
P
os
te
d
on

17
M
ar

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
71
07
09
44
.4
85
37
06
0/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Deep Learning for Optimal Phase-Shift and Beamforming Based on

Individual and Cascaded Channels Estimation in the RIS-MIMO

System

walaa hussein1, Nor Noordin2, Mohd A.Rasid2, Alyani Ismail2, kamil Kareem2, and Aymen
Flah3

1Iraq University College
2Universiti Putra Malaysia
3University of Gabes

March 17, 2024

Abstract

Reconfigurable Intelligent Surfaces (RIS) represent an advanced technology reshaping wireless communication networks. Through
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the potential to bring about considerable performance improvements. In RIS-MIMO systems, precise control of passive RIS

elements is crucial in optimizing reflected signal phases. This control necessitates intricate algorithms, given that inaccurate

phase optimization can result in suboptimal signal focus and decreased data transmission accuracy. Obtaining accurate channel

state information (CSI) is vital for achieving optimal phase control and high data rates; however, estimating channels between

the transmitter, RIS, and receiver poses challenges. This paper investigates deep learning methodologies for channel estimation,

explicitly addressing the distinctive challenges associated with phase shifts and beamforming. We present tailored deep-learning

algorithms for each estimation technique, showcasing notable improvements in estimation accuracy, computational efficiency,

and adaptability in dynamic environments.
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Abstract: Reconfigurable Intelligent Surfaces (RIS) represent an advanced technology reshaping wireless communication 
networks. Through intelligent configuration of wireless propagation environments using both cost-effective passive and 
active elements, RIS has the potential to bring about considerable performance improvements. In RIS-MIMO systems, precise 
control of passive RIS elements is crucial in optimizing reflected signal phases. This control necessitates intricate algorithms, 
given that inaccurate phase optimization can result in suboptimal signal focus and decreased data transmission accuracy. 
Obtaining accurate channel state information (CSI) is vital for achieving optimal phase control and high data rates; however, 
estimating channels between the transmitter, RIS, and receiver poses challenges. This paper investigates deep learning 
methodologies for channel estimation, explicitly addressing the distinctive challenges associated with phase shifts and 
beamforming. We present tailored deep-learning algorithms for each estimation technique, showcasing notable 
improvements in estimation accuracy, computational efficiency, and adaptability in dynamic environments. 
 

1. Introduction 

Considerable interest has been devoted to the 

reconfigurable intelligent surface (RIS) [1]. Secure 

communications [5], uncrewed aerial vehicles [2], and energy 

efficiency [4] are some of its many uses. Figure 1 is an 

example of a RIS-assisted MIMO network. When the source 

node S contains many antennas, optimizing the phase shift at 

the RIS and the beamforming at the source simultaneously is 

necessary. This process requires the channel state information 

(CSI) of all connections. Individual channels are used for S 

→ RIS and RIS → D linkages, whereas cascaded channels 

are implemented for end-to-end S → RIS → D links. 
It is challenging to get individual S → RIS and RIS → 

D channel estimations (e.g., [6]). The individual S → RIS and 

RIS → D channels may be approximated with a degree of 

uncertainty in [7]. The Tensor modeling technique was 

implemented in [8] to estimate individual channels in the 

MIMO RIS network. The researchers used an iterative 

process [9] to calculate the individual channels. On the other 

hand, the estimation of the cascaded S RIS D channels is more 

straightforward. 

In [10] and [11], the concept of cascaded channel 

estimation is recommended for the SISO scenario (where a 
single antenna is employed at both the source and destination 

nodes), double RIS panels, and the MISO RIS-assisted 

network, respectively. As indicated in [12], deep learning 

techniques were employed to estimate cascaded channels in 

MISO OFDM. Estimating cascaded channels often presents 

challenges, particularly in clearly expressing the end-to-end 

channel capacity, mainly when many antennas are utilized at 

both the source and destination nodes. This leads to the 

implementation of combined phase shift and beamforming. 

On the contrary, though estimating individual channels poses 

difficulties, integrating phase shift and beamforming is 

regarded as a more conventional approach. The proposal 

encompasses joint phase shift and beamforming, involving 

both cascaded and separate channels. 

For example, [8] and [9] determined the joint 

optimization of beamforming and phase adjustment for the 
RIS-assisted MIMO network by relying on individual 

channel estimates. The optimization of phase adjustment in 

the cascaded channel of the SISO OFDM RIS network, where 

beamforming at the source node is unnecessary, was achieved 

in [13]. The authors then investigated RIS-assisted MIMO 

beamforming through the cascaded channel in [14]. In this 

method, the process of beamforming and phase correction is 

repeated. Furthermore, the phases of the RIS are iteratively 

optimized. At any given moment, only the phase of a single 

element is optimized, while the phases of the other 

components remain constant. 
The mathematical optimization methods mentioned 

above require significant online computing resources. 

Employing iterative optimization techniques for 

beamforming and phase shift in the MIMO RIS network is 

crucial, adding complexity to implementation and placing a 
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more significant burden on online computations due to 

convergence issues. Moreover, optimizations are frequently 

carried out using simplified models, assuming constant 

amplitude gains across different phase shifts. When this 

assumption is not satisfied [15], [16], the optimization 

process becomes more intricate. 

Recent advancements in machine learning offer 

attractive alternatives for the phase transition in RIS (e.g., 
[17], [18], [19], [20], [21]). However, reinforcement learning 

(RL) and related algorithms are not optimal for most RIS 

systems. This is because RL requires implementation with 

correlated data samples, where state changes occur due to 

actions. In contrast, this characteristic does not align with the 

RIS phase shift issue, as elaborated in Section III. Achieving 

RL convergence would be highly challenging, especially in 

cases involving a significant number of components in an RIS, 

as will be demonstrated in simulations. This letter introduces 

a novel deep neural network model comprising two separate 

networks. Unlike RL, the proposed double deep neural 

network performs effectively in scenarios with numerous RIS 
components. 

 

1.1. state of the art of CSI estimation in RIS-MIMO 
systems 

The last few years have witnessed a substantial 

evolution in wireless communication systems, with a notable 

emphasis on integrating deep learning techniques. 

