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Abstract

With the increasing demand for customization, flow shop scheduling tends to process multi-variety small batch products.

Thus, there are frequent switches between batches. Frequent switchovers between different sets are required during batch

changeover, where machine setups may be necessary. This paper investigates scheduling optimization and work-in-process

inventory optimization problems in a hybrid flow shop with rolling processing requirements. Developing continuous processing

conditions to meet rolling processing requirements presents a significant challenge. In this work, continuous processing conditions

are derived. Subsequently, a linear programming model is designed to find an optimal solution for this scheduling problem.

Formulas for calculating work-in-process inventory are presented. To enhance work-in-process storage, a greedy algorithm with

bubble sort and a Q-learning algorithm with a modified ε-policy are proposed to find an optimized product sequence and

reduce work-in-process inventory, respectively. Numerical experiments evaluate the effectiveness and efficiency of the proposed

methods.
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Abstract

With the increasing demand for customization, flow shop scheduling tends to pro-
cess multi-variety small batch products. Thus, there are frequent switches between
batches. Frequent switchovers between different sets are required during batch
changeover, where machine setups may be necessary. This paper investigates
scheduling optimization and work-in-process inventory optimization problems in a
hybrid flow shop with rolling processing requirements. Developing continuous pro-
cessing conditions to meet rolling processing requirements presents a significant
challenge. In this work, continuous processing conditions are derived. Subsequently,
a linear programming model is designed to find an optimal solution for this schedul-
ing problem. Formulas for calculating work-in-process inventory are presented. To
enhance work-in-process storage, a greedy algorithm with bubble sort and a Q-
learning algorithm with a modified 𝜀-policy are proposed to find an optimized
product sequence and reduce work-in-process inventory, respectively. Numerical
experiments evaluate the effectiveness and efficiency of the proposed methods.
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1 INTRODUCTION

Due to the escalating global energy crisis and worsening environmental pollution, the automotive industry, as a critical sector
of energy consumption, plays a crucial role. The introduction of new energy vehicles contributes to reducing dependence on
non-renewable energy sources1, and in recent years, their demand has been steadily increasing, presenting new development
opportunities for automotive component companies. Currently, the manufacturing of automotive glass is undergoing a transition
from traditional large-scale processing to small-scale processing. However, in this process, switching between different types
of products often requires a significant amount of time for equipment debugging. To address this issue, it is advisable to preset
the debugging time during the equipment debugging stage. This ensures that the machine can seamlessly transition between
different products, achieving the goal of continuous production. This approach contributes to enhancing production efficiency,
enabling the automotive glass manufacturing sector to adapt more flexibly to changes in market demand.

In accordance with the actual conditions of the glass manufacturing workshop, the research problem can be defined as a
two-stage hybrid flow shop scheduling optimization problem. Automotive glass manufacturers produce a variety of glass types,
including windshields for sedans, rear windshields for vehicles, and side window glass for vehicles. Glasses intended for different
purposes undergo distinct production processes, and even glasses serving the same purpose have different production processes

0Abbreviations: WIP, work-in-process
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due to varying product adaptations, presenting challenges and difficulties to the production process. Typically, the production
of automotive glass involves five main processes: pretreatment, bending, polyvinyl butyral (PVB) stretching and coating, high
pressure, and final inspection packaging.During the first-stage pretreatment process, when transitioning from processing one
batch to another, equipment shutdown is required for debugging, indicating the necessity of setup time in the first stage. Through
the judicious arrangement of production plans, setup time for the bending process of other products can be omitted. In summary,
bending constitutes the first-stage process, while the remaining processes belong to the second stage.

In a typical manufacturing environment, a hybrid flow shop is applied in various production scenarios, including chemical,
electrical appliances, and other small-batch customized industrial products2,3,4,5. Among the various scheduling problems
in flow shops, the two-stage hybrid flow shop scheduling problem has been proven to be an NP-hard problem6 . Due to its
practical and theoretical significance, both academia and industry are continuously researching the two-stage hybrid flow shop
scheduling problem. However, issues with interruptible process constraints and rolling production requirements have not been
adequately explored3. In this paper, motivated by the scheduling challenges of real-world glass manufacturing workshops that
meet interruptible process constraints and rolling production demands, we investigate a two-stage hybrid flow shop scheduling
problem, considering optimization for both makespan and work-in-process (WIP) inventory.

1.1 Literature Review
In the past few decades, scheduling problems in industrial systems have garnered widespread attention from academia and
industry due to their indispensable role in improving production efficiency and reducing production costs7,8,9,10,11,12,13. The
research by Wang et al.8 focuses on minimizing energy consumption in a flexible job shop, characterized by its dynamic energy
features. The study conducted by Wang et al.9 concentrates on achieving both makespan and total energy consumption in a two-
stage hybrid flow shop where parallel machines exist in both the first and second stages. Li et al.10 addresses the issue of limited
waiting time in a two-stage hybrid flow shop problem and proposes a hybrid membrane computing metaheuristic to minimize
makespan. The research by Fan et al.11 aims to simultaneously minimize the arrival rate of different parts at the assembly stage
and the on-time delivery rate in a two-stage hybrid flow shop scheduling problem.

In addition to scheduling issues in the two-stage hybrid flow shop setting, the current trend in research focuses on increasing
the complexity and practical relevance of the model14,15,16,17. Researchers have introduced constraints such as multi-process
task scheduling15, resource constraints14,18 , interruptible process constraints19 , and setup time20,21. These typical constraints
extend the standard two-stage hybrid flow shop model to more complex yet practical problems. In situations where there is no
need to wait for processing due to high decay rates, these problems resemble uninterrupted processing.Specifically, the branch-
and-bound algorithm proposed by22 has successfully addressed large-scale two-stage no-wait problems. Its application scope is
broader, and computational efficiency is higher compared to23. Furthermore, Dong et al.24 considered a no-wait two-stage flow
shop scheduling problem with the first stage having multi-task flexibility. The objective is to minimize the maximum completion
time of all jobs.

Considering its significance and complexity, the two-stage hybrid flow-shop scheduling problem has been a focal point of
research for an extended period. Sheikh et al.21 proposed a mixed binary linear optimization model and an unconstrained math-
ematical formulation to minimize the makespan in a multi-stage assembly flow shop. Cai et al.25 introduced a collaborative
variable search method with seven neighborhood structures and two global search operators to optimize the two-stage hybrid
flow shop, aiming at maximizing the total agreement index and fuzzy makespan. Wang et al.26 formulated a mixed-integer lin-
ear program for calculating the total processing time of all jobs in the two stages. Zhao et al.27 investigated a non-waiting flow
shop scheduling problem involving sequence-dependent setup times with the goal of minimizing the completion time. However,
the product processing sequence in the aforementioned scheduling problem is fixed and cannot adapt to dynamic changes in
production plans and product types.

