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Abstract

In this parper we consider an Alpazur oscillator which consists of a Rayleigh-type oscillator and a DC power supply controlled

by a switch that modifies the operating mode. The oscillator denotes some special phenomena in some parameter settings and

are called chaos or bifurcation. In addition, we observe the behavior of this oscillator over a wide rage of parameter variation.

Chaos theory tools such as, bifurcation, phase portrait, poincaré section and Matching Energy (ME) was examined in the

analysis of dynamic of the system. Simulations were carried out using the 4th-order Runge-Kutta algoritm in Matlab. The

results shows that Alpazur oscillator is sensitive to parameter variation and exhibts a wide range dynamics from fundamental

periodicty to chaos.
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Abstract

In this parper we consider an Alpazur oscillator which consists of a Rayleigh-type
oscillator and a DC power supply controlled by a switch that modifies the operating
mode. The oscillator denotes some special phenomena in some parameter settings
and are called chaos or bifurcation. In addition, we observe the behavior of this oscil-
lator over a wide rage of parameter variation. Chaos theory tools such as, bifurcation,
phase portrait, poincaré section and Matching Energy (ME) was examined in the
analysis of dynamic of the system. Simulations were carried out using the 4tℎ-order
Runge-Kutta algoritm in Matlab. The results shows that Alpazur oscillator is sen-
sitive to parameter variation and exhibts a wide range dynamics from fundamental
periodicty to chaos.
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1 INTRODUCTION

Research into nonlinear dynamical systems made remarkable progress in the 1970s with pioneering work such as Edward
Lorenz’s discovery of the butterfly effect. This discovery highlighted the sensitivity of nonlinear dynamical systems to initial
conditions, leading to the recognition of chaotic behavior in physical dynamical systems. Since then, various research works
have confirmed the presence of chaotic behavior in a variety of disciplines, such as physics, engineering, chemistry, biology
and so on [1], [2], [3]. However, it is electronic circuits that have played an important role in the attempt to understand the
chaotic phenomenon and to elaborate the properties of chaos. The electrical circuits including switching actions are discussed as
a recent interesting subject of search in much of previous works [4], [5], [6], [7]. Circuits with one or more switches, also called
on-off circuits, are generally described by dynamical differential equations switched in certain manner typically synchronous
or asynchronous modes. In synchronous modes, the switching is done by a periodic external independent state excitation [8],
[9]. Whereas in asynchronous mode, toggling is controlled by a depending state excitation [10], [11]. Thus a switching circuit
can be described as piecewise switched circuit which assumes different topologies at different times [12]. However, they also
offer the possibility of integration in various fields of application: communications security, cryptography, random noise gener-
ation, etc. The oscillator of one of the most famous researchers in chaos theory, Léon Chua, became a paradigm for chaos [13].
During this time, a number of methods and tools have been developed that have contributed to the study and understanding of
the behavior of nonlinear dynamical systems. These include the Lyapunov exponent, which measures sensitivity to initial con-
ditions in nonlinear dynamic systems. The phase portrait and the Poincaré section, which can be used to graphically represent
and observe limit cycles and sub-harmonic behavior and the bifurcation diagram, which can be used to study behavior under
variation of a parameter. In this paper, the dynamic behavior of the Alpazur oscillator is studied under the variation of several
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parameters. Multi-parametric analysis explores the complex interactions between the system’s state variables and the parameters
governing its dynamics. It identifies regions of stability, bifurcations, periodic behavior and sensitivities to parameter variation.
To explore the dynamics of the Alpazur oscillator, we use tools such as the bifurcation diagram and the quantitative Matching
Energy approach, which is a technique used to numerically evaluate the occurrence or non-occurrence of chaos in nonlinear
dynamical systems. For numerical resolution, the Runge-Kutta fixed-step 4th-order algorithm is used. The manuscript is struc-
tured as follows: section is mainly indended to describe the Alpazur oscillator. Section 3 is devoted to present the numerical
resolution approach using Runge-Kutta of four order. Section 4 is devoted to present two different methods analysing chaotic
behaviors. In section 5 we have simulation results.

2 MODEL PRESENTATION

We consider a modelRLC oscillator circuit containing a nonlinear characteristic (nonlinear resistance), and a DC power supply
controlled by a switch as shown in figure 1 . This oscillator is a power electronic circuit introduced by Kawakami and Lozi
[14]. It consists of a Rayleigh oscillator block and a DC power supply controlled by a switch (itself controlled by a feedback
loop). Although a non-linear resistor is rare in real applications, this simple circuit is non-linear in parts, and can exhibit chaotic
behavior for some of its parameters.