Researchers have increasingly explored the application of 

convolutional neural networks (CNNs) and recurrent neural 

networks (RNNs) to address complex challenges in channel 

estimation, adaptive modulation, and beamforming [1].In 
parallel, Reconfigurable Intelligent Surface (RIS) technology 

has gained significant attention for its potential to 

revolutionize wireless communication. Recent works have 

focused on seamlessly integrating RIS into multiple input and 

multiple output (MIMO) systems to enhance overall 

communication performance. Noteworthy advancements in 

channel estimation methodologies, particularly those 

considering individual and cascaded channels, have been a 

focal point of research [4]. Optimal phase-shift control and 

beamforming strategies have become pivotal components in 

RIS-enabled communication systems. Recent studies 
underscore the critical role of intelligent algorithms, 

including deep learning models, in dynamically optimizing 

phase shifts and beamforming parameters to achieve superior 

signal quality and system performance [9]. Against this 

backdrop, the paper contributes to the current discourse by 

proposing a novel approach that harnesses deep learning 

techniques for optimizing phase-shift and beamforming in the 

context of individual and cascaded channel estimation within 

RIS-MIMO systems. This aligns with the prevailing trend of 

leveraging artificial intelligence to overcome the challenges 

presented by dynamic and complex wireless environments 

[10]. 
1.2. Motivation 

 
Reconfigurable Intelligent Surface (RIS) is required 

and considered a trending technology in wireless 

communication because it can enhance signal propagation, 

increase system capacity, and improve communication 

performance by manipulating signals using passive and active 

components. RIS offers adaptability, low complexity, and 

energy efficiency, making it a promising technology for 

future wireless networks. RIS thus holds great potential for 

improving the performance of wireless communication 

systems, particularly in the context of 5G and beyond. 

Channel estimation in RIS-MIMO is motivated by the need 

to deal effectively with the challenges of fast-changing signal 

conditions. Fast fading channels, characterized by rapid 

signal strength and phase fluctuations, require constant 

updates of channel state information (CSI) to ensure 
adaptability. The use of image-based representations for 

channel modeling underscores the importance of obtaining 

clear and precise images, free from interference or noise, to 

accurately capture the state of the channel. 

Additionally, actively managing the phase shift by 

RIS elements is crucial for optimizing how signals are 

reflected, especially in the face of fast-fading effects. This 

optimization enhances the system's ability to adjust 

dynamically, ensuring reliable communication. In essence, 

the motivation is centered around staying responsive to 

dynamic conditions, improving the quality of image data, and 

fine-tuning control over phase shifts for efficient signal 
transmission in RIS-MIMO systems. 

 
1.3. Background and related work: 

 
        Obtaining Channel State Information (CSI) 

poses a significant challenge in deploying RIS-assisted 
systems. CSI for the pertinent wireless links is essential for 

the joint design of active beamforming at the transceiver and 

passive beamforming (reflection coefficient matrix) at the 

RIS. This section briefly overviews the critical challenges of 

channel estimation in RIS-assisted systems. A summary of 

the latest techniques for channel estimation is presented, 

along with a detailed examination of the advantages, 

limitations, and applicable scenarios for each method. 

           Reconfigurable Intelligent Surfaces (RIS) have 

brought a groundbreaking approach in the wireless domain, 

reshaping the environment to enhance signal propagation [23]. 

The integration of RIS with MIMO systems has enabled more 
advanced communication pathways, thereby improving the 

quality and reliability of transmissions. Dimitriou and Patel 

(2023) comprehensively analyzed the possibilities and 

challenges of these integrated systems, underscoring the 

importance of improved channel estimation techniques [24]. 

Channel estimation, a crucial element in ensuring effective 

communication, has witnessed the development of numerous 

techniques over the years. While deterministic methods were 

once predominant, they are now considered insufficient for 

addressing the complexities introduced by RIS-MIMO 

systems [25]. Sanghvi and Bhat's (2021) research 
demonstrated an advanced deterministic model for individual 

channel behaviors but encountered difficulties in dynamic 

scenarios [26]. 

 Integrating artificial intelligence, specifically deep 

learning, into wireless communication offers a promising 

avenue for addressing these challenges. In 2023, Anand and 

Prakash's groundbreaking research utilized conventional 

neural networks for cascaded channel estimation in RIS-

MIMO systems, revealing limitations in high-mobility 

environments [27]. Building upon this, Lui and Tan (2022) 

further advanced the research by emphasizing convolutional 

neural networks (CNNs) to capture time-frequency patterns. 
Their work led to significant enhancements, particularly in 

scenarios marked by swift temporal variations [28]. 
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 Although progress has been achieved in incorporating 

deep learning for channel estimation in RIS-MIMO 

configurations, there remains a notable gap in offering a 

comprehensive solution that addresses both cascaded and 

individual channels. Additionally, with the growing 

discussion on 6G, the demand for a robust, adaptive, and real-

time channel estimation technique becomes crucial. 

Reconfigurable Intelligent Surface (RIS) assisted MIMO 
systems have undergone substantial advancements from 2019 

to the present. Two main focal points have been optimizing 

phase shifts and predicting data rates, each with distinct 

approaches tailored for cascaded and individual channel 

scenarios. 

Optimizing phase shifts has emerged as a pivotal 

research focus in cascaded channels. Smith et al. (2021) 

pioneered this field with their gradient-based approach, 

leveraging channel state information to improve received 

signal strength [32]. This foundational work laid the 

groundwork for subsequent innovations. By 2022, Lee and 

Kumar integrated deep learning techniques with the gradient-
based approach, employing deep neural networks to optimize 

cascaded channels faster [33]. Simultaneously, data rate 

prediction techniques gained momentum. Founded on the 

correlation between channel coefficients and achievable data 

rates, Park et al. (2021) introduced a methodology that 

presented refined transmission policies tailored for cascaded 

channels [34]. Expanding on these advancements, Zhao et al. 

(2023) introduced a fusion of convolutional neural networks 

with traditional methodologies, resulting in a significant leap 

in data rate prediction accuracy for cascaded scenarios [35]. 

 
1.4.   Challenges and Contribution 

 
Effective communication relies heavily on channel 

estimation, and various techniques have been devised over 

the years. While deterministic methods were once 

predominant, they are now deemed insufficient to address the 

intricacies introduced by RIS-MIMO systems [25]. Sanghvi 
and Bhat's (2021) research presented an advanced 

deterministic model for individual channel behaviors but 

encountered challenges in dynamic scenarios [26]. 

In the context of individual channel scenarios, the 

environment was distinctive yet equally dynamic. Martinez 

and Chen (2021) highlighted the nuanced challenges 

associated with phase shift optimization, introducing an 

iterative algorithm to accommodate individual channels' 

dynamism [36]. Building on this foundation, Ali and Gupta 

(2022) took further strides by incorporating reinforcement 

learning into existing methodologies, providing dynamic 
phase shift adjustments customized for Tx-RIS and RIS-Rx 

channels [37]. Concurrently, in data rate prediction, Khan and 

Raza (2022) proposed an RNN-based technique uniquely 

tailored for individual channels, addressing their inherent 

temporal dynamics [38]. This sequence of innovations 

culminated in 2023 when a collaborative effort led by 

Fernández et al. revealed a robust model that integrated CNNs 

with RNNs, tailored explicitly for individual channels, 

marking a significant milestone in data rate prediction 

methodologies [39]. 

This research paper considers a wireless 

communication system assisted by Reconfigurable Intelligent 
Surfaces (RIS). It introduces a novel RIS architecture and 

deep learning-based approaches for designing the RIS 

reflection matrix with minimal training overhead. To 

elaborate, the critical contributions of this paper are outlined 

as follows: 

To model channel time frequency response as a 2D 

image, we used a 5G Link level-based RIS-MIMO MATLAB 

2023a simulator. 

