in richness and diversity than the two other sites
(Figure 4). For the moderately polluted site (LCC), a higher richness and diversity were observed in skin
samples. Midgut microbiota is the richest and most diverse community in samples from the low polluted
site (TPC).
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Figure S4. Alpha diversity metrics boxplot of the site (A) and source (B) respectively.
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Figure 4. Alpha diversity metrics boxplot of sites by sources.

Overall, differences in microbial community structure were observed between seawater, sediment, skin, and
midgut samples collected from different sites. Microbial communities from different sources were all distinct
from one another (Table 2), although skin and midgut samples clustered closer together (Figure 5A). However,
these similarities between skin and midgut microbiota composition varied across sites (Table 3). A deviation
of seawater microbiota in Starfish Bay could be observed along PC2, away from the two other sites (Figure
5A). Community structure showed a high influence on the interaction between source and site factors as
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can be seen in the clustering tendency of the samples (Figure 5A). A general higher to lower dispersion
trend in beta diversity from highly polluted to low polluted sites was observed in seawater and sediment
samples. On the other hand, dispersion patterns in hosts across the three sites did not align with that of the
environmental sources. In midgut samples, a general trend of higher beta diversity dispersion in the least
polluted site was observed (Figure 5B, Table 3).

3.5 Environmental and sea cucumber core microbiota

A majority of ASVs in microbiota communities (on average 73.59 % ± 6.74 SD) were considered rare because
of their low representation among samples (present in less than 30% of samples, as defined in Bjork et al.,
2018). On average, 13.64 % (± 3.38 SD) of ASVs were considered as core (Table 4). Around 20.54 % of the
core ASVs in the midgut or skin were not found in either of the environmental samples, although a small
number of core ASVs were shared among the four sources (Figure 6). On top of that, 13 ASVs belonging to
the core midgut microbiome were absent from sediment samples (Table S5). Indicator species also comprised
on average 13.97 % (± 9.43 SD) of the microbial community (Table S6). The contributions of unique ASVs
from different sources were different between the three sites. The highest contribution of unique ASVs in
Starfish Bay and Tung Ping Chau originated from midgut samples, while more unique skin ASVs were found
in Lai Chi Chong (Figure 6).
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Figure 5. PCA plot (A) by Euclidean distance, eclipses in dashed lines denote the multivariate 95 %
confidence interval by source. Boxplot of distance to centroid (B).

3.6 Microbial taxa and functioning profile significantly associated with host samples

A comparison between sources in ALDEx2 analysis yielded 166 differentially abundant ASVs (Figure 7, Table
S7). A majority of ASVs were affiliated with Rhodobacteraceae , Flavobacteriaceae ,Rhizobiaceae , Sphingo-
monadaceae, andCyclobacteriaceae . 126 of the differentially abundant ASVs were also considered as bacteria
indicator taxa. 334 pathways were revealed as significantly differentiated profiles. Pathways associated with
the cofactor, carrier, and vitamin biosynthesis and degradation of amino acid and carbohydrate generally
occurred more abundant in midgut samples. Whereas pathways involved in inorganic nutrient metabolism,
amine, and polyamine degradation, and aromatic compound degradation were more likely to be found in
seawater samples (Figure 8, Table S8). Functional pathways distinguished between sources but not sites
(Figure S5, Table S9).
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Figure 6. Heatmap showing the percentage of samples by source containing the core ASVs (A). Only core
taxa that appear in at least 80 % of all samples were shown. Venn diagrams of the number of shared taxa
between the four sources in three sites (B).
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Figure 7. Bubble plot showing the differentially abundant taxa across sources. Only taxa with an overall
relative abundance above 1 % were shown. Taxa in bold are also indicator species.
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Figure 8. Functional pathways that are differentially abundant between sources. Only pathways with a
relative abundance of over 70 % in one of the sources were shown in the above.
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Figure S5. PCA plot of functional pathways by Euclidean distance, eclipses in dashed lines denote the
multivariate 95 % confidence interval by source.