FIGURE 1 Alpazur 2-state oscillator circuit

The circuit’s operating mode is modified by the SW switch, which can assume the a and b positions shown in figure ??. The
switching period is noted T . The ratio of switching times for which the switch remains in position a and b is denoted �. In what
follows, we’ll look at the various points that enable us to mathematically define the set of equations governing the operation of
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FIGURE 2 Chronogram of the switch excitation

the figure 1 . Applying Kirchhoff’s laws: the whole system can be described by the following systems of equations:

⎧

⎪

⎨

⎪

⎩

L di
dt

= −ri − v
C dv

dt
= i − G(v) + Ej−v

Rj+R0
j=1,2

(1)

The transition from one switch state to the other is shown in figure ??. The changeover condition is determined by �
When the switch is connected to the a side, the circuit equation is given by :

{

L di
dt

= −ri − v
C dv

dt
= i − G(v) + E1−v

R1+R0

0 < t ≤ �T (2)

When the switch is connected to b side, the circuit equation is given by:
{

L di
dt

= −ri − v
C dv

dt
= i − G(v) + E2−v

R2+R0

�T ≤ t < T (3)

x̂ =
√

Li; ŷ =
√

Cv; t′ = 1
√

LC
t;

r1 =
1

R1 + R0
; r2 =

1
R2 + R0

; k = r
√

C
L

A1 = 1 − (a1 − r1)
√

L
C
; A2 = 1 − (a1 − r2)

√

L
C
; C3 =

3a3
C

√

L
C

B̂1 = r1
√

LE1; B̂2 = r2
√

LE2;

(4)

By replacing the new variables in the equations and relabeling t′ as t, the equations (2) and (3) are transformed and the following
differential equations are obtained:

sw ∶ a

{

dx
dt′

= −kx − y
dy
dt′

= x + (1 − A1)y −
1
3
y3 + B1

0 < t ≤ �T (5)

sw ∶ b

{

dx
dt′

= −kx − y
dy
dt′

= x + (1 − A2)y −
1
3
y3 + B2

�T ≤ t < T (6)
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3 RESOLUTION APPROACH

An immeasurable amount of research and publication has been devoted to the numerical solutions of both ordinary and partial
differential equations (ODEs and PDEs). An ordinary differential equation (ODE) is an equality involving a function and its
derivatives. Although there are many general techniques for analytically solving classes of ODEs, the only practical solution is
numerical solution. The use of numerical methods is the most common [15] technique for solving complex equations in physics,
engineering, economics and electronics. The most popular of these are the Runge-Kutta (RKM) methods. The Runge-Kutta
method can be used to solve differential equations of the following form:

{

dy
dx

= f (x, y)
y(x0) = y0

(7)

The solution to this equation is given by:

y(x + ℎ) = y(x) + 1
6
(k1 + 2k2 + 2k3 + k4) (8)

où
k1 = ℎf (x, y(x))

k2 = ℎf (x + 1
2ℎ
, y(x) +

k1
2
)

k3 = ℎf (x + 1
2
ℎ, y(x) +

k3
2
)

k4 = ℎf (x + ℎ, y(x) + k3)

(9)

Thus, the next value y(x + ℎ) is determined by the current value y(x) plus an estimate of the slope (k1, k2, k3, k4). The slope is
a weighted mean slope. The total accumulated error is of the order of ℎ4.

4 ALNALYSIS TOOLS PRESENTATION

4.1 Qualitative analysis
Qualitative analysis uses subjectives judgment based on soft or non quantifiable data. Qualitative analysis deals with intangible
and inexact information that can be difficult to collect and measure. Qualitative analysis of dynamic systems aims to understand
the overall behavior in order to observe the system’s behavior we need analysis tools such as the bifurcation diagram, the Poincaré
section, the phase portrait and the time response.