We present a new approach to channel estimation 

through deep learning architectures explicitly designed for 
RIS-MIMO systems. These architectures are uniquely 

designed to address the challenges posed by having 

active/passive elements in the RIS. This paper studies a two-

stage channel estimation method for the RIS-MIMO 

communication system. The cascaded MIMO channel 

between the BS-RIS-UE is estimated in the first stage, 

whereas the BS-RIS and RIS-UE channels are estimated in 

the second stage.  

This research article proposes two efficient deep 

neural networks (PS-CNN and BA-CNN) called Net 1 and 

Net 2, respectively. The first network can solve phase 

reflection complexity to find optimal phase shifts and 
optimize the RIS phase shift matrix during the training phase 

of the reflected signals in RIS elements. This leads to 

maximizing Signal power/ SNR at the receiver. The second 

network can achieve a high data rate. 

We focus on maximizing the performance of RIS-

MIMO systems even when only a handful of RIS elements 

are active by optimizing the phase of the reflected signal 

using the RIS controller in active elements.  

This paper compares cascaded and individual 

estimation methods in RIS-MIMO using a set of performance 

metrics such as accuracy, capacity, path loss, channel gain, 
and normalized mean square error. The subsequent sections 

of this document are structured as follows: Section 1 

introduces the paper. Section 2 provides background 

information and discusses related work. Section 3 outlines the 

system and channel models utilized in this paper, formally 

defining the primary problem – the design of the LIS 

interaction matrix. Section 4 introduces and explores the 

innovative sparse LIS architecture, incorporating a deep 

learning model for optimal phase shift and high-capacity data 

rate. Section 5 details the simulation results. Lastly, Section 

6 concludes the paper by summarizing the findings and 
offering concluding remarks. 

 

2. System and channel models 

 

2.1.   SYSTEM MODEL 
In this work, we have adopted a passive/active RIS 

architecture with a few RF chains-based MIMO 

communications systems. Both the transmitter and the 

receiver are equipped with multiple antennas.  

While the terminology utilized in this article operates under 

the assumption of downlink communication, in which the 

user terminal (UT) serves as the receiver and the base station 

(BS) represents the transmitter, two source nodes, S, are 

equipped with N antennas, two destination nodes D have M 

antennas, and the RIS has K reflecting active/passive 

elements. Assuming that severe blocking or deep fading 

prevents a direct connection between S and D, the channel 

efficiency between the nth antenna at S and the kth RIS 
element conforms to Rician fading as follows: 
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Where Kk,n is the Rician factor for the corresponding link, 

ℎ𝑘,𝑛
(𝐿𝑂𝑆)

and ℎ𝑘,𝑛
(𝑁𝐿𝑂𝑆)

are the line-of-sight (LOS) and non-line-of-

sight (NLOS) parts of the fading channel, respectively.  for 

the LOS component, the expression is as follows: 

( ) ( 1) sin 2
, , ,LOS j k

k n k nh e d


 
−

− −=      (2)                                       

where θ is the angle of arrival at the RIS, and β0 is the path 

loss at the reference distance of one meter. For the NLOS, we 

have ℎ𝑘,𝑛
(𝑁𝐿𝑂𝑆)

= ℎ̃𝑘,𝑛 𝑑𝑘,𝑛

−𝛼

2  where ℎ̃𝑘,𝑛 models the complex 

Gaussian small-scale fading with zero mean and unit 

variance. The channel between the kth RIS element and the 

mth antenna at D is denoted as 𝐻𝐾,𝑅 which is similarly 

modeled. The received signal at the destination is given by 

, , ,T K K Ry H H  =  +           (3) (3) 

    In this context, Y belongs to the C M×1, 𝐻𝐾,𝑅 ∈ C M 

x K, channel matrix representing the communication link 

between the Reconfigurable Intelligent Surface (RIS) and the 

destination node (D), n belongs to the ∈ C M×1 space and 
signifies the additive noise between the source node (S) and 

the  RIS. Additionally, 𝐻𝑇,𝐾  ∈  C N x K, channel vector 

representing the white Gaussian noise (AWGN) with 

variance σ2, and Θ represents the phase shift matrix at the 

RIS. The expression for Θ is given by 
1

1 1( .........., ),kjjdiag a e a e
 =

      (4) 
 Here ak represents the amplitude, and θk denotes the 

phase shift at the kth reflecting element. While ak is assumed 

to be constant in numerous existing approaches, it can also 

vary, as indicated in [29], [30]. In this correspondence, we 

adopt discrete phase shifts with R-bits quantization, 

signifying that each Reconfigurable Intelligent Surface (RIS) 

element has 2R possible phase shifts. 

 

Fig. 1. Transmission line model of a reflecting element. 
 

2.1.1 Cascaded Channel Estimation  
 

We assume the source node (S) receives channel 

assessments from the destination node (D) through backhaul 

connections. In certain situations, S directly estimates the 

channels from D → S and deduces the coefficients for the 

channel from S → D through channel reciprocity. The 

channel estimation method outlined in this section is readily 

applicable in both scenarios, facilitated by the assumption of 

having numerous antennas at both the source and destination 

nodes. 

 
Fig. 2. Show Scenario 1 Direct Cascaded Channel. 

 

By defining the cascaded channel coefficient as 

𝑓𝑛,𝑘,𝑚 = ℎ𝑛,𝑘,ℎ𝑘,𝑚 ,  like in figure 2 the resulting cascaded 

channel vector between the nth antenna at the source node (S) 

and the mth antenna at the destination node (D) is given by: 

, ,1, , , ,[ ............, ] ,T

n m n m n k mf f f=  (5) 

The definition of the cascaded channel vector for the 

mth receiving antenna at the destination node (D) is as 

follows: 

1, , ,[ ............, ] ,T T T

m m N mf f f=  (6) 

Then (3) is expressed as 

,y F = +  (7) 

where F = [f1,..., fM]𝑇  ∈ CN x K x M, which is the cascaded 

channel matrix between S and D, 𝒙∅  = x ⊗ Φv ⊗ is the 

Kronecker product, Φv =[ ∅1 ,..., ∅𝑘]𝑇  and ∅𝑘  is the kth 

diagonal element of Θ. 

Considering equation (7) as a MIMO model with 

dimensions NK-by-M and assuming the availability of P 
snapshots of pilots for channel estimation, we obtain: 

,Y FX= +          (8) 

 
where Y = [y(1),... , y(P)], 𝑿∅  =[𝑿∅  (1),..., 𝑿∅  (P)], and Γ 

=[η(1),..., η(P)]. The least-square estimation of F is obtained 

as 

1( ) ,H H

LSF YX X X −

  =  (9) 

 
The pilots used for the estimation of the cascaded 

channel encompass both the transmit signal (xn) and the 

phase shiftφk; these need to be combined and designed in a 

way that satisfies P ≥  NM and 𝑿∅𝑿 ∅
𝐻   where Ps/ N.I 

represent the power constraint at the source node (S).  

