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Abstract

Emerging forecasting-aided state estimation (FASE) frequently encounters complicated parameter analysis and observation

calculation tasks, especially when confronted with intricate and uncertain scenarios. To this end, a concise FASE estimator

is developed by combining the precise depiction of dynamic state change and linear power flow approximation. Designing the

dynamic system state as a voltage perturbation vector around the nominal value, the forecasted state is firstly derived from

the linear approximation of power injection equation solutions. The state forecasting model relies solely on nodal impedance

information as the state transition matrix, eliminating the onerous parameter tuning effort. After that, the optimal filtered

state is efficiently obtained utilizing line power flow measurements, with branch admittance information to construct the

approximate observation matrix. Numerical simulation comparisons on a symmetric balanced 56-node distribution system

verify the performance of the proposed estimator in terms of accuracy and robustness.
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Abstract—Emerging forecasting-aided state estimation (FASE)
frequently encounters complicated parameter analysis and obser-
vation calculation tasks, especially when confronted with intricate
and uncertain scenarios. To this end, a concise FASE estimator
is developed by combining the precise depiction of dynamic
state change and linear power flow approximation. Designing the
dynamic system state as a voltage perturbation vector around
the nominal value, the forecasted state is firstly derived from
the linear approximation of power injection equation solutions.
The state forecasting model relies solely on nodal impedance
information as the state transition matrix, eliminating the onerous
parameter tuning effort. After that, the optimal filtered state
is efficiently obtained utilizing line power flow measurements,
with branch admittance information to construct the approxi-
mate observation matrix. Numerical simulation comparisons on
a symmetric balanced 56-node distribution system verify the
performance of the proposed estimator in terms of accuracy and
robustness.

Index Terms—Distribution networks, forecasting-aided state
estimation, approximate power flow, linear approximation.

I. INTRODUCTION

IN modern power distribution systems, the state estimation
(SE) plays a crucial role in ensuring reliable operation

and enhancing the intelligence level [1]–[3]. However, the
power system undergoes a dynamic changing process with
load variations followed by generation adjustments, posing
significant challenges for normal operating conditions [4]. In
particular, with the uncertain fluctuations in power scheduling
and increased participation of distributed generations (DGs),
the system state may experience sudden changes due to their
stochastic and intermittent characteristics. For instance, power
injection changes at the buses of load or DG can cause the
voltage phase angle to fluctuate rapidly in a short timeframe
[5]. Therefore, the forecasting-aided state estimation (FASE)
methods [6] are necessarily developed to predict and track the
dynamic system changing between multiple time scales.

For static SE tools, the current system state is estimated with
redundant measurements from the power system SCADA at
one specific time. Considering more dynamic drivers, i.e., load
and generation power variations, FASE estimators describe the
slow-time evolution of the static state within a period. Initially,
the naive FASE models only using one-step ahead forecasting
method were proposed [7], but the limited forecasting ability

restricted their performance. Then, the innovation analysis was
introduced to filtering stage to handle inaccurately forecasted
states and identify outliers simultaneously [8]. This contributed
to the classic FASE modeling paradigm encompassing state
transition-based forecasting and measurement-based filtering.

In state forecasting process, the time series analysis models
occupy an important position. A research summary on convert-
ing time series models to state space form can be found in [9].
Therein, Holt’s two-parameter exponential smoothing [10] and
auto-regressive (AR) models [11] are the most used to forecast
short-term system states. For example, accompanying the AR
prediction method, the optimal PMU placement is configured
to provide the filtered states of voltage and current amplitude
in [11]. Holt’s two-parameter exponential smoothing method
is employed to cooperate with the interactive multiple model
(IMM) algorithms and finally output the joint results in [12].
In [13], the Holt’s method combined with minimum error
entropy filtering provides abnormal operating situation estima-
tions considering sudden loads state changes and measurement
failures. And the spatial and temporal correlations of load and
DGs are considered in [4]. By estimating the probability den-
sity functions of Holt’s method-based state space, the accuracy
missed in linearization of nonlinear measurement equations is
improved in [14]. From above, the primary motivation behind
the improvements is to compensate for the shortcomings in
prediction ability, albeit at the increased cost of execution
complexity in the filtering process. Even when more robust
prediction models account for additional uncertain factors [2],
[13], [15], [16], their statistical models necessitate extensive
parameter tuning to align with historical data under implicit
assumptions, which thwarts an adaptive application.