4.2 Analyse quantitative of Matching Energy (ME)
The ME [16] approach for detecting the behavior of a nonlinear dynamic system using a set of system simulation data is briefly
described in this subsection. Consider a data series xt, t = 0, 1, 2,… , T −1, of size T . Let Pt be a vector obtained by rearranging
in ascending order the values of xt, and Qt a vector obtained by rearranging in descending order xt. From the series xt, Pt, Qt,
we derive the data vectors
xk =

(

xk�0 , xk�0+1,… , xk�0+n−1
)

, pk =
(

xk�0 , pk�0+1,… , pk�0+n−1
)

et qk =
(

xk�0 , qk�0+1,… , qk�0+n−1
)

, size n, où n is an integer less than T , et 1 ≤ �0 ≤ n. The ME approach involves projecting
xk, pk, and qk onto two vector subspaces V (1) and V (2). Let yk and zk be two sets of data obtained respectively by rearranging in
ascending and descending order the vector xk; n1 is the number of coordinates between yk and pk, possessing the same values
while nprime1 is the number of coordinates between zk and qk possessing the same values. Considering x(1)k and x(2)k the respective
projections of xk onto the subspaces V (1) and V (2), the corresponding energies E−

k and E+
k in these two subspaces are given by

the equations 10 and 11 respectively:

E−
k =

√

√

√

√

1
n1

n1
∑

i=1

[

x(1)k (i) − x(1)k

]2
(10)

E+
k =

√

√

√

√

1
n − n1

n−n1
∑

i=1

[

x(2)k (i) − x(2)k

]2
(11)
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where x(1)k and x(2)k are respectively the mean value of xk in the vector subspaces V (1) and V (2). The mean distance (or mutual
energy) for coordinates with non-identical values between yk and pk, zk and qk is given by the following relation 12:

dk+ = 1
2

[

d(p)k+ + d(q)k+
]

(12)

Avec d(p)k+ et d(q)k+ donnés par :

d(p)k+ =

√

√

√

√

1
n − n1

n−n1
∑

i=1

[

y(2)k (i) − p(2)k

]2
(13)

d(q)k+ =

√

√

√

√

√

1
n − n′1

n−n′1
∑

i=1

[

z(2)k (i) − q(2)k

]2
(14)

Since the average distance between coordinates with identical values between yk and pk, zk and qk is zero, then the energy E−
k is

not involved in the calculation of the total energy. The partial energy associated with the kgravee element of xk, pk and qk derived
respectively from xt, pt and qt, is given by :

Ek(n) =
{

0, si
(

n1 + n′1
)

≠ 0
E+
k , si

(

n1 + n′1
)

= 0
(15)

Finally, the translation of the complexity or otherwise of the data series in question is given by the equation 16 :

E(n) = 1
N

N
∑

k=1
Ek(n) (16)

with :
N = 1 + floor

(

T − n
�0

)

(17)

Thus, for a zero value of E(n), the system’s behavior is perfectly predictable, so the system is periodic and its dynamics are
regular. On the other hand, for a non-zero value of E(n), the system’s behavior is not predictable. In other words, the system’s
dynamics include an infinite number of operating periods, a phenomenon characteristic of chaotic behavior.

5 SIMULATION RESULTS

Solving differential equations is the most important ordinary technique. Numerical integration provides the necessary informa-
tion on the dynamic behavior of the system. We use the RK numerical integration method, which is highly accurate and less
time-consuming to calculate [17]. To simulate the behavior of the Alpazur oscillator, we have used the Matlab numerical com-
putation software. The system of differential equations governing the dynamic behavior of the Alpazur oscillator is numerically
solved using the Runge-Kutta fourth-order fixed-step method. First we present a bifurcation diagram, which allows us to observe
the critical values of the chosen parameters that influence the system’s behavior. Then we give phase portraits, which allow us
to accurately observe the behavior of a dynamic system by projecting it into the phase parameter space. The ME technique is
applied to the Alpazur oscillator to observe its quantitative behavior, to see the intervals of values of each parameter for which
the system is chaotic or periodic.the values of the actual circuit parameters of the figure 1 are taken from [17] .

5.1 Analysis of oscillator behavior under variation of � parameter
In this section we present the simulation results under variation of the parameter �,this parameter which defines the switching
motion is described in figure 2 . In order to observe the behavior of the Alpazur oscillator under variation of this parameter, we
present the bifurcation diagram accompanied by the Matching Energy, followed by the time responses, the phase portrait and
the Poincaré cross-section for a selected range of � values.