Discussion

Environmental gradients can influence ecological interactions and phenotypic characteristics (e.g., physiolo-
gy, microbiome) of natural populations. In this work, we investigated the extent to which an environmental
gradient of pollution in one of the most urbanized coastal areas in the world, modulates the interactions
of animal hosts and their associated microbial communities. By assessing intra-specific variation in the
diversity, structure, and function of environmental and animal-associated microbiota in the tropical sea
cucumberHolothuria leucospilota , we tested the interplay between deterministic (e.g., environmental/host
filtering) and stochastic (e.g., random microbial dispersal) processes underpinning host-microbiome interac-
tions and microbial assemblages. Overall, our results indicate that microbial communities are complex and
vary in structure and function between the environment and the animal hosts. However, these differences are
modulated by the level of pollution across the gradient with marked clines in alpha and beta diversity. Yet,
such clines and overall differences showed opposite directions when comparing environmental- and animal-
associated microbial communities. These findings suggest that the interplay between both, environmental
and host filtering underpins microbial community assembly in H. leucospilota along the pollution gradient
in Hong Kong.

Excessive nutrient and metal loading, driven by rapid urban development, is a major threat to coastal and
marine ecosystems worldwide, leading to profound changes in biodiversity, biochemical processes, and ecosys-
tem functioning (Duprey et al., 2016; Heery et al., 2018; Hong et al., 2021; Johnston et al., 2015; Mayer-Pinto
et al., 2015, 2018; Woodward et al., 2012). In Hong Kong waters, at a larger scale, this chemical pollution
is influenced by the Pearl River (Geeraert et al., 2021), generating a strong west-east gradient in nitrogen
(west: nitrated dominated; east: dissolved organic nitrogen dominated) and heavy metals, with levels ex-
ceeding thresholds for sediment toxicity (Geeraert et al., 2021; Hong et al., 2021). At smaller scales, other
independent west-east pollution gradients can be found in some areas of Hong Kong (e.g., Tolo Harbour)
influenced by the high sewage loading, the tidal hydrodynamics, and the seascape structure (Figure 1). Both,
large- and small-scale gradients of pollution in Hong Kong have been linked with recent faunal changes in
benthic species (Hong et al., 2021; Nicholson et al., 2011), and the alteration of the spatial distribution and
loss of foundational species such as hard corals (Duprey et al., 2016). Our study revealed that environmental
microbial communities are also influenced by the geographic trend in pollution that exists along the Tolo
Harbour (west-east), a potential consequence of clinal differences in nutrient availability, especially for ni-
trogen and phosphorus. Similar correlations between microbial composition in sediments and seawater have
been documented along pollution gradients in other marine regions as a function of geographic clines in
phosphorus (Stevick et al., 2021), heavy metals, and nitrogen availability (J. Chen et al., 2019; L. Chen et
al., 2019; Di Cesare et al., 2020). In our study, the west-to-east gradient of pollution showed negative clines
in the contribution of some dominant alphaproteobacterial groups such as the PS1 Clade, Balneola , and
Acholeplasma, while positive trends inAEGEAN-169, Candidatus actinomarina, and Ilumatobacter . Such
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geographic differences could be attributed to shifts in the microbial ecological niche and some degree of local
adaptation. In fact, it has been shown that microbial communities in more polluted sites can exhibit higher
capacity to reduce intracellular levels of heavy metals, hydrocarbons, and other environmental contaminants
compared to less polluted areas (J. Chen et al., 2019; Dell’Anno et al., 2020). For instance, Balneola sp. is
a competitive organic-degrading bacteria that is known to proliferate in coastal areas with high levels of N
enrichment (Y.-F. Xu et al., 2022). In our study, this group exhibited an increased abundance in the highly
polluted site (SFB) and decreased in the medium-low pollution areas (LCC–TPC) of the Tolo Harbour. This
trend was also observed in Acholeplasma , a group that typically dominates coastal areas characterized by
high chemical oxygen demand driven by wastewater discharges (G. Zhang et al., 2021). A contrasting pat-
tern was found for Candidatus actinomarina , a bacteria that has the capacity to proliferate in oligotrophic
marine waters (López-Pérez et al., 2020), thanks to physiological adaptations that facilitate efficient nutrient
acquisition and processing (Giovannoni et al., 2014; Lauro et al., 2009).