In state filtering process, the filtered state along with
power measurements are interrelated within the power flow
equations. Given the power measurements of generators and
loads, voltage values obtained from power flow solutions
effectively describe the operational states [17]. However, di-
rectly obtaining analytic solutions to the power flow equation
poses a challenging task due to the intractable nonlinear term
[18]. Especially in a distribution power system where the
feeders are not purely inductive, voltage magnitude and phase
angle are entangled within the power flow equations. Thus,
explicit approximate solutions of nonlinear power equations
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are proposed with the practical linearization assumption. For
example, linear approximations of power flow solutions in
distribution networks with the fixed point theorem is studied
in [18], namely the system state can be approximated based
on power flow or injection measurements without too much
effort. Then, the false data injection cyber-attacks based on
that are analysed in [19]. The approximation of optimal power
flow solution is investigated in [20]–[22], primarily reduced
model complexity without sacrificing accuracy. However, the
above are all bound in static SE without considering the
dynamic forecasted-aid factors. On the other hand, the precise
measurement scheme is also introduced to improve the state
filtration efficiency. For example, the performance assessment
of filtering correction through only PMU measurements is
provided in [11], and the mixed measurements with RTU
are studied in [23] to handle asynchronous characteristics
and improve computational accuracy. But the realistic cost
of high-precision meters hinders its widespread application.
Therefore, to solve aforementioned problems, it is worth
incorporating dynamic factors into the performance advantage
of approximate power flow models to develop the lightweight
FASE estimator.

In this paper, we propose an efficient and concise FASE esti-
mator based on approximate linear power flow models (APF-
FASE). The goal is to introduce dynamic power variations
into the proposed approximate power flow model and integrate
them into the FASE framework for explicitness and efficiency.
The proposed estimator derives the approximate power flow
solutions as the predicted and filtered states without much
effort. This approach is sufficient for normal operating sce-
narios and aids in mitigating the adverse effects of sudden
state changes and false measurements. The contributions of
this paper are summarized below.

1) We design real and imaginary parts of a voltage pertur-
bation vector around the nominal value as the system
dynamic variable to replace the overall expression of
nodal voltage. More detailed depictions of state changes
are beneficial for improving estimator accuracy. In ad-
dition, its robustness against sudden state changes and
false measurements is validated.

2) Different from most existing works, the proposed esti-
mator employs an approximate power injection model in
forecasting stage incorporating with the dynamic power
variations. The concise forecasting model is only based
on nodal impedance information, eliminating the com-
plex parameter-matching processes in comparison with
the traditional time series analysis models. Numerical
results demonstrate that voltage states can be accurately
forecasted with the dynamic linear approximation.

3) For state filtering, the approximate line power flow
measurement equation is selected instead of traditional
nonlinear power flow formulas. In close collaboration
with the proposed prediction model, state filtering can be
implemented using only line power flow measurements
and branch admittance information. Numerical results
demonstrate that the filtering performance is compara-
ble to full-information nonlinear equations but without

iterative complexity of nonlinear calculations.
The rest of this paper is organized as follows. Section II

describes the mathematical models of single-phase feeder and
FASE in power distribution systems. Section III introduces
the static approximations to distribution system state based on
power injection and flow measurements. Section IV presents
the proposed dynamic FASE estimator with the approximate
system state. The numerical simulation results based on IEEE
test feeder with different operational scenarios are discussed
in Section V, and the conclusion is rendered in Section VI.

II. MATHEMATICAL MODELING

In this paper, the following notations are used. Ordinary
symbols denote scalar quantities in the main text, and vectors
or matrices are shown in bold.

R space of real-valued
C space of complex-valued
Re real part of a complex number
Im imaginary part of a complex number
[·]T matrix transpose
[·]∗ complex conjugate of a complex number
| · | magnitude a complex number
Diag(·) operator of diagonalizing a vector

A. Single-Phase Feeder Model

The system is assumed to be a portion of a symmetric and
balanced distribution network connected to the grid at one
point, where the single-phase feeder model is adopted in [21].

Power Injection at Bus: Suppose a power distribution system
with n+ 1 buses is collected in the set N ≜ {0, 1, . . . , n}.
The slack bus is located in bus 0, connected to the power
grid delivering electricity to the following nodes. Modeling the
other nodes in the network as the PQ buses, the power flow
expression with complex power injections can be represented
in matrix-vector form as

SN = diag(V )I∗, (1)

where V = [V1, ..Vi, ..Vn]
T is the nodal voltage vector and

Vi = |Vi|∠θi ∈ C. I = [I1, ..Ii, ..In]
T is the nodal current

vector, and Ii ∈ C denotes the current injected into bus i.
With Kirchhoff’s current law and slack bus voltage V0e

jθ0 ,
the nodal current for all buses is presented as[

I0
I

]
=

[
y Y

T

Y Y

] [
V0e

jθ0

V

]
. (2)

I0 denotes the current injected into the slack bus. The dimen-
sions of each block in the nodal admittance matrix are Y ∈
Cn×n, Y ∈ Cn, and y ∈ C, respectively.