5.1.1 Bifurcation diagram
The bifurcation diagram presented here shows the evolution of the state variable x under variation of the parameter �. Simulations
are performed over a range of � values from 0.82 to 0.90 in 10−4 steps. For each value of �, 1700 periods of circuit operation
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were recorded with a resolution of 10000 points per period. In order to eliminate as many transient values as possible for each
value of �, only the last 750 periods were retained for the bifurcation diagram. The ME technique is applied to the Alpazur
oscillator in order to present the behavior of its global dynamics. The results obtained are presented in the following section
(figure 3 ). Observation of figure 4 shows that for � values below 0.88 the oscillator’s dynamics exhibit periodic behavior

FIGURE 3 Bifurcation of x

FIGURE 4 Matching Energy at �
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(since the calculated ME value is zero).for a non-zero ME value this state is characterized by chaotic dynamics. The Matching
Energy (ME) approach clearly confirms the behavior observed on the bifurcation diagrams: for a zero ME value the oscillator
dynamics is periodic, and for a non-zero ME value the behavior is chaotic.

5.1.2 Temporal responses
In order to present the dynamic behavior of the Alpazur oscillator for a few values of � taken from the previous bifurcation
diagram, for each value of � we present the time series, phase portrait and Poincaré section.
a) Behavior at � = 0.825
At this value of � ,the oscillation dynamics presents a limit cycle ,observed on time evolution by the presence of regular periods
at figure 5 . This behavior is confirmed by the phase portrait, which shows a limit cycle characteristic of fundamental periodic
behavior figure 6 , confirmed by the Poincaré section with a single point figure 7 .
b) Behavior at � = 0.875

FIGURE 5 Temporal response for � = 0.825

FIGURE 6 Phase portrait for � = 0.825 FIGURE 7 Poincaré section
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The oscillator’s behavior at this value of � = 0.875 shows a sub-harmonic behavior of rank 4, which shows a time evolution
of four regular periods (figure 8 ). This behavior is observed by the presence of 4 cycles (figure 9 ) which is confirmed by the
presence of the 4 points on the Poincaré section (figure 10 ).
c) Behavior at � = 0.89

FIGURE 8 Temporal response for � = 0.875

FIGURE 9 Phase portrait for � = 0.875 FIGURE 10 Poincare section

The dynamics of the oscillator for the value of � taken in the chaotic zone from the bifurcation diagram and Matching Energy
is presented in this section. The phase portrait (figure 12 ) shows a strange attractor that is characteristic of chaotic behavior, and
the presence of several points on the Poincaré section (figure 13 ) indicates the existence of a period multiplicity. The oscillator
exhibits chaotic behavior for this value of �.
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FIGURE 11 Temporal response for � = 0.89

FIGURE 12 Phase portrait for � = 0.89 FIGURE 13 Poincaré section

5.2 Analysis of oscillator behavior under parameter variation T
5.2.1 Bifurcation diagram
The bifurcation diagram presented here shows the evolution of the state variable x under variation of the parameter T . This
parameter defines the operating period of the switch, i.e. the switching time at points a and b. Simulations are performed over
a range of T values from 0 to 8.5 in 10−4 steps. For each value of T 1700 periods of circuit operation were recorded with a
resolution of 10000 points per period. In order to eliminate as many transient values as possible for each T value, only the last
750 periods were retained for the bifurcation diagram. The EM technique is applied to the Alpazur oscillator to present the
quantitative behavior using the bifurcation diagram data. Looking at the bifurcation diagram in figure 14 for a certain value of
T , the oscillator dynamics show chaotic behavior. For values of T greater than 4.7, the behavior is periodic, as confirmed by the
Matching Energy approach. For a value of ME of zero, the behavior is periodic, and for a non-zero value, the behavior is chaotic.



10 Dingamadji Aristide ET AL

FIGURE 14 Bifurcation of x

FIGURE 15 Matching Energy at �

5.2.2 Temporal responses
a) Behavior at T = 4.5
The oscillator’s behavior is presented here for the value of T taken from the bifurcation diagram in the chaotic zone. This

behavior is confirmed by a random evolution in the time response (figure 16 ). The phase portrait shows a multiplicity of periods
(figure 17 ), confirmed by the appearance of several points on the Poincaré section.
b) Behavior at T = 5
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FIGURE 16 Temporal response at T = 4.5

FIGURE 17 Phase portrait for T = 4, 5 FIGURE 18 Poincaré section

The behavior presented here shows the dynamics of the oscillator at the value taken in the periodic zone, the time evolution
shows a periodic regime. The phase portrait shows a limit cycle characteristic of fundamental periodic behavior (figure 17 ),
which is confirmed by the presence of a single point on the Poincaré section (figure 18 ).