Despite the general geographic trend in microbial communities, we found micro-habitat differences in the
functional profiles within the more polluted site. In the inner part of the Harbour (west), significant group
dispersion was observed in environmental microbiota compared to the outer parts (east: less polluted sites).
The high to low variation in bacterial community composition along the cline was particularly evident
between microbial communities in seawater and sediments, a pattern that may be explained by differences
in their enzymatic capabilities (broader in sediments) and strategies to access organic matter that has
already been degraded during passage through the water column (Teske et al., 2011). In seawater, the lower
microbial diversity was mainly dominated by Alphaproteobacteria followed byActinobacteria and Bacteroidota
. However, such dominance declined with the level of pollution along the Tolo harbour. These findings are
partially aligned with previous studies along a eutrophication gradient in the South China Sea (Li et al.,
2020; J. Zhang et al., 2019). Actinobacteria in particular, has been well documented as a dominant group
in eutrophic environments (Gong et al., 2019; Yun et al., 2017), in which these organisms are suggested to
play a wide range of ecological functions such as the decomposition of organic matter (Puttaswamygowda
et al., 2019). In sediments, on the other hand, the higher diversity was dominated byActinobacteriota ,
Alphaproteobacteria, andBacteroidota. Of these, only Actinobacteriota showed major changes along the cline,
together with other groups such asGammaproteobacteria (copiotrophs and involved in nitrate metabolism,
Herlambang et al., 2021; Newton et al., 2011) andChloroflexi . Such dominance and clinal trend in the
sediments contrast with the profiles observed in the seawater, highlighting the differential ecological influence
of physicochemical conditions in these environments (i.e., water column and benthos). This is particularly
true for nutrient load and chemical pollution, as environmental differences in these factors are known to
influence variation in microbial abundance across marine gradients (Conte et al., 2018; Jiang et al., 2013).

The sea cucumber- associated microbiome does not fully reflect the microbial composition of the environment
along the pollution gradient. Similar to the sediments, the diversity of microbial communities in the guts and
skin of the sea cucumbers was higher than in the surrounding seawater. However, contrary to the sediments,
sea cucumber microbiome diversity was higher in moderated (for skin) and less polluted (for guts) sites. These
clinal differences were also reflected in the overall community composition where sea cucumber microbiota
was dominated byAlphaproteobacteria, Bacteroidota, Actinobacteria, Firmicutes, Gammaproteobacteria, and
Cyanobacteria. While the initial three phyla also exhibited dominance in environmental samples, there were
evident differences in their composition between the host and environmental samples. These findings are
in line with previous studies, highlighting the role of host filtering as a “modulatory tool” shaping the
microbial composition from the external microbial source pool (Gao et al., 2022; Weigel, 2020). In fact,
these phyla have been documented as dominant groups in the guts of diverse species of sea cucumbers
(Feng et al., 2021; Pagán-Jiménez et al., 2019; H. Zhang et al., 2019), suggesting a conserved filtering
mechanism, likely mediated by secondary metabolites (Darya et al., 2020) or immune factors (Dolmatova
et al., 2004; Gowda et al., 2008; X. Wang et al., 2017). Such mechanism promotes/favours specific sets of
microbes with potential beneficial effects for the health and survival of the sea cucumber host (Zhao et
al., 2024), or that display neutral and/or transient characteristics (Q. Wang et al., 2018). However, other
mechanisms, uncouple from the sea cucumber host, seem to have an additional influence on the microbiome
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ofH. leucospilota as can be seen by the clinal differences in some microbial groups across the pollution
gradient. These mechanisms are most likely associated with the regulatory influence of environmental factors
and their role in shaping microbial assemblies (Deng et al., 2022; H. Xu et al., 2019). In our study, sea
cucumbers in the high polluted site harbour microbiomes dominated by families such asRhodobacteraceae
, Flavobacteriaceae , Rhizobiaceae ,Sphingomonadaceae and Cyclobacteriaceae . The dominance of these
microbial groups in coastal polluted areas has been associated with their physiological tolerances (e.g., to
heavy metals) and capacities to degrade organic pollutants (e.g., members of Rhizobiaceae; Teng et al., 2015).
The abundance of these microbes exhibited a decreasing trend along the west-east pollution gradient, further
cementing the notion of its adaptation to more heavily polluted regions compared to less contaminated areas.
Overall, the distinctions observed between the environmental and host samples suggest that, although the
environment has an influence on the sea cucumber microbiota, the host filtering capacity plays a major role in
regulating the composition and abundance of their associated microbial communities. This filtering capacity,
however, may vary along geographic ranges depending on the magnitude of the environmental gradient, in
this case, the level of pollution.