Optimizing work-in-process (WIP) inventory has emerged as a critical objective in scheduling optimization and minimizing
processing time28,29. Fan et al.11 proposed a mutated firefly algorithm for addressing the two-stage hybrid flow-shop scheduling
problem with two objective functions. Wang et al.26 employed a technique known as lot streaming, dividing large batches of
products into multiple smaller batches to reduce WIP inventory. Scheduling strategies based on priority, cycling, and WIP were
investigated to address both small-scale and large-scale flexible production lines, enhancing product productivity30. Zhu et al.31

and Li et al.32 both investigated a cluster tool scheduling problem in manufacturing systems to prevent deadlock. The objective
of this problem was to optimize the maximum completion time and WIP inventory, and a nonlinear programming model was
established. However, the methods mentioned in these articles cannot be directly applied to the two-stage hybrid flow-shop
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scheduling problem. This paper explores the two-stage hybrid flow-shop scheduling problem with the aim of optimizing the
total completion time and WIP inventory for all jobs.

From the above literature, it can be observed that most research on two-stage hybrid flow shop scheduling focuses on develop-
ing heuristic or optimal solutions to address general scheduling problems. The actual manufacturing demand is shifting towards
customer customization, and production scheduling issues need to consider multiple constraints, such as resource constraints,
interruptible process constraints, and setup time. Considering multiple constraints in scheduling problems poses challenges
and complexities. In this paper, we investigate a two-stage hybrid flow shop problem with setup time, interruptible processing
constraints, and rolling production requirements.

2 PROBLEM DESCRIPTION AND FORMULATION

2.1 Problem Description
The two-stage hybrid flow shop scheduling problem can be defined by the following characteristics: 1) The first and the second
stages are equipped with 𝑚 ≥ 1 machines and 𝑛 ≥ 1 machines, respectively, where 𝑚 ∈ ℕ+, 𝑛 ∈ ℕ+; 2) Set-up time is required
in the first stage but can be ignored in the second stage; 3) Initially, all batches undergo processing in the first stage and are
then seamlessly transferred to the second stage, adhering to interruptible process constraints; 4)Post-processing debugging is
necessary after each batch to ensure immediate production; and 5) The objective is to minimize the total completion time in the
first stage and reduce work-in-process (WIP) inventory across the entire two-stage process.

To specify the scheduling problem, the following assumptions are made based on the actual manufacturing system: 1) The
set-up time for machines in the first stage is denoted by 𝜎; 2) There are parallel machines in each stage, where 𝑀1𝑖 denotes the
𝑖-𝑡ℎ machine in the first stage(𝑖 ∈ ℕ+

𝑚), and 𝑀2𝑗 represents the 𝑗-𝑡ℎ machine in the second stage(𝑗 ∈ ℕ+
𝑛 ); 3) At any given time,

each machine can process only one product. Processing a single product on machine 𝑀1𝑖 takes 𝛼 time, while on 𝑀2𝑗 it takes
𝜇 time. Since the set-up time for machines in the second stage is negligible, we can treat the 𝑛 machines as a single device.
Therefore, this implies that the time required to complete a single job in the second stage is 𝜓 = 𝜇∕𝑛; 4) The initial state of the
system is known, including the the processing status and quantity of jobs on the machines in the initial state, the total inventory
𝑟𝑖, the batches of jobs to be processed 𝑚𝑖, and the amount of jobs 𝑏𝑖𝑗 ; 5) The same batch of jobs has the same product type, while
different batches of jobs have different product types; 6) The production environment is stable, and machine failures and other
emergencies are not taken into account; 7) The production rate of jobs is higher in the first stage than in the second stage, 𝑖.𝑒.,
𝛼∕𝑚 < 𝜑. However, machines in the first stage require set-up time. As a result, the production rate of jobs in the first stage will
always be lower than in the second stage, leading to an imbalance in production.

2.2 Feasibility Analysis of Scheduling
By appropriately assigning tasks to machines in the first stage, interruptible process constraints can be met. This allows for the
resolution of the two-stage hybrid flow shop scheduling problem, enabling all machines to achieve maximum utilization. The
calculation formulas for the completion time of one batch of jobs, denoted as 𝑇𝑖𝑗 , and the rolling production time, represented
by 𝐻𝑖𝑗 , are as follows.

𝑇𝑖𝑗 = 𝛼 ∗
𝑗∑
1
𝑏𝑖𝑗 + (𝑗 − 1) ∗ 𝜎, 𝑖 ∈ ℕ+

𝑚, 𝑗 ∈ ℕ+
𝑛 (1)

𝐻𝑖𝑗 = 𝑇𝑖𝑗 + 𝜎, 𝑖 ∈ ℕ+
𝑚, 𝑗 ∈ ℕ+

𝑛 (2)

where 𝑏𝑖𝑗 represents the quantity of the 𝑗-𝑡ℎ batch of products processed by 𝑀1𝑖 in the first stage. Simultaneously, 𝑚(𝑖) denotes
the number of processing batches allocated to 𝑀1𝑖. 𝑇𝑖𝑗 represents the completion time for processing the 𝑗-𝑡ℎ batch of products
on𝑀1𝑖, while𝐻𝑖𝑗 indicates the processing time for the 𝑗-𝑡ℎ batch of products on𝑀1𝑖 to meet the rolling production requirements.
It is worth nothing that 𝑏𝑖0 represents the initial batch in the system , 𝑏𝑖0 = 0. 𝑇𝑖𝑚(𝑖) represents the completion time for 𝑀1𝑖
processing the 𝑗-𝑡ℎ batch of products, and𝐻𝑖𝑚(𝑖) represents the time during which𝑀1𝑖 can produce jobs in a rolling manner. In
the time interval [0, 𝑡], let 𝑇𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑇𝑖𝑚(𝑖)), where 𝑖 ∈ ℕ+

𝑚. 𝜐𝑖𝑡 denotes the average production rate of processing jobs on 𝑀1𝑖,
where 𝑖 ∈ ℕ+

𝑚. Based on the above analysis, we can derive the following lemma, which outliness the conditions for interruptible
processing.
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Lemma 1. If
∑𝑚

1 ≥ 1∕𝜓 holds within the time interval
[
0, 𝑇𝑚𝑖𝑛

]
, then the two-stage hybrid flow shop will have the capability

to maintain interruptible processing for any 𝑡 ∈
[
0, 𝑇𝑚𝑖𝑛

]
.