 

2.1.2 Individual Channel Estimation 
In this context, we introduce the ICE method, which 

initially deduces the Channel State Information (CSI) of the 

base station (BS)-Reconfigurable Intelligent Surface (RIS) 
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and RIS-user channels separately based on the received 

training signals. Subsequently, these estimations are 

employed to reconstruct the cascaded channels. The base 

station (BS) and user equipment (UE) have M and N antenna 

arrays. The Reconfigurable Intelligent Surface (RIS) consists 

of K active/passive elements, or unit cells, capable of 

individually adjusting their reflection coefficients (i.e., phase 

shifts). The system model is depicted in Figure 4, and the 
received signal is expressed as per [31]: 

 
Fig. 3. Show Scenario 2 Separate Cascaded Channel. 

 

, ,[ ] ( [ ] [ ] [ ],T K K Ry t H s t H x t t= +
 

(10) 

Where x[t] ∈ C M×1 is the vector containing the 
transmitted pilot signals at time t, as shown in figure 3,s[t] 

=[s1,ej∅1 , … . sN,ej∅N ]T ∈ C N×1 is the vector that models the 

phase shifts, and activation controls the on-off state of the 

corresponding element at time t. The matrices 𝑯𝑻,𝑲  ∈ C N×K 

and 𝑯𝑲,𝑹  ∈ C K×M denotes the BS-RIS and RIS-UE MIMO 

channels, respectively . In contrast, 𝜂 [t] ∈  CN×1 is the 

additive white Gaussian noise (AWGN) vector. 

 

, ,( ( )) ,T K K RY H S H X = +
 

(11) 

 

2.2. Channel model 
 

In this paper, we employ a wideband geometric 

channel model for the channels  𝐻𝑇,𝐾, and 𝐻𝐾,𝑅   between the 

transmitter/receiver and the Reconfigurable Intelligent 

Surface (RIS). The channel estimation process in RIS-MIMO 

systems poses more significant challenges than conventional 

active device-based MIMO systems. This is attributed to the 

following factors. Firstly, CSI can be acquired by 

transmitting training sequences in an active device-based 

system. However, in the case of RIS-assisted systems, 

channel estimation is limited to active transceivers only, as 

the RIS itself is a passive device without active transmitting 

and receiving capabilities. 

Moreover, Reconfigurable Intelligent Surfaces (RIS) 
frequently incorporate many Reconfigurable Elements (REs), 

leading to a significant training overhead. In summary, 

independently recovering the Channel State Information (CSI) 

for the transmitter-RIS and RIS-receiver channels is 

challenging due to their interdependence with the reflection 

coefficient matrix. To address these challenges, researchers 

are exploring innovative approaches to estimate the cascaded 

channel, encompassing both the RIS-receiver and transmitter-

RIS channels.  

We will analyze a typical case to clarify the reasoning 

behind estimating cascaded channels for optimizing 

combined active and passive beamforming in RIS-MIMO 

systems. This investigation explores a multi-user Multiple 

Input Multiple Output (MIMO) system, where a 

Reconfigurable Intelligent Surface (RIS) aids a base station 
(BS) equipped with multiple antennas, providing support to 

numerous users with various antennas each. The channels 

𝐻𝑇,𝐾, and 𝐻𝐾,𝑅, represent the responses from the BS to the 

RIS and the RIS to the kth user, respectively. Additionally, 

𝐻𝑇,𝐾, represents the channel response from the BS to the kth 

user. The entire channel response from the BS to user k is 

expressed as 𝐻𝑇,𝐾 ,diag(v) 𝐻𝐾,𝑅 ,  = vT diag(𝐻𝐾,𝑅 ,) 𝐻𝑇,𝐾 , 

where diag(v) is the reflection coefficient matrix. 

Consequently, the only prerequisite for the joint design of 

active beamforming at the BS and the passive reflection 

coefficient matrix diag(v) at the RIS is the cascaded channel's 

Channel State Information (CSI). 

 

, ,( ) ,K K R T KH diag H H=  (12) 

 
 

As a result, this research will not tackle the Channel 

State Information (CSI) of the direct link, as it can be handled 

using conventional estimation techniques within the Multiple 

Input Multiple Output (MIMO) system. Thus, the main 

challenge in channel estimation stems from the cascaded 

channel estimation approach, recognized as the primary focus 

in recent scholarly works. Broadly, the latest methods for 

cascaded channel estimation can be categorized into two 

groups: direct cascaded channel estimation (DCCE) or 

separate cascaded channel estimation, depending on whether 

they perform a direct or indirect estimate of the cascaded 
channel (SCCE). 

We aim to formulate the Reconfigurable Intelligent 

Surface (RIS) interaction vector, denoted asψ ∈  CM×1 

(reflecting beamforming vector), to maximize the achievable 

rate at the receiver. This can be expressed as: 

 

2

2 , ,1

1
log (1 | | )

k T T

T K K Rk
R SNR H H

k =
= + 

 

      (13) 

 

 

where SNR = PT/ (k 𝜎𝑛
2)represents the signal-to-noise 

ratio. As mentioned in Section III, every element in the RIS 

reflection beamforming vector, 𝛹, is implemented using an 

RF phase shifter. These phase shifters, however, usually have 

a quantized set of angles and cannot shift the signal with any 

phase. To capture this constraint, we assume that the 

reflection beamforming vector 𝛹 can only be picked from a 

predefined codebook 𝜌 . Every candidate reflection 

beamforming codeword in 𝜌 is supposed to be implemented 

using quantized phase shifters.  

 

In Fig. 4. the proposed RIS architecture is exposed, 

where K active/passive channel sensors are randomly 

distributed over the RIS. These active elements have two 

modes of operation: (i) a channel sensing mode, which is 

connected to the baseband and is used to estimate the 

channels, and (ii) a reflection mode, where it just reflects the 
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incident signal by applying a phase shift. The rest of the RIS 

elements are passive reflectors not connected to the baseband. 

 

 

 

Fig. 4. The proposed RIS architecture 

 

2.3. Channel estimation, Phase Shift, and 
Beamforming Based on Direct Cascaded 
Channel 

In RIS-MIMO communication systems, especially 

when considering cascaded channels, both phase shifts at the 

RIS and beamforming at the transmitter and receiver play 

pivotal roles. 

 

2.3.1 Channel estimation: 
 

 Passive RIS: The transmitter sends a known pilot 

signal x(t) through the cascaded channel (Ht,k×Hk,r) to the RIS. 

In RIS, the signal will be reflected toward the receiver. The 

reflected signal y(t) at the receiver is a combination of the 
transmitted pilot signal x(t), the effect of the cascaded channel 

(Ht,k×Hk,r), and noise n(t) will be y(t)=( Ht,k×Hk,r)⋅x(t)+n(t). 

The receiver estimates the cascaded channel (Ht,k×Hk,r) by 

comparing the known transmitted signal x(t) with the 

received signal y(t) by using standard channel estimation 

techniques, such as least squares, then the estimation of the 

channel will be at the receiver as shown in figure 5. 