5.3 Analysis of oscillator behavior under parameter variation B1

5.3.1 Bifurcation diagram
The bifurcation diagram presented here shows the evolution of state variables x under variation of the parameter B1, which
depends mainly on the circuit parameters (DC voltage E1). simulations are performed over a range of B1 values from 0 to 2.4
in steps of 2× 10−3 . For each value of B1 1700 periods of circuit operation were recorded with a resolution of 10000 points per
period. In order to eliminate as many transient values as possible for each value of B1, only the last 750 periods were retained
for the diagram. For some values of B1, we observe periodic behavior, from fundamental periodicity to chaos, passing through
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FIGURE 19 Time response at T = 5

FIGURE 20 Phase portrait for T = 5 FIGURE 21 Poincaré section

windows of periodicity or subharmonic behavior of any rank. The behavior of the Alpazur oscillator is shown in figure 23 by
the ME methods approach confirms when it’s periodic for a value of zero ME and when it’s chaotic for non-zero ME.

5.3.2 Temporal responses
a) Behavior at B1 = 1.2
The behavior at this value of B1 taken from the bifurcation diagram in the periodic regime zone. The time trend shows a

periodic evolution (figure 24 ). This behavior is confirmed by a limit cycle in the phase portrait (figure 25 ), which is charac-
terized by the presence of a single point on the Poincaré section (figure 26 ).
b) Behavior at B1 = 2.01
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The behavior presented here is based on the value of B1 taken from the bifurcation diagram in the chaotic regime zone. We
observe a random regime marked by a multiplicity of periods given by the phase portrait (figure 28 ) and characterized by the
appearance of several points on the Poincaré section (figure 29 ).

5.4 Analysis of oscillator behavior under variation of parameter B2

5.4.1 Bifurcation diagram under variation of parameter B2
The bifurcation diagram presented here shows the evolution of the state variable x under the variation of the parameter B2 , this
parameter depends mainly on the voltage E2 of the circuit. Simulations are performed over a range of B2 values from 0 to 5 in
steps of 5 × 10−3 . For each value of B2 1700 periods of circuit operation were recorded with a resolution of 10000 points per
period. In order to eliminate as many transient values as possible for each value of B2, only the last 750 periods were retained
for the diagram. From this bifurcation diagram, we can see that for values of B2 greater than 1.8, the Alpazur oscillator’s circuit
dynamics exhibit periodic behavior, which is justified by the value of ME being zero, while for a non-zero value of ME the
behavior is chaotic (figure 31 ).

5.4.2 Time responses
a) Behavior at B2 = 0.1
The behavior is presented here at this value of B2 taken in the periodic regime zone from the bifurcation diagram. We observe

a sub-harmonic regime of rank 3 on the time evolution figure 32 . This behavior is confirmed by three cycles in the phase portrait
(figure 33 ), characterized by the appearance of three points on the Poincaré section (figure 34 ).
b) Behavior at B2 = 0.06
The behavior is presented here for the value of B2 taken from the bifurcation diagram in the chaotic regime zone. We observe

a random regime marked by a multiplicity of irregular cycles, presenting a strange attractor in the phase portrait (figure 36 )
characterized by the presence of several points on the Poincaré section (figure 37 ).

6 CONCLUSION

In this paper we consider an Alpazur oscillator through investigation a multi-parametric way using chaos theory tools such as
such as bifurcation diagram, Matching Energy technique, phase portrait, Poincaré section and temporal response. The results
show that the Alpazur oscillator exhibits many behavior which can evolve from fundamental periodicity to chaos. This study
therefore contributes to a deeper understanding of the various behaviors of this oscillator.
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FIGURE 22 Bifurcation de x

FIGURE 23 Matching Energy at �
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FIGURE 24 Temporal response for B1 = 1.2

FIGURE 25 Phase portrait for B1 = 1, 2

FIGURE 26 Poincaré section
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FIGURE 27 Temporal response for B1 = 2.01

FIGURE 28 Phase portrait for B1 = 2.01 FIGURE 29 Poincaré section
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FIGURE 30 Bifurcation of x

FIGURE 31 Matching energy sous �
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FIGURE 32 Temporal response for B2 = 0.1

FIGURE 33 Phase portrait for B2 = 0.1 FIGURE 34 Poincaré section
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FIGURE 35 Temporal response for B2 = 0.6

FIGURE 36 Phase portrait for B2 = 0.6 FIGURE 37 Poincaré section
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