Power Flow in Branch: All branches in the power distribu-
tion system are contained in the set L ≜ {1, ..k, .., l}, where
k ∈ L is represented by a set of two nodes as k = {i, j}. Let
IL = [I1, ..Ik, ..Il]

T, where Ik ∈ C denotes the line current
in branch k. Then, the complex power flow of each line in L
can be presented as

SL = diag(VL)I
∗
L, (3)
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where VL = [V1, ..Vk, ..Vl]
T is the branch voltage vector with

entries Vk = Vi ∈ C for k = {i, j}. For the same structural
expression as (2), the branch current and voltage relationship
is represented as

IL =
[
YL0 YLN

] [ V0e
jθ0

V

]
, (4)

where blocks YL0 ∈ Cl×1 and YLN ∈ Cl×n combining into
the branch admittance matrix.

B. FASE Model

Under normal operating conditions, the power system is
generally maintained in quasi-steady states. In other words, the
system state experiences a gradual change due to smooth and
slow bus power variations. To perceive this changing process,
the model building of FASE delves into the dynamic evolution
of static system state by combining real-time measurements.
The dynamic state-space model of FASE is represented in the
following discrete form:

xk+1 = F kxk + gk +wk, (5)
zk = hk(xk) + vk, (6)

where k is the time sample; xk represents the system state
vector, Fk is the state transition matrix; gk is the trend behav-
ior vector of the state trajectory; zk is the measurement vector;
functions hk(·) give the nonlinear measurement relationship
between state variables and meters; wk is a Gaussian process
noise vector with zero mean and Qw,k covariance; vk is a
Gaussian measurement error vector with zero mean and Rv,k

covariance, and worthy noting that uncertainties factors wk

and vk are assumed to be uncorrelated.
As mentioned in introduction, time series analysis models

[16], [24]–[26] have been widely used to interpret the state
forecasting process in (5) with time evolution. However, man-
ually selecting Fk and gk based on prior experience becomes
a tough task, as parameters need to be statistically estimated to
account for specific scenarios following extensive simulations.
In (6), the measurement functions hk(·) typically represent the
standard real and reactive power observation of node power
injection or line power flow. With the advancement of PMU
technology, direct measuring states of voltage magnitude and
phase angle are also possible [27], [28]. However, the exten-
sive collection of real-time observations may not only raise
meter installation costs but also lead to filtering information
redundancy.

III. STATIC APPROXIMATIONS TO SYSTEM STATES

With a voltage perturbation vector around the nominal value
replacing the overall depiction of the nodal voltage state, we
first propose the linear approximations of power flow solutions
based on power injection and power flow measurements. Then,
the static approximate system states are obtained from a single
scan of measurements.

A. Approximating State From Power Injection Measurements

The complex power injections in (1) can be succinctly
expressed using (2),

SN = diag(V )I∗

= diag(V )
(
Y ∗V ∗ + Y

∗
V0e

−jθ0
)
.

(7)

For effectively deriving voltage states in the power-balance
expression of (7), an optimal solution is assumed by V ⋆ ∈ Cn,
consisting of the priori-determined nominal voltage vector Vn

and a perturbation vector ∆V , i,e., V ⋆ = Vn +∆V .
Substituting V ⋆ into (7) and expanding the terms, SN is

expressed with Vn and ∆V as

SN = diag(V ⋆)(Y ∗(V ⋆)∗ + Y
∗
V0e

−jθ0)

= diag(Vn +∆V )(Y ∗(Vn +∆V )∗ + Y
∗
V0e

−jθ0)

= diag(Vn)(Y
∗V ∗

n + Y
∗
V0e

−jθ0)

+ diag(∆V )Y ∗V ∗
n + diag(∆V )Y ∗∆V ∗

+ diag(∆V )Y
∗
V0e

−jθ0 + diag(Vn)Y
∗∆V ∗.

(8)
From the above formulas, we can recognize that

diag(∆V )Y ∗V ∗
n = diag(Y ∗V ∗

n )∆V ,
diag(∆V )Y ∗∆V ∗ = diag(Y ∗∆V ∗)∆V ,

diag(∆V )Y
∗
V0e

−jθ0 = V0e
−jθ0 diag(Y

∗
)∆V .

Then, (9) is reorganized as

SN = diag(Vn)(Y
∗V ∗

n + Y
∗
V0e

−jθ0)

+
(
diag(Y ∗V ∗

n ) + diag(Y ∗∆V ∗)

+ V0e
−jθ0 diag(Y

∗
)
)
∆V + diag(Vn)Y

∗∆V ∗.