        Fig. 5. Show Direct Cascaded Channel estimation one 

time at the receiver. 

 

• Active RIS: In active channel estimation, the RIS 

elements are configured to emit known signals. The 

transmitter and the RIS work together. The transmitter sends 

available pilot signals towards the RIS, and the RIS actively 

modifies these signals using its elements before they are 
reflected towards the receiver. The receiver captures the 

signals modified by the RIS and uses them for channel 

estimation. In active channel estimation, the channel 

estimation process typically considers the combined effect of 

the channels from the transmitter to the RIS (Ht,k) and from 

the RIS to the receiver (Hk,r), including the influence of the 

RIS's active elements. The RIS elements actively participate 

in the estimation process by modifying the transmitted signals. 

 

2.3.2 Phase Shift at the RIS: 
The primary role of the RIS in the communication 

process is to introduce controllable phase shifts to the incident 

signals to enhance the communication link's quality. When 

the cascaded channel approach is employed: 
The total channel HT,K,R combines the transmitter-to-RIS 
channel, the RIS's phase shifts, and the RIS-to-receiver 
channel.  

Passive RIS elements cannot actively manipulate or control 
the phase of the incident signal in real time. Their primary 
function is to reflect and adjust the phase of the incoming 
signal based on their predefined characteristics. The phase 
shift introduced by passive RIS is a static property and does 
not change during signal transmission. 

Active RIS elements, on the other hand, can actively and 

dynamically control the phase of the incident signal in real-

time. In contrast, the reflection phase can be controlled by 

switching the on-off state of the PIN Diode in RIS sensors. 

They can adaptively adjust the phase to optimize signal 

quality, reduce interference, and steer the signal to specific 

directions based on real-time conditions. 
The optimal phase shift matrix Φ is derived to maximize the 
signal-to-noise ratio (SNR) or any other defined performance 
metric at the receiver. The optimization problem can be 
formulated as: 

2

, ,max | |K R T KH H



                                         (14) 

Subject to constraints on the phase shifts θi, typically 

within [0, 2π]. 

 
2.3.3 Beamforming: 

 
Beamforming in wireless communication refers to 

directing the transmission or reception of signals in specific 

directions. Instead of sending signals uniformly in all orders, 

beamforming uses multiple antennas to shape the radio waves 

in a particular direction, enhancing signal quality and 

mitigating interference from other sources. Beamforming 

strategies can be employed at both the transmitter and the 

receiver to shape the transmitted and received signals further: 

Transmitter Beamforming (Precoding): Given the 

cascaded channel's knowledge, the transmitter can shape the 
signals to add up constructively at the intended receiver while 

minimizing interference to other potential receivers. 

Receiver Beamforming (Decoding): At the receiver's 

end, beamforming can amplify the intended signal while 

minimizing interference and noise. 

In a system with passive RIS elements, the primary 

responsibility for beamforming lies with the transmitter. The 

transmitter adjusts the phase of the incident signal to focus it 

in the desired direction. The passive RIS elements reflect and 

adjust the phase based on their predetermined characteristics. 

In a system with active RIS elements, both the 
transmitter and the active RIS elements are involved in 

beamforming. The transmitter initiates the beamforming 

process by adjusting the phase of the incident signal, and the 

active RIS elements further fine-tune and actively control the 

signal phase to optimize its direction. 
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The optimal beamforming vectors (for both 

transmission and reception) can be derived by solving 

optimization problems that maximize the received signal 

power or the SNR, considering the cascaded channel's effects. 

 

2.3.4 Joint Optimization: 
In practice, optimal performance can often be 

achieved by jointly optimizing both the RIS phase shifts and 
the beamforming vectors. This joint optimization would 

involve the following: 

 

2

, ,
, ,

max | |H

K R T K
w v

v H H w


  (15) 

Where w is the transmitter beamforming vector, and v 

is the receiver beamforming vector. This formulation seeks to 

maximize the combined system gain from the RIS phase 

shifts and MIMO beamforming. 

2.4. Channel Estimation, Phase Shift, and 
Beamforming Based on Separate Cascaded 
Channel 

2.4.1 Channel Estimation: 
 
Passive RIS: First, Estimating the transmitter-to-RIS 

channel HT,K, the transmitter sends a known pilot signal x(t) 

through the channel HT,K to the passive RIS. This signal 

remains unaltered by the RIS. The RIS receives the 

transmitted pilot signal. The received signal yh(t) at the RIS 

can be modeled as y(t)= HT,K ⋅x(t)+n(t), Where n(t) represents 

the noise at the RIS. We used standard channel estimation 

techniques, such as the least squares estimator, to estimate HT, 

K. Second, Estimating the RIS-to-Receiver Channel HK,R, the 

transmitter sends a known signal x(t) toward the passive RIS. 
The signal y(t) received at the receiver is a combination of the 

transmitted signal x(t), the effect of HK,R, and noise n(t) : y(t)= 

HK,R⋅x(t)+n(t). we estimated the HK,R using standard channel 

estimation techniques, similar to the estimated HT,K, and then 

the estimation of the channel will be at the RIS device sensing 

and the receiver as shown in Figure 6. 

 

 

       Fig. 6. Show  Separate Cascaded Channel estimation 

twice at the RIS and the receiver. 

 

Active RIS: The estimation process for active RIS elements 

is quite similar to that of passive RIS. The main difference is 

that the RIS elements actively modify the signals in active 
RIS. The estimation steps for h and g in an active RIS are the 

same as for passive RIS, as both rely on measuring the effect 

of the channels HT,K, and HK,R with the active contribution of 

the RIS in modifying signals. 

The goal in both passive and active RIS scenarios is to 

estimate the separate channels HT,K, HK, and R to understand 

the effects of the RIS on the transmitted and received signals 

and to calculate the corresponding channel coefficients. 

 

 

2.4.2 Phase Shift at the RIS: 
In a separate or individual channels approach, the RIS 

optimizes its phase shifts based on the transmitter-to-RIS 

channel and the RIS-to-receiver channel. 
For the transmitter-to-RIS channel HT,K, the RIS aims to 
capture the signal from the transmitter most effectively. It 
might optimize the phase shifts such that the received signal 
strength at the RIS is maximized. 

Passive RIS elements introduce a static phase shift to the 
incident signals in separated channels. This phase shift is 
determined by the physical configuration and design of the 
passive elements and remains constant during signal 
transmission. Passive RIS elements in separated channels 
cannot dynamically adapt the phase of the incident signals in 
real-time. They cannot respond to changing channel 
conditions, user positions, or dynamic optimization criteria 
for phase control. 

Active RIS elements can actively and dynamically control the 
phase of the incident signals in real time in separated 

channels. This dynamic control allows for instantaneous 

changes in phase to optimize signal transmission. It can also 

adapt the phase of the signals based on changing conditions, 

allowing for dynamic phase adjustments that respond to real-

time variations in the environment, user positions, or 

communication requirements. 
For the RIS-to-Receiver channel HK,R, the RIS focuses on 
optimally reflecting the incident signals towards the receiver. 
The phase shifts can be configured to ensure the signals are 
constructively combined at the receiver. 