Proof: When the production rate
∑𝑚

1 of products in the first stage is greater than or equal to the reciprocal of products in the
second stage 1∕𝜓 , that is

∑𝑚
1 ≥ 1∕𝜓 , the products in the first and second stages can maintain interruptible processing. Therefore,

this lemma holds.
Lemma 1 indicates that, within the time interval

[
0, 𝑇𝑚𝑖𝑛

]
, continuous processing of the two stages can be guaranteed as long

as the condition
[
0, 𝑇𝑚𝑖𝑛

]
for processing jobs in the first stage is satisfied. Subsequently, through a predetermined machine set-

up time, the rolling production of the two-stage hybrid flow shop scheduling can be realized. Let 𝛥𝑝 = 𝜎∕(𝑚𝜓 − 𝛼), and the
following lemma can be derived.

Lemma 2.
∑𝑚

1 ≥ 1∕𝜓 holds if any batch satisfies 𝑏𝑖𝑗 ≥ 𝛥𝑝, 𝑖 ∈ ℕ+
𝑚, 𝑗 ∈ ℕ+

𝑚(𝑖), for any 𝑡 ∈
(
0, 𝑇𝑚𝑖𝑛

]
.

Proof: Given that the production rate of jobs in the first stage is greater than that in the second stage, 𝑖.𝑒., 𝛼∕𝑚 < 𝜓 , and
considering that the initial state of the system satisfies the continuous processing of jobs between the two stages, at time 𝑡0 ≤
𝜗𝑖𝛼 + 𝜎, the average production rate is 𝜐𝑖𝑡 ≥ 1∕𝛼 > 1∕𝑚𝜓 on 𝑀1𝑖. Here, 𝜗𝑖 represents the quantity of products being processed
on𝑀1𝑖 in the initial state, where 𝑖 ∈ ℕ+

𝑚. Additionally, 𝑟1𝑖 denotes the inventory on Machine𝑀1𝑖 in the first stage, where 𝑖 ∈ ℕ+
𝑚.

When the time 𝑡 is within the range 𝜗𝑖𝛼 + 𝜎 < 𝑡1 ≤ 𝐻𝑖1 − 𝜎, we can derive that the average production rate 𝜐𝑖𝑡1 on 𝑀1𝑖 is[
𝑡1 − (𝜗𝑖𝛼 + 𝜎)

]
∕
[
𝑡1 − (𝜗𝑖𝛼 + 𝜎)

]
= 1∕𝛼 > 1∕𝑚𝜓 . This confirms the results obtained under this condition.

When the time 𝑡 is within the range 𝐻𝑖𝑘 −𝜎 < 𝑡2 ≤𝐻𝑖𝑘, 1 ≤ 𝑘 ≤ 𝑚(𝑖) ≥ 2, based on Formulas 1 and 2, we can obtain that the
average production rate is 𝜐𝑖𝑡2 = (𝑟1𝑖 + 𝜗𝑖+

∑𝑘
1 𝑏𝑖𝑘)∕𝑡2. Let 𝑏𝑖𝑗 ≥ 𝛥𝑝, since 𝜐𝑖𝑡0 = (𝑟1𝑖 + 𝜗𝑖)∕(𝜗𝑖𝛼 + 𝜎) ≥ 1∕𝛼, we have 𝑟1𝑖 + 𝜗𝑖≥ (𝜗𝑖𝛼 + 𝜎)∕𝛼, 𝑡2 − (𝐻𝑖𝑘 − 𝜎) < 𝜎, then 𝜐𝑖𝑡2 =
[
(𝜗𝑖𝛼 + 𝜎)∕𝛼 + 𝑘𝛥𝑝

]
∕(𝜗𝑖𝛼 + 𝑘𝛥𝑝𝛼 + 𝑘𝛼 + 𝜎) = 1∕𝛼

[
1 − 𝑘𝛥𝑝∕(𝑘𝛥𝑝𝛼 + 𝑘𝛼)

]
=

𝜎∕(𝛥𝑝𝛼 + 𝜎). This confirms the results obtained under this condition.
When the time 𝑡 is within the range 𝐻𝑖𝑘 < 𝑡3 < 𝐻𝑖𝑘+1 − 𝜎, 1 ≤ 𝑘 ≤ 𝑚(𝑖) − 1, 𝑚(𝑖) ≥ 2, based on Formulas 1 and 2, we have

𝜐𝑖𝑡3 = [𝑟1𝑖 + 𝜗𝑖 +
∑𝑘

1 𝑏𝑖𝑘 + (𝑡3 −(𝜗𝑖𝛼 + 𝛼
∑𝑘

1 𝑏𝑖𝑘 + (𝑘 + 1)𝜎))∕𝛼]∕𝑡3. Since 𝜐𝑖𝑡0 = (𝑟1𝑖 + 𝜗𝑖)∕𝑡0 = (𝑟1𝑖 + 𝜗𝑖)∕(𝜗𝑖𝛼 + 𝜎) ≥ 1∕𝛼, 𝑟1𝑖
+ 𝜗𝑖 ≥ (𝜗𝑖𝛼 + 𝜎)∕𝛼 holds. Let 𝑏𝑖𝑘 ≥ 𝛥𝑝, the average production rate 𝜐𝑖𝑡3 can be simplified 𝜐𝑖𝑡3 ≥ [(𝑡3 − 𝛼𝑘𝛥𝑝 − 𝑘𝜎)∕𝛼 + 𝑘𝛥𝑝]∕𝑡3
= 1∕𝛼(1− 𝑘𝜎∕𝑡3). Since 𝑘𝜎∕𝑡3 < (𝑘+1)𝜎∕𝑡3 = (𝑘+1)𝜎∕[𝛼(𝑘+1)𝛥𝑝 + (𝑘+1)𝜎] = 𝜎∕(𝛼𝛥𝑝 + 𝜎), 𝜐𝑖𝑡3 ≥ 1∕𝛼(1− 𝜎∕(𝛼𝛥𝑝+ 𝜎))≥ 1∕𝑚𝜓 holds.

Hence, the production rate for the first stage is
∑𝑚

1 ≥ 1∕𝜓 , for any 𝑡 ∈
(
0, 𝑇𝑚𝑖𝑛

]
.

Corollary 1.
∑𝑚

1 ≥ 1∕𝜓 holds if all batches satisfy
∑𝑗

1 𝑏𝑖𝑗 ≥ 𝑗𝛥𝑝, 𝑖 ∈ ℕ+
𝑚, 𝑗 ∈ ℕ+

𝑚(𝑖), for any 𝑡 ∈
(
0, 𝑇𝑚𝑖𝑛

]
.

Proof: It follows immediately from Lemma 2.
According to Lemma 2 and Corollary 1, any batch satisfies condition 𝑏𝑖𝑗 ≥ 𝛥𝑝, 𝑖 ∈ ℕ+

𝑚, 𝑗 ∈ ℕ+
𝑚(𝑖), while all batches meet with

condition
∑𝑗

1 𝑏𝑖𝑗 ≥ 𝑗𝛥𝑝, 𝑖 ∈ ℕ+
𝑚, 𝑗 ∈ ℕ+

𝑚(𝑖).
In a two-stage hybrid flow shop, jobs can be processed continuously. Therefore, when the conditions of Lemma 2 and Corollary

1 are satisfied, the shop can achieve rolling processing.