Intra-individual differences in sea cucumber microbiome reflect tissue-specific control of microbial commu-
nities. Group dispersion was lower in the gut microbiome across the cline while the dispersion of the skin
microbiome was higher, particularly in the more polluted site. This observation can be attributed to the
extent of exposure to the external environment, where the skin directly interacts with both seawater and
sediments. Due to the high variability in the environment and the direct exposure of the skin, there is a
higher variation in microbial composition for the skin samples. Contrary, the gut is an enclosed system with
strong control by the host on their microbial assemblages (Lachnit et al., 2019; Weigel, 2020), resulting in
lower variation. Apart from the differential dispersion between the skin and gut samples, the predominant
microbial groups evidenced distinct structural and functional profiles (e.g., degradation pathways associated
with the skin, while both biosynthesis and degradation pathways elevated in the gut). Such intra-individual
differences in the microbiome between body parts are potentially associated with their unique characteristics
(e.g., biochemistry, nutrient and oxygen content), and regulatory mechanisms (e.g., secondary metabolites,
Pagán-Jiménez et al., 2019; B. Wang et al., 2015; Y. Wang et al., 2023), as well as the influence of the
external environmental (Sylvain et al., 2020). For example, biochemical characteristics in gastrointestinal
systems in diverse metazoans, including echinoderms, are suggested to favour members ofBacteroidota (the
second most dominant phyla in the sea cucumber gut in our study), supporting a symbiotic interaction with
their host (Balakirev et al., 2008; Thomas et al., 2011). This phylum is composed of diverse physiological
types that exist from strictly anaerobic bacteria like Bacterodetes sp. (present in the gut samples of this
study), to facultative anaerobes such as Lutibacter sp. (a dominant genus found in H. leucospilota ,), and
strictly aerobic bacteria —Flavobacteria (Choi & Cho, 2006; Lee et al., 2012; Thomas et al., 2011). It has
been increasingly recognised that members of Bacteroidota, are an integral part of their host metabolism
due to their specialised capacity for degradation of high molecular weight organic matter such as protein and
carbohydrates, as well as organic pollutants (Mayer et al., 2016; Thomas et al., 2011; H. Zhang et al., 2019).
In our study, such function (e.g., carbon degradation) was found significantly expressed in the gut of the sea
cucumber, suggesting the beneficial and important existence of Bacteroidota members (e.g., Flabacteriaceae
which was in high abundance compared to skin and environmental samples), for the breakdown complex
molecules, as well as for biosynthesis activity (less expressed in the skin microbiome functional profile, Kirch-
man, 2002). Our results here support the hypothesis that the interplay between host-selective mechanisms
and inherent host conditions modulate contrasting intra-host microbiome composition (skin and gut) in the
sea cucumber H. leucospilota .

The Tolo Harbour, like many urbanised and industrialised estuaries around the globe, has been radically
altered by historical and ongoing anthropogenic activities. Such alterations have impacted local biodiversity
and the overall ecosystem functioning (L. Chen et al., 2019; Fleddum et al., 2011; Lei et al., 2018). At the
organismal level, urbanization and pollution are known to influence the physiology, behaviour and life history
of diverse marine animals (Elizabeth Alter et al., 2021; Morroni et al., 2023; Weis, 2014). These effects can
also be observed in the complex assembly of animal-associated microbial communities and the functions they
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provide to their hosts (Fu et al., 2023; Pei et al., 2022; Q. Wang et al., 2018; Wei et al., 2022). Alterations in
host-associated microbiomes driven by urbanization and pollution are typically characterized by two types of
outcomes: 1) host showing resilience due to the presence and enhancement of beneficial microbial members
(Fragoso ados Santos et al., 2015; Palladino et al., 2023) or 2) dysbiosis as a result of host dysregulation
(Huang et al., 2020; Lachnit et al., 2019). Our study is likely to indicate the former, as we detected multiple
dominant microbes with a beneficial role, such as Rhodobacteriaceae (keystone species in sea cucumber
intestinal system, J. Yu et al., 2023; H. Zhang et al., 2019) andRhizobiaceae (potentially aiding in pollutant
breakdown, Teng et al., 2015) in sea cucumber within the highly polluted region. However, further studies are
needed to test this hypothesis, disentangling the microbial contribution to the host’s survival and tolerance
to marine pollution.