(9)

Based on structure expression of (9), the nominal voltage
vector Vn can be customized as

Vn = −Y −1Y V0e
jθ0 , (10)

where Y ∈ Cn×n is invertible. Vn in (10) is also the non-zero
solution to (7) when SN = 0, and now the current injections
at buses are zeros. It can be referred to as the no-load voltage
in power distribution systems [29]. And consider Y and Y in
the nodal admittance matrix satisfying

Y −1Y = −1, (11)

where 1 is the vector of all ones. Substituting (10) into (9),
we can get

SN = diag(Y ∗∆V ∗)∆V + diag(Vn)Y
∗∆V ∗. (12)

Neglecting the intractable quadratic term of ∆V for linear
analysis, the approximate voltage perturbation vector based on
power injection measurements is obtained as

∆V ≈ Y −1 diag(1/V0e
−jθ01)S∗

N . (13)

Then, using (10) and (13), the following remark is made.
Remark 1: Based on the power injection measurements, the

optimal voltage state vector is approximated as

V ∗ = Vn +∆V

≈ V0e
jθ01+ Y −1 diag(1/V0e

−jθ01)S∗
N .

(14)
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B. Approximating State From Power Flow Measurements

The complex power flows in (3) can be succinctly expressed
using (4), while substituting the assumed optimal solution V ⋆,

SL = diag(VL)I
∗
L

= diag(VL)
(
Y ∗
L0V0e

−jθ0 + Y ∗
LN (Vn +∆V )∗

)
.

(15)

With the same choice of Vn = V0e
jθ01 in (10) and

rearranging the terms in (15), we can get

∆V = Y −1
LN diag(1/V ∗

L )S∗
L −Y −1

LNYL0V0e
jθ0 −Vn. (16)

In literature on operation and control of power distribution
networks, simple analyses are often performed for power lines,
assuming a minor difference in voltage amplitude or phase
angle between two nodes [18], [19], [30]. That is, we set the
voltage at the beginning of each line equal to V0e

jθ0 , i.e.,
VL = Vn. Simultaneously, consider YL0 and YLN in the
branch admittance matrix satisfying

Y −1
LNYL0 = −1. (17)

Rearranging the terms in (16), the approximate voltage pertur-
bation vector based on power flow measurements is obtained
as

∆V ≈ Y −1
LN diag(1/V0e

−jθ01)S∗
L, (18)

where the pseudo-inverse operation is performed on admit-
tance matrix YLN ∈ Cl×n.

Then, using (10) and (18), the following remark is made.
Remark 2: Based on the power flow measurements, the

optimal voltage state vector is approximated as

V ∗ = Vn +∆V

≈ V0e
jθ01+ Y −1

LN diag(1/V0e
−jθ01)S∗

L.
(19)

To summarize the preceding, static approximate states (14)
and (19) explicitly present linear approximations of the power
flow solutions, i.e., nodal voltage states, from power injection
and power flow measurements.

IV. DYNAMIC APPROXIMATIONS TO FASE

Based on Remark 1 and 2 in Section III, the linear approxi-
mations are introduced into the dynamic FASE framework. For
state forecasting, we derive the system state prediction model
with only nodal impedance parameters from the approximate
model based on power injection measurements. In the filtering
process, the observation equation is from the approximation
based on power flow measurements, where an observation ma-
trix composed of branch admittance parameters is constructed.

A. State Forecasting

Considering the dynamic elements, power variations in load
and DG buses are defined as the trend behavior vector in (5),
driving the transition of the voltage state. Hence, a full system
state Ξ = [∆V T ST

N ]T can be jointly explored including the
nodal voltage perturbation vector and power injections. Based
on the approximate power balance expression in (13), the full
derivation on the full system state indicates as follows:

d∆V = Y −1 diag(1/V0e
−jθ01)dS∗

N , (20)

where the perturbation vector replaces complete voltage profile
and is represented as the algebraic state x in (5). The injected
power variations at system nodes act as a driver, influencing
the trend behavior of the perturbation vector, as defined by g
in (5).

In rectangular coordinates, the perturbation vector is suc-
cinctly expressed as ∆V = ∆VRe + j∆VIm, where ∆VRe

and ∆VIm ∈ Rn represent the real and imaginary components
of ∆V , respectively. Denote the inverse of nodal admittance
matrix by impedance matrix, i.e., Y −1 = (R+jX). With the
choice of V0 = 1 p.u. and θ0 = 0◦ for the slack bus voltage,
and SN = P + jQ, (20) is reorganized in rectangular form
to get

d(∆VRe + j∆VIm) = (R+ jX)d(P − jQ). (21)

Expanding and rearranging the terms in (21), the derivations
on real and imaginary components of ∆V are obtained as[

d∆VRe

d∆VIm

]
=

[
R X
X −R

] [
dP
dQ

]
. (22)

Therefore, for two adjacent operating points in a short time
interval, the state transition process is derived from (22) as[

∆VRe

∆VIm

]
k+1

=

[
∆VRe

∆VIm

]
k

+

[
R X
X −R

] [
dP
dQ

]
k

+wk,

(23)
where wk becomes the linearization error between two oper-

ation points as process noise. And the dynamic algebraic state
is x = [∆V T

Re ∆V T
Im]T ∈ R2n×1. The active and reactive

power variations are denoted by dSN = [dP T dQT ]T ∈
R2m×1. Based on the structure of Kalman filtering and (23),
a priori forecasted state x̃k+1 and its error covariance matrix
Mk+1 will be obtained from last time sample k as

x̃k+1 = x̂k + T dSN , (24)

Mk+1 = Σk +Qw,k, (25)

where

T =

[
R X
X −R

]
. (26)

x̂k is from the optimal estimate (a posteriori estimate) at time
sample k with its covariance matrix Σk, and the constant
matrix T consists of the nodal resistance and reactance block
entries.