2.3 Mathematical Model
This section discusses the problem of job allocation to achieve rolling production in a two-stage hybrid flow shop. To schedule
the two-stage rolling production workshop, each batch of jobs from the first stage needs to be assigned to machine 𝑀1𝑖 for
processing, where 𝑖 ∈ ℕ+

𝑚. In practical manufacturing scheduling plans, there are cases such as 𝑏𝑖𝑗 ≥ 𝛥𝑝, 𝑖 ∈ ℕ+
𝑚, 𝑗 ∈ ℕ+

𝑚(𝑖), and
in other situations where 𝑏𝑖𝑢 < 𝛥𝑝, 𝑖 ∈ ℕ+

𝑚, 𝑗 ∈ ℕ+
𝑚(𝑖), and 𝑗 ≠ 𝑢. According to Corollary 1, when

∑𝑏
1 𝑏𝑖𝑗 ≥ 𝑗𝛥𝑝 holds for 𝑖 ∈ ℕ+

𝑚,
𝑗 ∈ ℕ+

𝑚(𝑖), jobs can maintain rolling processing within the time interval
(
0, 𝑇𝑚𝑖𝑛

]
.

If the above conditions are not satisfied, additional jobs will be allocated to the first stage to ensure
∑𝑗

1 𝑏𝑖𝑗 ≥ 𝑗𝛥𝑝 holds, for
any 𝑖 ∈ ℕ+

𝑚, 𝑗 ∈ ℕ+
𝑚(𝑖). Without loss of generality, let 𝛿𝑖 denote the number of additional jobs. Based on Lemmas 1 and 2, a

linear programming model with 0-1 decision variables is established in this section. Here, 𝑥𝑖𝑗 and 𝑥𝑖𝑢 are 0-1 decision variables,
representing where the 𝑗-𝑡ℎ batch of jobs or the 𝑢-th batch of jobs, respectively, is processed at 𝑀1𝑖. Specifically, 𝑥𝑖𝑗 = 1 if
the 𝑗-𝑡ℎ batch of jobs is processed at 𝑀1𝑖, otherwise 𝑥𝑖𝑗 = 0. Similarly, 𝑥𝑖𝑢 = 1 if the 𝑢-𝑡ℎ batch of jobs is processed at 𝑀1𝑖,
otherwise 𝑥𝑖𝑢 = 0. The model is described as follows:

𝑚𝑖𝑛𝐶𝑚𝑎𝑥 (3)



AUTHOR ONE ET AL 5

𝑚∑
1
(𝑥𝑖𝑗 + 𝑥𝑖𝑢) = 1, 𝑖 ∈ ℕ+

𝑚, 𝑗 ≠ 𝑢, 𝑗 ∈ ℕ+
𝑚(𝑖), 𝑢 ∈ ℕ+

𝑚(𝑖) (4)

𝑚(𝑖)∑
𝑗=1

[𝑥𝑖𝑗(𝑏𝑖𝑗𝛼 + 𝜎)] +
𝑚(𝑖)∑
𝑢=1

[𝑥𝑖𝑢(𝑏𝑖𝑢𝛼 + 𝜎)] + 𝛼 × 𝑚𝑎𝑥{(𝛿𝑖 − 𝑟1𝑖), 0} ≤ 𝐶𝑚𝑎𝑥, 𝑖 ∈ ℕ+
𝑚, 𝑗 ≠ 𝑢 (5)

𝑚(𝑖)∑
𝑗=1

𝑥𝑖𝑗𝑏𝑖𝑗 ≥
𝑚(𝑖)∑
𝑗=1

𝑥𝑖𝑗𝛥𝑝, 𝑖 ∈ ℕ+
𝑚 (6)

𝑚(𝑖)∑
𝑢=1

𝑥𝑖𝑢𝑏𝑖𝑢 ≥
𝑚(𝑖)∑
𝑗=1

𝑥𝑖𝑢𝛥𝑝, 𝑖 ∈ ℕ+
𝑚 (7)

𝑚∑
1
𝑟1𝑖 = 𝑟, 𝑖 ∈ ℕ+

𝑚 (8)

𝑥𝑖𝑗 = 0 𝑜𝑟1, 𝑖 ∈ ℕ+
𝑚, 𝑗 ∈ ℕ+

𝑚(𝑖), (9)

𝑥𝑖𝑢 = 0 𝑜𝑟1, 𝑖 ∈ ℕ+
𝑚, 𝑢 ∈ ℕ+

𝑚(𝑖), (10)

The objective function (3) aims to minimize the total completion time for all batches of jobs completed in the first stage;
Constraint (4) indicates that each batch of jobs can only be assigned to a machine 𝑀𝑖1,𝑖 ∈ ℕ+

𝑚 in the first stage for processing;
Constraint (5) specifies that the total completion time of all batches is not less than 𝐶𝑚𝑎𝑥; Constraint (6) stipulates that within the
time interval [0, 𝐻𝑖𝑚(𝑖)], the average production rate of 𝑀𝑖1 is greater than or equal to 1∕𝑚𝜓 , ensuring the rolling production of
a two-stage hybrid flow shop; Constraint (7) represents that when the product batch does not meet the conditions for continuous
production, additional inventory 𝛿𝑖 can be added to ensure continuous production in the two-stage hybrid flow shop; Constraint
(8) means that the amount of inventory allocated for all machines in the initial state is 𝑟; and Constraints (9) and (10) are the
range of values for decision variables.

By solving the linear programming problem, the jobs allocated to machine 𝑀𝑖1,𝑖 ∈ ℕ+
𝑚 can be determined. However, the

processing sequence for the jobs assigned to each machine has not been specified in accordance with the objectives. Due to the
adopted batch sorting schemes, the corresponding WIP inventory as the objective and further optimizes the scheduling scheme
to minimize it. A linear relationship exists between the total completion time and the number of jobs processed at machine𝑀𝑖1,𝑖
∈ ℕ+

𝑚. Then, we obtain the following lemma.

Lemma 3. In a two-stage hybrid flow shop scheduling problem, if all machines𝑀𝑖1,𝑖 ∈ℕ+
𝑚 satisfy a linear relationship between

time 𝑡 and product quantity, the peak WIP inventory occurs when each batch is completed.