Conclusion

Marine chemical pollution is an important driver modulating the structure and function of microbial com-
munities. Spatial clines in the intensity and magnitude of this driver can result in different patterns of envi-
ronmental filtering, even across short geographic scales. However, for microbial communities associated with
marine animal hosts (e.g., the sea cucumber H. leucospilota ), there are additional mechanisms influencing
their composition and abundance. Such mechanisms are underpinned by intrinsic characteristics of their
host (e.g., body compartments, biochemistry composition, immune systems), resulting in intra-individual
differences in associated microbiomes, and their divergence from the environmental source. These findings
support the hypothesis of an intrinsic capacity of the host to regulate its microbiome. Such regulation favours
specific microbial functional pathways that may play an important role in the survival and physiology of the
animal host, particularly in high polluted areas. Despite the observed differences in the environment and
sea cucumber hosts, there was a small component of the microbial community (core microbiome) that was
constant across the pollution cline and the animal body parts, suggesting that other mechanisms are also
involved in the control of microbial communities in these animals.
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Table 1 . Two-way ANOVA of alpha diversity indices of microbial communities between different sites
and sources. P-values in bold denote statistical significance at p < 0.05. ACE: abundance-based coverage
estimator, Inverse Simpson: Inverse Simpson’s diversity index, Shannon: Shannon diversity index.

Groups ACE ACE Inverse Simpson Inverse Simpson Shannon Shannon
df F p-value F p-value F p-value

Source 3 14.84 < 0.0001 3.78 0.019 30.84 < 0.0001
Site 2 5.43 0.0087 11.31 0.00015 5.83 0.0064
Source × Site 6 5.19 0.00062 3.18 0.013 4.89 0.00096

Table 2 . Comparison of beta diversity of microbial communities at the amplicon sequence variant (ASV)
level between different sites and sources. P-values in bold denote statistical significance at p< 0.05. PER-
MANOVA: permutational multivariate analysis of variance, ANOSIM: analysis of similarities, PERMDISP:
test for homogeneity of multivariate dispersions.

Groups PERMANOVA PERMANOVA ANOSIM ANOSIM PERMDISP PERMDISP
df F p-value R p-value F p-value

Site 2 1.71 0.038 -0.003 0.443 0.383 0.69
Source 3 10.88 0.001 0.75 0.001 20.18 0.001
Site × Source 6 1.85 0.003 - - - -

Table 3 . Pairwise comparisons of beta diversity by source. P-values in bold denote statistical signifi-
cance at p < 0.05. PERMANOVA: Permutational multivariate analysis of variance, PERMDISP: Test for
homogeneity of multivariate dispersions.

Pairwise comparisons between source PERMANOVA PERMANOVA PERMDISP
F p-value p-value

Midgut vs Skin 4.58 0.001 0.442
Midgut vs Sediment 9.89 0.001 0.135
Midgut vs Seawater 16.05 0.001 0.002
Skin vs Sediment 8.96 0.001 0.691
Skin vs Seawater 12.69 0.001 0.003
Sediment vs Seawater 7.17 0.001 0.001

Table 4 . ASVs belong to core, transient, rare community, and indicator species in samples of the four
different sources.

Core (%) Transient (%) Rare (%) Indicator (%)
Environment Environment

Seawater 8.61 8.26 83.13 8.33
Sediment 15.43 16.99 67.58 26.96

Host Host
Skin 15.79 13.64 70.57 14.71
Midgut 14.71 12.2 73.09 5.88
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