Remark 3: Based on information of the nodal impedance
components R and X , the real and imaginary parts of ∆V
can be predicted as stated in (24), with the updating of priori
error covariance matrix Mk+1 in (25).

B. State Filtering

Determining an efficient observation equation is essential
to the state filtering process. Regardless of the measurement
type, power flow models always run through the functional
dependency between real-time measures and state variables.
In this paper, we utilize the approximate power flow model in
(18) to execute the state update step:

S∗
L = diag(V0e

−jθ0)YLN∆V , (27)
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Fig. 1. Forecasted PV factor and load factor profiles.

where YLN = GL + jBL represents the branch admittance
matrix, and SL = PL + jQL. Consistent with the expression
of ∆V and parameter settings of slack bus in state forecasting,
the approximate measurement function based on (27) is built
as [

PL
QL

]
k

=

[
GL −BL
−BL −GL

] [
∆VRe

∆VIm

]
k

+ vk, (28)

where the measurement vector is zk = [P T
L QT

L]
T ∈ R2l×1.

The active and reactive branch flow measurements are included
along with their corresponding noises vector vk. The linear
approximate mapping relationship between branch flow mea-
surements and states is embodied by the constant observation
matrix H , given as

H =

[
GL −BL
−BL −GL

]
. (29)

Then, the updated x̂k+1 is computed:

x̂k+1 = x̃k+1 +Kk+1(zk+1 − z̃k+1), (30)

where

Kk+1 = Mk+1H
T (HMk+1H

T +Rv,k+1)
−1, (31)

z̃k+1 = Hx̃k+1. (32)

The posterior covariance matrix Σk+1 is updated as

Σk+1 = (I −Kk+1H)Mk+1. (33)

Remark 4: Based on information of the branch admittance
components GL and BL, the real and imaginary parts of ∆V
can be updated as stated in (30), with the updating of posterior
error covariance matrix Σk+1 in (33).

In summary, the optimal estimation of the voltage perturba-
tion vector ∆V is approximated by the APF-FASE estimator.
Furtherly, combined with the priori determined nominal vector
Vn, dynamic voltage states are entirely depicted. Throughout
the proposed estimator, it is necessary to consider the uncer-
tainty of injected power variations SN between adjacent time
instants, which has been included in simulations. Powerful
forecasting tools on load and DG variations, which are not
the focus of this paper but can be referenced for further
information, are available in the published literature [31]–[33].

TABLE I
STATE PREDICTION AND FILTERING CONFIGURATION

FOR THE SIX ESTIMATORS

Method
Stage

State Forecasting State Filtering

DC-FASE-I
Holt’s method

θ, DC PJ and PF
EKF-FASE-I |V |, Nonlinear PJ and PF
APF-FASE-I |V |, Remark 1 and 2
DC-FASE-II d(DC PJ)/d(x, SN ) θ, DC PF
EKF-FASE-II d(Nonlinear PJ)/d(x, SN ) |V |, Nonlinear PF
APF-FASE-II Remark 3 |V |, Remark 4

V. SIMULATION RESULTS

To validate the proposed FASE method in previous sections,
a symmetric balanced 56-node power distribution system [18],
modified from the IEEE 123-node test feeder, is adopted for
testing. Suppose that a grid connected PV system with a rated
power of 150kWp is located at bus 15. The system states
are dynamically estimated every 15 minutes following the
PV and load variations. The PV and load data are provided
by multiplying forecasted PV and load factors, as illustrated
in Fig. 1, with the peak PV capacity and the peak load,
respectively, while adding a random fluctuation with a linear
trend (1%-3%). In total, 96 dynamic processes throughout one
day are included. All simulations are performed on a standard
commercial notebook equipped with an Intel i5 core at 1.7
GHz and 8 GB RAM, running the Matlab environment.

A. Performance Comparisons

The efficiency and robustness of nonlinear and linear power
flow model-based FASE estimators are included in com-
parisons under different simulation scenarios. Different state
forecasting and filtering configurations for the six estimators
are shown in Table I, where |V | and θ represents the mea-
surement of voltage magnitude and phase angle; nonlinear
PJ and PF represents the nonlinear measurement equations
of power injection and power flow in filtering stage (i.e.,
extended Kalman filter, EKF [28]). For EKF-FASE-II and DC-
FASE-II, the full system state derivation on the nonlinear PJ
and DC PJ equations are implemented as the state transition
model in forecasting stage. Different combinations of settings
demonstrate the performance of the proposed APF-FASE
estimator on using voltage perturbation as the state variable,
utilizing power injection variations in the prediction stage, and
linearizing power flow equations in the filtering stage.