Proof:Without loss of generality, the stock is zero at the initial state. Let the number of jobs be 𝑎 at 𝑀1𝑖, the processing time
of an individual job is 𝛼, the time required to complete a single job in the second stage is 𝜓 = 𝜇∕𝑛, and the machine set-up time
is represented by 𝜎. When time 𝑡 satisfies 0 ≤ 𝑡 ≤ 𝑎𝛼, the calculation for the WIP inventory is 𝑡∕𝛼 − 𝑡∕𝜓 . Thus, the number of
jobs in the process decreases linearly with time 𝑡. When time 𝑡 satisfies 𝑎𝛼 ≤ 𝑡 ≤ 𝑎𝛼 + 𝜎, the calculation for the WIP inventory
is 𝑎− 𝑡∕𝜓 , and the number of jobs in the process decreases linearly with time 𝑡. Therefore, the peak WIP inventory occurs when
each batch finishes processing.

Based on Lemma 3, it can be known that for analyzing the number of jobs in the two-stage rolling production workshop, we
only need to focus on the nodes when each batch of jobs is processed. Letting the system time be 𝑡, 𝑤𝑖𝑝(𝑖, 𝑡) denotes the WIP
inventory at 𝑀1𝑖, 𝑖 ∈ ℕ+

𝑚, at time 𝑡, calculated by the formulas as follows:

𝑤𝑖𝑝(𝑖, 𝑡) = 𝑡∕𝛼 − 𝑡∕𝜓 + 𝑟1𝑖 + 𝑚𝑎𝑥{(𝛿𝑖 − 𝑟1𝑖), 0}, 0 < 𝑡 ≤ 𝜗𝑖𝛼 (11)

𝑤𝑖𝑝(𝑖, 𝑡) = 𝜗𝑖 − 𝑡∕𝜓 + 𝑟1𝑖 + 𝑚𝑎𝑥{(𝛿𝑖 − 𝑟1𝑖), 0}, 𝜗𝑖𝛼 < 𝑡 ≤ 𝜗𝑖𝛼 + 𝜎 (12)

𝑤𝑖𝑝(𝑖, 𝑡) = 𝑡∕𝛼 − 𝑡∕𝜓 + 𝜗𝑖 + 𝑟1𝑖 + 𝑚𝑎𝑥{(𝛿𝑖 − 𝑟1𝑖), 0}, 𝜗𝑖𝛼 + 𝜎 < 𝑡 ≤ 𝑇𝑖1 (13)

𝑤𝑖𝑝(𝑖, 𝑡) = 𝑏𝑖1 − 𝑡∕𝜓 + 𝜗𝑖 + 𝑟1𝑖 + 𝑚𝑎𝑥{(𝛿𝑖 − 𝑟1𝑖), 0}, 𝑇𝑖1 < 𝑡 ≤ 𝐻𝑖1 (14)
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FIGURE 1 The Gantt chart for the parallel machines scheduling at Phase 1

𝑤𝑖𝑝(𝑖, 𝑡) =
𝑚(𝑖)∑
𝑗=1

𝑏𝑖𝑗 − 𝑡∕𝜓 + 𝜗𝑖 + 𝑟1𝑖 + 𝑚𝑎𝑥{(𝛿𝑖 − 𝑟1𝑖), 0},𝐻𝑖𝑗 < 𝑡 ≤ 𝐻𝑖(𝑗+1) − 𝜎 (15)

𝑤𝑖𝑝(𝑖, 𝑡) =
𝑚(𝑖)∑
𝑗=1

𝑏𝑖𝑗 + (𝑡 −𝐻𝑖(𝑗+1))∕𝛼 − 𝑡∕𝜓 + 𝜗𝑖+

𝑟1𝑖 + 𝑚𝑎𝑥{(𝛿𝑖 − 𝑟1𝑖), 0},𝐻𝑖(𝑗+1) − 𝜎 < 𝑡 ≤ 𝐻𝑖(𝑗+1)

(16)

Equation (11) represents the calculation formula for WIP inventory of each machine in the initial state of the system within the
time range 0 ≤ 𝑡 ≤ 𝜗𝑖𝛼; Equation (12) represents the calculation formula for WIP inventory of each machine before processing
the first batch of jobs during 𝜗𝑖𝛼 ≤ 𝑡 ≤ 𝜗𝑖𝛼 + 𝜎; Equation (13) represents the calculation formula for WIP inventory of each
machine before the completion of the first batch of jobs processing with the time range of 𝜗𝑖𝛼+𝜎 to 𝑇𝑖1; Equation (14) represents
the calculation of each machine after the completion of the first batch of jobs processing during 𝑇𝑖1 < 𝑡 < 𝐻𝑖1; Equation (15)
represents the calculation of each machine before the completion of the 𝑗-𝑡ℎ batch of jobs processing with the range of 𝐻𝑖𝑗 to
𝐻𝑖(𝑗+1) − 𝜎; and Equation (16) indicates the calculation equation for the WIP inventory of each machine in the time range from
𝐻𝑖(𝑗+1) − 𝜎 to 𝐻𝑖(𝑗+1), from the completion of the 𝑗-𝑡ℎ batch of jobs to the start of processing of the (𝑗 + 1)-𝑡ℎ batch of jobs.

To illustrate the operation of Equations (11) to (16), a simple example is provided. In this example, there are two machines
in the first stage and one machine in the second stage, 𝑖.𝑒., 𝑚 = 2, and 𝑛 = 1. The processing time of a job by machine 𝑀1𝑖,
𝑖 ∈ {1, 2}, and 𝑀11, 𝑀12, and 𝑀21 for Stages 1 and 2 is 20s, 20s, and 15s, respectively (𝛼 = 20𝑠 and 𝜇 = 15𝑠). The set-up
time for machine 𝑀1𝑖, 𝑖 ∈ {1, 2}, is 30s(𝜎 = 30𝑠). Machine 𝑀21 has no set-up time. Therefore, we have 𝛼∕𝑚 = 10𝑠 < 𝜑 = 15𝑠
and 𝛥𝑝 = 𝜎∕(𝑚𝜓 − 𝛼) = 3. Assume there are six batches, 𝑖.𝑒., 𝐵 = {𝑏11, 𝑏12, 𝑏13, 𝑏14, 𝑏15, 𝑏16}. The sizes of these batches are 5,
4, 4, 2, 2, and 1, respectively. According to Lemma 2, we can find a solution to assign different batches processed at 𝑀11 and
𝑀12, respectively. Batch 𝑏11 = 5, 𝑏14 = 2, and 𝑏15 = 2 are sequentially processed at 𝑀11, 𝑏12 = 4, 𝑏13 = 4, and 𝑏16 = 1 are
sequentially processed at 𝑀12. The Gantt chart for the obtained schedule is shown in Fig.1 .