 
2

,max | |T KH



 

(16) 

 

And 
2

,max | |K RH



 

(17) 
 

subject to the typical constraints on the phase shifts θi 

within [0, 2π] 

 
2.4.3 Beamforming: 

Transmitter Beamforming (Precoding): With 

knowledge of the transmitter-to-RIS channel, the transmitter 

can employ beamforming to maximize the signal strength at 

the RIS. 

Receiver Beamforming (Decoding): Conversely, 

given the RIS-to-receiver channel, beamforming at the 

receiver can ensure that the reflected signals from the RIS are 
constructively combined, enhancing the desired signal quality. 

For passive RIS, the transmitter is primarily 

responsible for beamforming, whereas for active RIS, both 

the transmitter and the active RIS elements contribute to the 

beamforming process. The choice between passive and active 

RIS depends on the specific requirements of the 

communication system and the level of control and 

adaptability needed for beamforming. 

 The optimal beamforming vectors can be derived for 

each channel to maximize the received signal power or the 

signal-to-noise ratio (SNR). 
 

2.4.4 Joint Optimization: 
Optimally, to exploit the full potential of the RIS-

MIMO system with individual channels, a joint optimization 

of both RIS phase shifts and beamforming vectors for each 
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channel is required. The joint optimization can be formulated 

as follows: 

, ,
, ,

max( )( )H H

K R T K
w v

v H w w H v


 
 

(18) 

 

Here, w denotes the transmitter beamforming vector, 

and v signifies the receiver beamforming vector. This 

optimization maximizes the system gain from each channel's 

RIS phase shifts and MIMO beamforming. 

3. Deep learning model design for optimal phase 
shift and high-capacity data rate 

3.1 Deep Learning Structure 
As seen in Figure 7, the new learning model comprises 

two deep neural networks, Net1 and Net2. Net1 serves as the 

primary network. The system inputs are N × M × K and 

represent each entry in a cascaded K group of 2R dimensional 

category vectors. Each group represents the discrete phase 
shift of R bits at a single RIS element. 

 
Fig. 7. The deep learning network structure. 

 

 Training Net1 using standard supervised learning is 

challenging because of the unavailability of labeled data, 

namely the optimal phase shifts. Conversely, employing the 

brute-force search method to identify the optimal phase shifts 

for a reasonably large RIS element number K and phase 
quantization bit number R may prove computationally 

unfeasible. There would be 2KR potential phase shifts for each 

channel realization. To solve this problem, the complement 

neural network Net2 is introduced. The inputs to Net2 are F 

and Φv; the output is the corresponding capacity C F, Φ. 

 

3.1.1 First Deep Learning Model - Phase 
Shift Estimation Network: 

The primary objective of the Phase Shift Estimation 

Network is to predict the optimal phase shift values 

leveraging the channel matrix and RIS elements. The neural 

network commences with an input layer comprising many 
nodes equivalent to the sum of the channel coefficients from 

the channel matrix and the RIS elements without any 

activation function. Progressing deeper, the network hosts 

three hidden layers. The first hidden layer has 128 nodes and 

employs the ReLU activation function. The subsequent layer 

amplifies its complexity with 256 nodes using the ReLU 

activation. The third and final hidden layer reverts to 128 

nodes, maintaining the ReLU activation. The culmination of 

this network is the output layer. It houses many nodes equal 

to the RIS elements, each indicating an optimal phase shift 

value for a particular element. Considering the nature of 
phase shifts, the Tanh activation function is an appropriate 

choice, especially if phase shift values are bound between -π 

and π. Alternatively, a Sigmoid activation function is 

preferable if the phase shifts are normalized between 0 and 1. 

The Mean Squared Error (MSE) loss function measures the 

model's accuracy. 

Input Layer: 

Size: Number of channel coefficients (from the 

channel matrix) + Number of RIS elements N x M x K. 

Type: Dense (fully connected). 

Hidden Layers: 

Multiple hidden layers using activation functions 

ReLU. The depth and width of these layers can be adjusted 

based on the complexity of the channel. 

Output Layer: 
Size: Number of RIS elements (representing each 

element's optimal phase shift values). 

Type: Dense with a linear or sigmoid activation, 

depending on the phase range. 

Loss Function: Mean Squared Error (MSE) for 

regression of the optimal phase shifts. 

 

3.1.2 Second Deep Learning Model - 
Beamforming Optimization Network: 
 

Entering into a field  of data rate predictions, the 

Beamforming Optimization Network aims to predict the 
high-capacity data rate, building upon the optimal phase 

shifts derived from the previous model and the channel matrix. 

The initiation of this network is marked by an input layer that 

integrates nodes equivalent to the sum of the channel 

coefficients from the channel matrix and the optimal phase 

shift values without any activation function. The network 

encompasses four hidden layers to effectively capture the 

complexities of predicting data rates. The first layer has been 

designed with 256 nodes, accompanied by the ReLU 

activation function. This is followed by a more intricate layer 

boasting 512 nodes, yet continuing with the ReLU activation. 
The network then scales down with the third layer, presenting 

256 nodes and persisting with the ReLU activation. The 

fourth and concluding hidden layer scales to 128 nodes, 

retaining the ReLU activation. The pinnacle of this network 

is an output layer with a singular node, symbolizing the high-

capacity data rate value, and aptly, it uses a linear activation 

function. Given the regression nature of this prediction, the 

Mean Squared Error (MSE) loss function stands as the chosen 

metric to evaluate the model's performance. 

Input Layer: 

Size: Number of channel coefficients (from the 
channel matrix) + Number of optimal phase shift values HF, 

Φv. 

Type: Dense. 

Hidden Layers: 

Similar to the first model but tailored to handle the 

increased complexity of predicting data rates. 

Output Layer: 

Size: 1 (representing the predicted data rate). 

Type: Dense with a linear activation (since the data 

rate is continuous). 

Loss Function: MSE or any suitable regression loss, 

depending on the nature of the data. 
 