For the classical Holt’s linear method, validation parameters
in [28] are used, which set a0 = x0, b0 = 0, and the
two fractional parameters set αt = 0.8, βt = 0.5. The state
noise covariance matrix is Qw,k = diag(QV ,Qθ). The larger
noise Qθ = (4 × 10−4)I is set for phase angle compared
to the QV = (10−4)I for voltage magnitude, where more
nonlinearity is induced by phase angle to highlight specific
advantages of the APF-FASE. The standard deviation σi in
measurement noises matrix Rv,k can be assumed as σi =
(0.02a+ 0.0052fs)/3, where a is the measured value and fs
is the full scale value of instrumentation [19]. In this paper, the
standard deviation of measurement noise in power injection,
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TABLE II
COMPARISON OF MAE FOR VOLTAGE MAGNITUDE AND PHASE ANGLE

IN STATE FORECASTING AND FILTERING

Method

Stage State Forecasting State Filtering

|Ṽ | (p.u.) ∠θ̃ (◦) |V̂ | (p.u.) ∠θ̂ (◦)

DC-FASE-I - 0.3619 - 0.3380

EKF-FASE-I 0.0024 0.1116 1.30E-4 0.0064

APF-FASE-I 0.0023 0.1079 4.17E-4 8.44E-4

DC-FASE-II - 0.3388 - 0.3380

EKF-FASE-II 0.0017 0.1378 1.79E-5 1.44E-3

APF-FASE-II 4.16E-4 0.0010 4.10E-4 8.43E-4

power flow and voltage magnitude is 0.01, 0.008 and 0.03, re-
spectively. For all estimators, voltage magnitude measurements
are also integrated at the node set {1, 9, 16, 26, 32, 36, 39, 46},
and setting of V0 = 1 p.u. and θ0 = 0◦ for the slack bus
voltage. Use PV and load data as input to power flow analysis
to get true system states. And the power flow measurements
are derived from the successful power flow calculation while
adding random Gaussian noise (zero mean and 1% standard
deviations). Four scenarios primarily associated with FASE ap-
plications are consider to investigate estimators performance:

• Normal conditions: The power system operates under a
quasi-stationary regime that experiences changes caused
by smooth, slow load and DG variations.

• Limited real-time measurements: Different numbers of
power injection and power flow measurements are con-
figured, with redundancy ranging from 1.2 to 1.8.

• Sudden state changes: In state forecasting, unpredictable
sudden changes can occur in power injections, such as
an abrupt increase in a load bus.

• Occurrence of outliers: In state filtering, false data can be
injected into measurements, such as stealthily tampered
by cyber-attacks.

The averaged results over 100 independent experiments are
statistical on the state forecasting and filtering process by the
following two metrics:

1) MAE: The mean-absolute-error of forecasted and filtered
voltage magnitude and phase angle. Take the forecasted volt-
age magnitude |Ṽ | as an illustration,

|Ṽ |MAE =
1

NDC

NDC∑
j=1

1

n

n∑
i=1

∣∣∣|Ṽi| − |Vi|
∣∣∣ . (34)

2) MRE: The mean-relative-error of forecasted or filtered
voltage magnitude and phase angle. Take the forecasted volt-
age magnitude |Ṽ | as an illustration,

|Ṽ |MRE =
1

NDC

NDC∑
j=1

1

n

n∑
i=1

∣∣∣|Ṽi| − |Vi|
∣∣∣ / |V0 − |Vi|| . (35)

In above formulas, Vi and Ṽi represent the true and fore-
casted voltage state at bus i, respectively. NDC is the total
number of dynamic change times. And the corresponding
metric for filtered state is presented by substituting V̂ for Ṽ .

TABLE III
COMPARISON OF MRE FOR VOLTAGE MAGNITUDE AND PHASE ANGLE

IN STATE FORECASTING AND FILTERING

Method

Stage State Forecasting State Filtering

|Ṽ | (p.u.) ∠θ̃ (◦) |V̂ | (p.u.) ∠θ̂ (◦)

DC-FASE-I - 81.80% - 75.64%

EKF-FASE-I 12.04% 27.24% 0.73% 1.43%

APF-FASE-I 10.90% 21.33% 1.36% 0.27%

DC-FASE-II - 76.21% - 76.10%

EKF-FASE-II 8.41% 42.25% 0.08% 0.31%

APF-FASE-II 1.36% 0.38% 1.34% 0.34%

(a) Voltage Magnitude

(b) Phase Angle

Fig. 2. Comparison results of estimating voltage magnitude and phase angle
at bus 4 in the 56-node test system. (a) Voltage Magnitude. (b) Phase Angle.