3 PROPOSED ALGORITHM

3.1 Greedy Algorithm
While the linear programming model developed in Section 2 can determine the total completion time of all jobs in the first
stage, it does not specify the processing sequence of different batches on the same machine. Altering the processing sequence
directly influences the WIP inventory. Therefore, to minimize overall production cost, this paper utilizes a greedy algorithm to
optimize the processing sequence of jobs in the first stage. The choice of the greedy algorithm is based on its high efficiency
and straightforward implementation for combinatorial optimization tasks. To ensure continuous job processing while reducing
WIP inventory, the greedy algorithm directly selects the solution with the lowest local fitness.

The greedy algorithm is a simpler and faster design technique for addresing certain optimization problems. It progresses
step by step, typically based on the current situation and optimal choices according to a specific optimization metric, without
considering various possible overall scenarios. This saves considerable time that would otherwise be spent exhaustively all
possibilities to find the optimal solution. The greedy algorithm adopts a top-down, iterative approach to make successive greedy



AUTHOR ONE ET AL 7

choices. Each time a greedy choice is made, the problem being solved is reduced to a smaller sub-problem. Through each step
of greedy choice, an optimal solution to the problem can be obtained.

Next, we discuss how to use a greedy algorithm to generate a schedule that complies with the interruptible process constraints
in a two-stage hybrid flow shop scheduling problem. As long as Lemmas 2 and 3 proposed in Section 2 are satisfied, we can
address the interruptible process constraints in the scheduling problem. Since Equations 1 and 2 take into account the require-
ments of rolling production, satisfying Lemmas 2 and 3 will enable rolling production. In the greedy algorithm, local fitness
refers to the WIP inventory levels of different schedules. The proposed greedy algorithm allows for the efficient determinaion
of approximate optimal solutions, as shown in Algorithm 1. In Algorithm 1, the task sequence matrix 𝐵 = 𝑏𝑖𝑗(𝑚×𝐽 ) is obtained

Algorithm 1 A greedy algorithm using bubble sort for the WIP inventory optimization
1: procedure GREEDYALGORITHM
2: Input: Task sequence matrix 𝐵𝑚×𝐽 ;
3: Output:Task sequence matrix 𝐵′

𝑚×𝐽 and the WIP inventory;
4: Bubble sort in descending order of matrix 𝐵𝑚×𝐽 , for all batches 𝑖 ∈ ℕ+

𝑚;
5: for 𝑖 = 1 to 𝑚 do
6: for 𝑘 = 1 to 𝐽 do
7: for 𝑗 = 1 to 𝐽 do
8: if k==1 then
9: %Lemma 2 holds;

10: if 𝑏𝑖𝑗 >= 𝛥𝑝 then
11: 𝑏′𝑖𝑘 ←← 𝑏𝑖𝑗 ;
12: break;
13: end if
14: else
15: %Lemma 3 holds;
16: if

∑𝑘−1
1 𝑏𝑖(𝑘−1) + 𝑏𝑖𝑗 ≥ 𝑘𝛥𝑝 then

17: 𝑏𝑖(𝑘−1) ←← 𝑏𝑖𝑗 ;
18: break;
19: end if
20: end if
21: end for
22: end for
23: end for
24: Compute the WIP inventory by Task sequence matrix 𝐵′

𝑚×𝐽 and Equations 11 to 16;
25: end procedure

through linear programming as presented in Section 2, where 𝑚 represents the number of machines in the first stage, and 𝐽 =
𝑚𝑎𝑥{𝑚(𝑖)|𝑖 ∈ ℕ+

𝑚} indicates the number of batches allocated to the first stage. In Algorithm 1, Statement 1) conducts a bubble
sort on the 𝐵𝑚×𝐽 rows in descending order, where 𝛥𝑝 denotes the minimum batch size that satisfies the continuous process con-
straint between two stages. Statements 2) - 9) select the minimum batch size on each machine meeting continuity and schedule
them first. Statements 10) - 17) sequentially choose subsequent batches, with 11) providing the minimum batch size condition
from Lemma 1. Algorithm 1 rearranges batches via bubble sort, enabling the quick selection of the minimum batch in each step
for local optima. With the sequence obtained from Algorithm 1, the WIP inventory is calculated. Therefore, we first minimize
the completion time globally through linear programming. Then, we locally optimize the WIP inventory using Algorithm 1,
thus optimizes the overall production schedule in a two-stage hybrid flow shop scheduling problem.
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3.2 The Designed Q-learning Algorithm
This paper utilizes Algorithm 1 and the WIP inventory formulas to efficiently obtain optimized scheduling solutions. However,
the greedy algorithm does not consider the perspective of overall optimality; thus the solutions obtained cannot be guaranteed to
be globally optimal. To validate the effectiveness of Algorithm 1 and further enhance the scheduling plan,𝑄-learning is applied
to the two-stage hybrid flow shop rolling production scheduling problem in this paper.
𝑄-learning is a renowned reinforcement learning algorithms33. During the interaction with the environment, the agent receives

rewards 𝑅 corresponding to executed action 𝑎. The algorithm combines states 𝑠 and actions 𝑎 to construct a 𝑄-table, recording
updated𝑄 values. Subsequently, it selects actions that maximize rewards according to the𝑄-table. After each action, the𝑄-table
is simultaneously updated according to the following formula.

𝑄(𝑠𝑖𝑡𝑒, 𝑎𝑖𝑡𝑒) = 𝑄(𝑠𝑖𝑡𝑒, 𝑎𝑖𝑡𝑒) + 𝜙[𝑅𝑖𝑡𝑒 + 𝛾𝑚𝑎𝑥𝑄(𝑠′𝑖𝑡𝑒, 𝑎
′
𝑖𝑡𝑒) −𝑄(𝑠𝑖𝑡𝑒, 𝑎𝑖𝑡𝑒)] (17)

where 𝑠𝑖𝑡𝑒 denotes the state at iterations 𝑖𝑡𝑒, 𝑎𝑖𝑡𝑒 represents the action taken at iterations 𝑖𝑡𝑒, and𝑄(𝑠𝑖𝑡𝑒,𝑎𝑖𝑡𝑒) indicates the updated
𝑄 value when taking action 𝑎𝑖𝑡𝑒 in state 𝑠𝑖𝑡𝑒. 𝑅𝑖𝑡𝑒 denotes the reward at iteration ite, and 𝜙 ∈ [0, 1] is the learning rate. 𝛾 is the
discount factor. If 𝛾 is close to zero, it focuses more on short-term rewards. If 𝛾 is close to 1, it cares more about long-term
cumulative rewards. Notably,𝑄-learning updates do not necessarily use the data sampled from 𝑚𝑎𝑥𝑄(𝑠𝑖𝑡𝑒,𝑎𝑖𝑡𝑒). For exploration,
the 𝜀-greedy algorithm is generally used to select the action with the highest expected reward estimation. Specifically, with
probability 𝜀 = 1, the action with the highest empirical expected reward is chosen, and with probability 𝜀 a random action is
performed.