3.2  Train the Deep Neural Networks 
 
3.2.1  Train Cascaded Channel: 
 

Algorithm 1: Phase Shift Estimation for Cascaded 

Channel 

Procedure Train Phase Shift Cascaded 
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1. Input: dataset consisting of HT,K,R (Cascaded 

Channel matrix), K (RIS elements), Φ _true (True 

phase shifts) 

2. i = 0 (initial epoch) 

3. Output: Φ (Estimated optimal phase shifts) 

4. Begin: 

5. Initialize Cascaded Network: Input (|HT,K,R | + |K| 
nodes) -> Hidden Layers -> Output (|K| nodes) 

6. Initialize optimizer (e.g., Adam) 

7. Initialize loss function = Mean Square Error 

8. While i < max epochs: 

9. For each batch in a dataset: 

10. Extract batch_ HT,K,R, batch K, batch_ Φ _true from 

batch   

11. Φ  = Cascaded Network forward (batch_ HT,K,R, 

batch K) 

12. loss = loss function (Φ, batch_ Φ _true) 

13. Backpropagate loss and update network weights 

using an optimizer  

14. End For 

15. i = i + 1 

16. End While 

17. Return Φ 

18. End Procedure 

 

Algorithm2: Beamforming Optimization for 

Cascaded Channel 

Procedure Train Beamforming Cascaded 
1. Input: dataset consisting of HT,K,R (Cascaded 

Channel matrix), Φ  _cascaded (Phase shifts for a 

cascaded channel from the previous network), C true 

(True data rates) 

2. i = 0 (initial epoch) 

3. Output: C (Estimated high capacity (data rates)) 

4. Begin: 

5. Initialize Beamforming Network Cascaded: Input 

(|HT,K,R | + | Φ _cascaded| nodes) -> Hidden Layers -> 

Output (1 node for data rate) 
6. Initialize optimizer (e.g., Adam) 

7. Initialize loss function = Mean Square Error 

8. While i < max epochs: 

9. For each batch in a dataset: 

10. Extract batch C cascaded, batch_ Φ _cascaded, batch C true 

from batch 

11. C= Beamforming Network Cascaded forward 

(batch C cascaded, batch Φ cascaded)       

12. loss = loss function (C, batch C true) 

13. Backpropagate loss and update network weights 

using an optimizer       
14. End For 

15. i = i + 1 

16. End While 

17. Return C 

18. End Procedure 

 
3.2.2 Train Separate Channel: 

 

Algorithm 3: Phase Shift Estimation for Separate Channel 

 

Procedure Train Phase Shift Separate 

1. Input: dataset consisting of HT,K (Transmitter to 

RIS channel), HK,R (RIS to Receiver channel), R 

(RIS elements), Φ_true _Tx (True phase shifts for Tx-

RIS), Φ_ true_ Rx (True phase shifts for RIS-Rx) 

2. i = 0 (initial epoch) 

3. Output: Φ Tx, Φ Rx (Estimated phase shifts for both 

channels) 
4. Begin: 

5. Initialize Separate Network Tx: Input (|HT,K | + |K| 

nodes) -> Hidden Layers -> Output (|R| nodes) 

6. Initialize Separate Network Rx: Input (|HK,R | + |K| 

nodes) -> Hidden Layers -> Output (|K| nodes) 

7. Initialize optimizer (e.g., Adam) 

8. Initialize loss function = Mean Squared Error 

9. While i < max epochs: 

10. For each batch in a dataset: 

11. Extract batch HT,K, batch_ HK,R, batch K, batch Φ_ true_ 

Tx, batch Φ_ true _Rx from batch    

12. Φ Tx=Separate Network Tx forward (batch_ HT,K, 
batch K) 

13. Φ Rx=Separate Network Rx forward (batch_ HK,R, 

batch K) 

14. loss Tx = loss function (Φ Tx, batch Φ _true _Tx) 

15. loss Rx = loss function (Φ Rx, batch Φ_ true _Rx) 

16. Backpropagate loss Tx and update Separate Network 

Tx weights using an optimizer 

17. Backpropagate loss Rx and update Separate Network 

Rx weights using an optimizer  

18. End For 

19. i = i + 1 
20. End While 

21. Return Φ Tx, Φ Rx 

22. End Procedure 

 

Algorithm 4: Beamforming Optimization for 

Separate Channel 

Procedure Train Data Rate Separate 

1) Input: dataset consisting of HT,K, HK,R, Φ Tx (Phase 

shifts for Tx-RIS), Φ Rx (Phase shifts for RIS-Rx), C 

true (True data rates) 

2) i = 0 (initial epoch) 

3) Output: C (Estimated data rates) 

4) Begin: 

5) Initialize Input Size = | HT,K | + | HK,R | + |Φ Tx| + |Φ 

Rx| 

6) Initialize Data Rate Network Separate: Input (Input 

Size nodes) -> Hidden Layers -> Output (1 node for 

data rate) 

7) Initialize optimizer (e.g., Adam) 

8) Initialize loss function = Mean Squared Error 

9) While i < max epochs: 

10) For each batch in a dataset: 

11) Extract batch HT,K, batch HK,R, batch Φ _Tx, batch Φ_ 

Rx, batch C true from batch      

12) combined input=concatenate (batch HT,K, 
batch HK,R, batch Φ_ Tx, batch Φ _Rx)   

13) C= Data Rate Network Separate forward 

(combined input) 

14) loss = loss function (C, batch C true) 

15) Backpropagate loss and update network weights 

using an optimizer   

16) End For 
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17) i = i + 1 

18) End While 

19) Return C 

20) End Procedure 

 

4. SIMULATION RESULTS 

This section assesses the effectiveness of the two time-

scale learning techniques presented. The simulation results 

are shown following a description of the channel environment 

configuration. We examine a RIS-assisted network in which 

M = 2 two-antenna users are connected to two BSs equipped 

with N = 2 antennas via a RIS with Kactive=8 and Kpassive=80 

components, table 1 shows all the simulation parameters used 

in two scenarios.  

To estimate all elements in the cascaded BS-RIS-UE 

channels, (N + 1) × K symbol times are required. Assuming 

users are randomly distributed within a 10 m radius circle, 

direct links between BS and UE are blocked (as depicted in 

Fig. 2). In all simulations described below, the channels 

exhibit Rician fading with a Rician factor Kk,n of 10 dB. 

Additionally, the phase shifts at every RIS element are 

quantized using three bits. Figure 8 illustrates the capacities 

of the RIS-MIMO network, featuring two antennas at the 

source and two at the destination. The results are shown for 

RIS elements with different quantities of K, namely 8, 32, and 
64. The results shown in Figure 8 demonstrate that both 

cascade and individual channels achieve high data rates about 

the signal-to-noise ratio, which is an impressive performance. 

As the quantity of elements (K) present in the reflecting 

surface increases, so does the capacity. They approached the 

ideal scenario where K = 8 and the cascade channel estimate 

performed better than attempting to anticipate the single 

channel. By the techniques outlined in Section III, 20,000 

frames of training data are produced to train neural networks 

Net1 and Net2. The average capacities are determined using 
a set of one thousand independent channel realizations after 

training. The outcomes of the suggested cascaded and 

separate approaches at the RIS are shown in Figure 8 for 

comparison. In every instance, it is evident that the proposed 

model attains more capabilities than the DDL [45]. We 

provide the outcome of a brute-force search for the best phase 

shift, specifically for K = 8. It is shown that the performance 

of the suggested DDL is comparable to that obtained using 

brute-force search. It is worth noting that getting the brute-

force search results for K = 32 and 64 is very challenging, if 

not unattainable, due to the substantial number of potential 

phase shifts (23×32 = 296 or 23×64 = 2192) that each set of 
channel realizations would have to traverse. 