B. Results and Discussion

1) Normal Conditions: Smooth and slow load variations
are considered in this case with normal measurements. With a
complete measurement configuration, i.e., power injection and
power flow measurement are available in each bus and branch,
the statistical MAE and MRE of the forecasted and filtered
voltage states for all estimators are listed in Table II-III. Due
to the approximation assumption that all voltage magnitudes
are at 1 p.u. in DC power flow model, only the phase angle
results of DC-FASE-I and II are considered as the reference
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(a) Voltage Magnitude (b) Phase Angle

Fig. 3. Comparison of estimated states for all buses at final time sample. (a) Voltage Magnitude. (b) Phase Angle.

TABLE IV
DIFFERENT MEASUREMENT CONFIGURATIONS FOR TEST SYSTEM

Redundancy NoV1,2 NoPJ 3 NoPF

1.2 8 52 72

1.4 8 60 86

1.6 8 72 96

1.8 8 84 106
1 NoV: Number of voltage measurements; NoPJ: Number of power in-

jection measurements; NoPF: Number of power flow measurements.
2 Tests without voltage measurements for APF-FASE-II.
3 Forecasted power injection pseudo-measurements are limited in state

forecasting stage of EKF-FASE-II and APF-FASE-II.

benchmark for linearization techniques.
Using the classical Holt’s linear method as state prediction

model, the APF-FASE-I that defines the voltage perturbation
vector as state variable can provide more refined depiction of
the voltage state changes and obtain more accurate prediction
results than EKF-FASE-I and DC-FASE-I. Meanwhile, the
approximate measurement equations in APF-FASE-I (Remark
1 and Remark 2) sustain superior filtering capability against
the nonlinear observation of phase angles in EKF-FASE-I, and
comparable estimation results on voltage magnitudes are ob-
tained. For power injection model-based state forecasting, the
approximate state transition model (Remark 3) in APF-FASE-
II efficiently presents the state change process accompanying
the power injection variations, where the accurate forecasting
performance contribute to reducing filtering difficulty.

Note that, the filtering results of APF-FASE-II keep pace
with APF-FASE-I, where the filtering process is only based
on the proposed approximate power flow model (Remark
4) and magnitude measurements. Although the EKF-FASE-II
demonstrates the optimal filtering results by utilizing com-
prehensive power flow equations, the APF-FASE-II relying
on the linear approximations closely trails. For example, the
voltage fluctuations of bus 4 for all estimators are shown in
Fig. 2. The comparison of the estimated states at the final step
for all buses is presented in Fig. 3. It is intuitive to see that
all estimators closely track the trajectory of voltage changes,
whether in terms of the voltage magnitude or phase angle.
However, the APF-FASE-II attains unique advantages, such
as explicit parameter presetting for state transition model and
the absence of computational complexity associated with the
measurement Jacobian matrix.

(a) Voltage Magnitude (b) Phase Angle

Fig. 4. MAE curves for forecasted states with limited real-time measurements.
(a) Voltage Magnitude. (b) Phase Angle.

(a) Voltage Magnitude (b) Phase Angle

Fig. 5. MAE curves for filtered states with limited real-time measurements.
(a) Voltage Magnitude. (b) Phase Angle.

2) Limited Real-time Measurements: In actual power sys-
tems, the real-time measuring availability is subject to time-
varying and installation conditions, which directly decide the
observability of the system state and whether it can be timely
estimated. Therefor, simulations with different measurement
redundancies ranging from 1.2 to 1.8 are performed between
estimators, where the specific configuration is shown in Ta-
ble IV. For the EKF-FASE-I and APF-FASE-I, both power
injection and power flow real-time measurements in filtering
stage are limited. Especially for the EKF-FASE-II and APF-
FASE-II, the availability of forecasted power variations is
limited during the state forecasting, and the real-time power
flow measurements are limited in state filtering. Furthermore,
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(a) Voltage Magnitude (b) Phase Angle

Fig. 6. Comparison results of estimating voltage magnitude and phase angle at bus 4 with sudden load happens. (a) Voltage Magnitude. (b) Phase Angle.

simulations without using voltage measurements are tested
for APF-FASE-II. The statistical MAE of the forecasted and
estimated states under different configurations are shown in
Figs. 4 and 5.

Through different configurations, the APF-FASE-II exhibits
competitive forecasting and filtering results for phase angles
containing more nonlinearities. Compared with the nonlinear-
based EKF-FASE estimators, the neglected quadratic term in
linear-based APF-FASE estimators inevitably dominates the
minuscule voltage magnitude estimation error, i.e., difference
at four decimal places. But it has no impact on handling
nonlinear phase angles. As the number of forecasted power
variations declines, the proposed prediction model based on
the linear approximate power injection equation (Remark 3) is
always demonstrated to maintain a better predictive capability
than classical Holt’s method, effectively relaxing the filtering
pressure with measurement deficiencies. Even when APF-
FASE-II excludes voltage measurements and relies solely on
power flow measurements (Remark 4), the filtering results
remain equivalent to APF-FASE-I. This promotes the proposed
APF-FASE-II estimator as easy to implement for practical
applications. Especially in real-world scenarios where real-
time measurements are scarce, assembling a limited set of real-
time power flow measurements and forecasted power injection
variations can effectively track dynamic system states.