Consequently, with an increasing number of explorations, our reward estimates for different actions improve, obviating the
necessity for extensive search. To this end, this paper refines the 𝜀-greedy policy for action selection, as illustrated below.

𝜀 = 0.5
1 + 𝑒 𝑖𝑡𝑒−𝜃×𝑖𝑡𝑒𝑚𝑎𝑥

𝑖𝑡𝑒𝑚𝑎𝑥

(18)

𝑎𝑖𝑡𝑒 =

{
𝑟𝑎𝑛𝑑𝑜𝑚 𝐴, 𝑟𝑎𝑛𝑑 > 1 − 𝜀
𝑎∗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(19)

𝑎∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑎𝑗{𝑄(𝑞𝑖𝑗)|𝑖 ∈ ℕ+
𝑚, 𝑗 ∈ ℕ+

𝑚(𝑖)} (20)

where Equation 18 is used to calculate the value 𝜀, the modified 𝜀-greedy policy exhibits better learning effects than a fixed 𝜀
value. The value 𝑖𝑡𝑒𝑚𝑎𝑥 represents the termination condition of the algorithm, which is the maximum iterations and 𝜃 denoting
a random number in the range of 𝜃 ∈ [0, 1]. Formula 19 specifies that if a random number rand ∈ [0, 1], 𝑟𝑎𝑛𝑑 > 1 − 𝜀, then
action 𝑎 is randomly selected from the action set 𝐴; otherwise action 𝑎∗ is chosen. Here, 𝑎∗ represents the action 𝑎 corresponds
to the maximum value 𝑞𝑖𝑗 , calculated by Formula 20. Subsequently, 𝑄-learning is carried out following the steps outlined in
Procedure 1.

Procedure 1: The designed Q-learning algorithm is outlined as follows.

1. Initialize the parameters of the Q-learning algorithm, input process information of the two-stage hybrid flow shop, and
obtain the initial schedule 𝐵𝑖𝑡𝑒 from the linear programming model, setting 𝑖𝑡𝑒 = 1.

2. Update the 𝜀 value based on Equation 18.

3. Choose an action 𝑎𝑖𝑡𝑒 in the current world state 𝑠 based on Formulas 19 and 20.

(a) If the random value rand ∈ [0, 1], rand > 1 − 𝜀, then generate action 𝑎𝑖𝑡𝑒 randomly from action set 𝐴.
(b) If the random value 𝑟𝑎𝑛𝑑 ∈ [0, 1], 𝑟𝑎𝑛𝑑 ≥ 1 − 𝜀, then action 𝑎𝑖𝑡𝑒 is 𝑎∗ based on the maximum 𝑞 value.

4. Execute action 𝑎 and observe the resulting state 𝑠′𝑖𝑡𝑒.

5. Choose a row 𝐵∶,𝑖 in 𝐵𝑖𝑡𝑒 = 𝑏𝑖𝑗(𝑚 × 𝑗), where 𝑖 = 1.

6. Update the reward 𝑅𝑖𝑡𝑒 = 𝑑𝑘𝑗(𝑚(𝑖) × 𝑚(𝑖)) based on Corallary 1.

(a) If 𝑏𝑖𝑗 = 𝑏𝑖(𝑗+1) = 𝛥𝑝, 𝑑𝑘𝑗 = +𝑀 ;% +𝑀 is a positive number.
(b) If 𝑏𝑖𝑗 ≥ 𝛥𝑝, 𝑏𝑖𝑗 + 𝑏𝑖(𝑗+1) > 2 ∗ 𝛥𝑝, 𝑑𝑘𝑗 = 𝑚𝑖𝑛{2 ∗ 𝛥𝑝∕(𝑏𝑖𝑗 + 𝑏𝑖(𝑗+1)), 𝛥𝑝};
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TABLE 1 Main parameters of algorithms

Algorithm parameter value

PSO34
𝑐1 2
𝑐2 2
1 Linearly decreases from 0.6 to 0.3

VNS35 Inloop_max 100

(c) Else 𝑑𝑘𝑗 = −𝑀 ;% −𝑀 is a negative number.

7. 𝑖 = 𝑖 + 1, if 𝑖 = 𝑚 goes to Step 8), otherwise go to Step 5).

8. Update the 𝑄−table based on Equation 17.

9. Update the schedule 𝐵′
𝑖𝑡𝑒 based on the 𝑄−table.

10. Check whether schedule 𝐵′
𝑖𝑡𝑒 meets the interruptible process constraints, 𝑖.𝑒., Lemma 2 and Corollary 1.

(a) If Lemma 2 or Corollary 1 holds, update 𝐵𝑖𝑡𝑒 = 𝐵′
𝑖𝑡𝑒.

i. Compute the WIP inventory based on Equations 11 to 16;
ii. Modify the reward 𝑅𝑖𝑡𝑒, 𝑑𝑘𝑗 = 𝑑𝑘𝑗 + |𝑑𝑘𝑗|;

(b) If Lemma 2 or Corollary 1 do not hold, do not update 𝐵𝑖𝑡𝑒.

i. Modify the reward 𝑅𝑖𝑡𝑒, 𝑑𝑘𝑗 = 𝑚𝑖𝑛{𝑑𝑘𝑗 , 0}.

11. 𝑖𝑡𝑒 = 𝑖𝑡𝑒 +1, if 𝑖𝑡𝑒 = 𝑖𝑡𝑒𝑚𝑎𝑥, indicating that the termination condition is met, the designed 𝑄 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 will output a
solution with the highest reward; otherwise, go to Step 2).

4 COMPUTATIONAL EXPERIMENTS

4.1 Parameter Selection and Design
To verify the effectiveness of the linear programming model and algorithm in solving the problem, the linear programming model
and algorithm are coded in MATLAB. The linear programming model is solved by calling the ILOG CPLEX 12.6 software.
The greedy algorithm (GA), Q-learning, particle swarm optimization (PSO)35, and variable neighborhood search (VNS) are all
coded in MATLAB using the same computer. The experiments are run on a personal computer with Windows 10, Intel CoreTM
i5 3.3 GHz processor, and 8GB RAM, and the experimental computational time refers to the CPU running time of the computer.
In this way, the linear programming model obtains the optimal completion time. Then, various algorithms are used to optimize
the machining sequence of jobs to reduce WIP inventory. The parameters in PSO and VNS are shown in Table 1 .
𝑄-learning involves three parameters: the number of iterations 𝑖𝑡𝑒, the learning factor 𝜙, and the discount factor 𝛾 . Through

thousands of experiments, we narrow down the selection of 𝑖𝑡𝑒, 𝜙, and 𝛾 parameters within specific ranges, setting them to
three levels respectively, where 𝑖𝑡𝑒= {500, 700, 900}, 𝜙= {0.35, 0.37, 0.39}, and 𝛾 = {0.30, 0.35, 0.40}. The Taguchi parameter
design method can pick out parameter combinations that stabilize experimental results with low variability and utilize orthogonal
tables to arrange experimental parameters for experiments.