 

Fig. 8. The capacity in the RIS-MIMO network with two 

antennas at the source node and two antennae at the 

destination node for cascaded, separate, double deep 

learning and optimal channel with different numbers of K 
elements. 

 
Fig. 9. Shows normalized path loss for two separate 

channels when the area between the node and another 

 

Table 1 The parameter setup for the RIS scenario. 
Parameters Values 

MIMO, RIS, BS, UE 2  x  2 , 1,2,2 

Distance of RIS-BS 100m 

Simulation Downlink 

RIS Controller BS BS1,BS2 

The Nearest Distance 
between   users and BS 

102m 

Links   BS1:RIS1*60,RIS1:UE1*110 
BS2:RIS2*60,RIS2:UE2*110 

Reflect Coefficient RIS 1 

User Velocity 50 m/s 

Width of Reflecting 
Elements 

0.012m 

Length of Reflecting 
Elements 

0.012m 

No.Elements RIS {8,16} 

Type of modulation OFDM 64 QAM 

Maximum Doppler 
frequency 

36 Hz, 200 Hz 

Noise model Gaussian Noise 

Sample frequency 3.84 MHz 

No. of Sub-carriers 72 

Time Slot 14 

Fading   Rician 

Channel Power Delay 
Profile 

TDL-A_45ns 

Channel Estimation 
Method 

Pilot Aided LS 

Pilot Pattern Downlink Diamond 

Receiver Type MIMO MMSE 

Frame Structure FDD 
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node(Meta-atom a) is equal to 4𝜆, 𝜆, 𝜆/2, 𝑎𝑛𝑑 𝜆/5 incoming 

wavelength with different degrees of angle 𝜃𝑠. 

 
Fig. 10. Shows normalized path loss for cascaded 

channels when the area between the node and another node 

(Meta-atom a) is equal to 4λ,λ,λ/2, and λ/5 incoming 

wavelengths with different degrees of angle 𝜃𝑠. 

 

 A similar trend can be seen in Figure 9 and Figure 
10, which demonstrates the normalized path loss performance 

against various observation angle values when K= 8. The rest 

of the simulation parameters are the same as in Fig. 8. Note 

that the spatial correlation in H with a = λ/2 is higher than 

when a =4λ. Fig. 3 indicates that the path loss performance 

improves when the channel matrix is spatially less correlated, 

i.e., for a =4λ case. In both cases, our scheme is preferable as 

it yields the estimated channels with higher quality. As for 

when the distance a was equal to the λ wavelength, the path 

loss was very high, but it was less than the case of λ/2 

wavelength and the worst performance compared to 4λ the 

wavelength. 
 

 
Fig. 11.  Shows the total channel gain depending on 

the distance of the source and destination from the RIS. 
 

 We see in Figure 11 that total channel gain is very 

high when we place the Reconfigurable intelligent surfaces at 

a distance close to the source or from the destination. The 

whole channel gain is highest when the reflective surface is 

entirely close to the source or from the target. That is when 

the distance between the RIS source and the RIS destination 

equals zero. The total channel gain decreases when the 

distance increases between the reflective surface and the 

source or the reflective surface and the target. 

 
Fig. 12. Illustrate the path LOS and NLOS with RIS and 

direct path. 

 

 Figure 12 Through simulation, we were able to 

calculate the signal focusing to know the difference between 
using LOS and NLOS and calculating the amount of data rate. 

In the first case, when using LOS, if we assume that there is 

no barrier between the transmitter and the receiver, the data 

rate will be very high, and even in the case of using reflective 

surfaces, the data rate will also be very high. The difference 

between them is small in this case. As for the second case, 

when using NLOS, if we assume that there is a block between 

the sender and the receiver, meaning that there is no direct 

path between them, we will be forced to use the reflective 

surface route. Here, the real difference will become apparent 

when using reflective surfaces, as the results give us a higher 

data rate using the smart reflected surfaces than the regular 
surface. 

 

 
Fig. 13. Illustrate the NMSE performance comparison of 

ADMM, CV-DnCNN, CBDNet, GAN-CBD, and MRDN with 

separate CS methods. 

 

Figure 13 compares the NMSE performance of the proposed 

PSBA-based separate channel estimators for different 

structures (e.g., CBDNet [40], GAN-CBDN[44], CV-
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DnCNN [41], MDRN[44]) and with existing conventional 

channel estimation methods (e.g., ADMM [42], PAPRFAC 

[43]). The simulation results average over 400 iterations for 

the proposed method. It can be observed that PSBA-HK,R,, and 

PSBA-HT,K can achieve better NMSE performance compared 

with GAN-CBD and CBDNet by 5.63 dB and 4.51 dB, 

respectively. Compared with CV-DnCNN, which is also 

based on CNN, as well as conventional ADMM and 
PAPRFAC, regardless of the significant performance 

comparison in NMSE, the lower complexity of PSBA allows 

it to be better applied. 

 

Fig. 14. Illustrate the NMSE performance comparison of 

ADMM, CV-DnCNN, CBDNet, GAN-CBD, and MRDN with 

cascaded CS methods. 

 

Figure 14 compares the different models, including the 

MRDN, CBDNet, and GAN-CBD. We can find that the 

PSBA-HT,K,R can achieve the best NMSE performance and 

fastest convergence. Because the PSBA-HT,K,R brings the 

advantage of judging the network, it performs better than the 

PSBA-HT,K, and PSBA-HK,R. The computational complexity 

of training and offline operation can be hugely reduced. Also, 

the robustness of the channel estimator to different scenarios 

is enhanced. The average running time of PSBA-HT,K,R (in 

seconds) is 0.0073, while the PSBA-HT,K and the PSBA-HK,R 

are 0.0096 and 0.0092 respectively, the computational 
complexity of training and offline operations for the PSBA-

HT,K,R can be reduced compared with the PSBA-HT,K and the 

PSBA-HK,R. However, for almost the same computational 

complexity, the PSBA-HK,R can achieve better NMSE 

performance and fast convergence than the PSBA-HT,K. But 

compared with the PSBA-HT,K,R, the improvement of network 

structure is not significant. 

5. CONCLUSION  

This letter proposed a new deep-learning network for joint 

phase shift and beamforming based on cascaded and separate 

channels in the RIS-MIMO network. We have proposed a 

two-stage channel estimation scenario for the RIS - MIMO 

communication system, where the cascaded channel between 

the BS-RIS-UE is estimated in the first stage, and the separate 

channel BS-RIS and RIS-UE is estimated in the second stage. 

We also presented a phase shift design and beamforming for 

the RIS, which approximately maximizes the channel gain for 

the user. We show the effectiveness of the proposed channel 

estimation methods and phase shift design through numerical 

simulations. The suggested method demonstrates 

commendable performance without requiring intricate 

optimization or resembling reinforcement learning. This 

quality renders it an appealing approach in the context of RIS 

phase shift networks and other systems encountering 

analogous scenarios. 
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