3) Sudden State Changes: To investigate the effectiveness
of proposed method in handling sudden system state changes,
the estimation process of bus 4 is still selected as an example
to illustrate. Specifically, the real power injection at bus 4
is assumed to abruptly increase by ten times at the time
sample k = 32. For EKF-FASE-I and APF-FASE-I, mea-
surements of sudden changes in power injection are provided
at the sudden moment; for EKF-FASE-II and APF-FASE-II,
normal predicted power injection variations are still used in
forecasting stage without sudden changing value provided. All
other simulation settings remain unchanged from the normal
operation. The comparison of the estimated voltage magnitude
and phase angle is illustrated in Fig. 6.

It is obviously observed that all estimators have perceived

and tracked the sudden state change. Due to the sudden
change of real power at a load bus in the test system, the
closely relevant dynamic estimation of voltage angle at bus
4 experienced a larger fluctuation than the voltage magnitude
at the 32th time sample. Like the previous scenario results
of limited real-time measurements, the APF-FASE-II obtains
the most accurate phase angle and comparable voltage magni-
tude estimation results. The EKF-FASE-II, considering more
nonlinear information in power flow measurements, has the
most accuracy in estimating voltage magnitude. Even if the
sudden power information is prior obtained at the changing
moment, the voltage magnitude estimated by EKF-FASE-I and
APF-FASE-I is still lower than that of APF-FASE-II. It further
proves that the good tradeoff between the approximate power
injection-based state forecasting and the approximate power
flow-based filtering ability is enough to cope with sudden
system state changes without excessive filtering correction.

4) Occurrence of Outliers: To demonstrate the robustness
of the proposed method facing outliers occur in observations,
we assume that all the measurements related to bus 17 are sub-
ject to cyber-attacks at the time sample k = 40. These include
power injection measurements at P bad

17 and Qbad
17 , and power

flow measurements at P bad
17,18, Qbad

17,18, P
bad
17,33, Qbad

17,33, P bad
11,17,

and Qbad
11,17, which are stealthily tampered with ten times

from their original values. All other simulation settings remain
unchanged from the normal operation. The comparison results
are presented in Fig. 7, where the APF-FASE-II provides the
most accurate estimation results of both voltage magnitude
and phase angle at attacking time. Without considering the
bad data detection scheme in power systems, the APF-FASE-
II and EKF-FASE-II effectively weaken the adverse effect of
abnormal measurement values on estimation results due to
the accurate state prediction performance and the independent
relationship on false power injection real-time measurements.
In contrast, more vulnerabilities may be exposed by EKF-
FASE-I and APF-FASE-I because of the necessary power
injection measurements utilized in filtering stage.

Moreover, for APF-FASE-II, extensive simulations are per-
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(a) Voltage Magnitude (b) Phase Angle

Fig. 7. Comparison results of estimating voltage magnitude and phase angle at bus 12 with outlier measurements. (a) Voltage Magnitude. (b) Phase Angle.

formed with false power injection pseudo-measurements in the
prediction stage. With the increasing volume of false data, the
statistical MAE and MRE results during the forecasting stage
deteriorate accordingly. For example, as the proportion of false
forecasted data rises from 25% to 75%, the MAE of forecasted
states demonstrates an escalation from 0.0013 to 0.0044 for
voltage magnitude and from 0.0429 to 0.1767 for phase
angle, respectively. In any case, the accuracy of filtered states
consistently aligns with the results observed under normal
scenarios. The validity of the proposed measurement equation
based on the approximate power flow model is demonstrated
again.

VI. CONCLUSION AND FUTURE WORK

Tackling the difficulties in determining the parameters of
forecasting model and complicated selection of observations,
an efficient approximate dynamic model for FASE is proposed
in this research. The effectiveness of building a state transition
model based on the approximate model from power injection
measurements (Remark 1 and 3), and utilizing branch power
flow as observations based on the approximate model from
power flow measurements (Remark 2 and 4) are verified.
The numerical results show that the proposed method can
reduce the work required for model parameter adaptation
and measurement collection while accurately and robustly
obtaining system states, especially for voltage phase angles
with more nonlinear factors. In this work, an equivalent single-
phase model is adopted. Further attempts from this research
will be developed on multi-phase and unbalanced distribution
systems considering more complex conditions. Besides, it will
be an interesting and valuable topic to explore the flexible
distributed dynamic state estimation method for modern dis-
tribution systems based on the proposed lightweight structure
combined with a decentralized perspective.
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