Through the Taguchi parameter design method, the orthogonal table for arranging parameters of the designed 𝑄-learning is
shown in Table 2 . As shown in Table 3 , each parameter set runs independently five times to obtain a non-dominated solution
set 𝐸𝑖 = {𝑖|𝑖 = 1, 2, 3,… ,9}. 𝐸1 to 𝐸9 form a final set 𝐹𝐸. 𝐸𝑖 = {𝑤𝑖𝑝1, 𝑤𝑖𝑝2, 𝑤𝑖𝑝3, 𝑤𝑖𝑝4, 𝑤𝑖𝑝5}, where 𝑤𝑖𝑝 represents the
WIP inventory with the parameter set 𝐸𝑖. The contribution ratio 𝐶𝑅(𝑖) of 𝐸𝑖 is calculated as follows:

𝐶𝑅(𝑖) =
|𝐸′

𝑖 |∑
𝑖=1

𝑒𝑖∕
|𝐹𝐸′|∑
𝑖=1

𝑤𝑖𝑝𝑖 (21)
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TABLE 2 Computational test results

dataset minimum completion
times(s) upper bound(s) low bound(s)

ta001 1266 1278 1232
ta002 1298 1359 1290
ta007 1229 1239 1226
ta008 1182 1170 1206
ta010 1098 1082 1108
ta011 1522 1582 1448
ta012 1505 1659 1479
ta014 1337 1377 1308
ta018 1396 1538 1363
ta019 1566 1593 1472

FIGURE 2 Influence chart of control parameters

TABLE 3 Orthogonal experimental design for parameters

No. 𝑖𝑡𝑒 𝜙 𝛾 𝐶𝑅(%)

1 500 0.35 0.3 26.39
2 500 0.37 0.4 26.25
3 500 0.39 0.35 20.97
4 700 0.35 0.4 20.77
5 700 0.37 0.35 21.03
6 700 0.39 0.3 20.93
7 900 0.35 0.35 16.09
8 900 0.37 0.3 21.50
9 900 0.39 0.4 10.73

where 𝐸′
𝑖 = 𝐸𝑖 ∩ 𝐹𝐸, 𝐹𝐸′ = ∪|9|

𝑖=1𝐸
′
𝑖 , it can be easily understood that 𝐹𝐸′ represent the set after removing deplicate elements

from 𝐹𝐸. According to Table 2 and Figure 2 , the selected algorithm parameters with the largest average contribution value
(ACV) are 𝑖𝑡𝑒 = 500, 𝜙 = 0.37, 𝛾 = 0.3.

Due to the limited range of 𝜙 and 𝛾 values in the algorithm, it is easy to see that at the 0.05 significance level, these two
parameters do not significantly differ in the amount of WIP inventory. The experimental data consists of 30 batches of jobs
randomly generated, with each parameter set running independently 30 times, totaling 30 ∗ 9 = 270 experiments. The number of
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TABLE 4 ANOVA table

Source SS df MS F P-value F crit

Factor 5299.919 8 662.4898 6.448529 1.17𝐸 − 07 1.973975
Error 26813.84 261 102.735

Total 32113.76 269

iterations 𝑖𝑡𝑒 significantly influences the WIP inventory amount, as indicated by the significant difference for 𝑖𝑡𝑒 in the analysis
of variance results shown in Table 3 , with a 𝑃 -value less than 0.05. Furthermore, this means a significant difference for 𝑖𝑡𝑒.

4.2 Efficiency and Effectiveness of the Proposed Algorithm
To validate the proposed algorithm design, this study selected 5 test cases of 20 jobs on five machines and another five test cases
of 20 jobs on 10 machines from the Taillard benchmark dataset for flow shop scheduling problems. The proposed algorithm
is utilized to calculate the minimum completion time for each job, and the output results are examined to be within the lower
and upper bounds of the feasible region, demonstrating the effectiveness and feasibility of the proposed algorithm. The com-
putational results given 1000 generations take only around 1𝑠, as shown in Table 4 . The benchmark dataset is available at
https://cuglirui.github.io/Dataset/Taillard-PFSP.rar for download.

In the experimental analysis, a GA, VNS, PSO, and the designed 𝑄-learning algorithm are adopted. Among them, VNS and
PSO serve as benchmark algorithms for comparison. Each test case is run independently 30 times, and the experimental results,
including the average gap and minimum gap WIP inventory for different algorithms, are presented in Table 5 and Table 6 ,
respectively. The gap value calculation formula is shown in Eq.(22).

𝐺𝑎𝑝(%) = (𝐷 − 𝐴𝑣𝑒𝐺𝐴)∕𝐴𝑣𝑒𝐺𝐴 × 100% (22)

where 𝐷 denotes the average WIP inventory when operating VNS, PSO, and 𝑄-learning algorithms, respectively. 𝐴𝑣𝑒𝐺𝐴
represents the average WIP inventory resulting from the operation of a greedy algorithm.

By Eq.(22), we can conclude that, as the data in Table 5 shows, when the experimental result is greater than 0, the closer
the number is to 0, indicating that GA has a better operation effect, and when the experimental result is less than 0, it means
that the other algorithm has a better operation effect. Additionally, as exhibited in Table 5 , among 13 test cases, the number of
times that GA, Q-learning, and VNS achieved the minimum average WIP inventory are 9, 2, and 2, respectively. In particular,
the number of times that GA and 𝑄-learning attained the second minimum values are 4 and 9, respectively. Likewise, as the
data in Table 6 exhibit, among the 13 test cases, the number of times that GA, 𝑄-learning, and VNS attained the minimum
WIP inventory are 5, 5, and 3, respectively. Concurrently, the number of times that these three algorithms obtained the second
minimum values are 6, 6, and 1, respectively. The results demonstrate that this paper proposes GA and 𝑄-learning algorithms
in this paper can both acquire optimized and near-optimized solutions.

5 CONCLUSION

In response to the practical demand for optimizing production scheduling in small-batch manufacturing at glass plants, this
paper proposes a two-stage hybrid flow shop scheduling model with sequence-dependent set-up time and rolling processing
constraints to minimize the total completion time in the first stage and work-in-process (WIP) inventory for multi-variety small-
batch processing. A linear programming model is formulated to optimize the scheduling plan. To further improve the scheduling
results, a greedy algorithm and a Q-learning algorithm are designed to obtain better solutions by determining the optimized
product sequence. The proposed methods demonstrate effectiveness in reducing WIP inventory through numerical experiments.
The scheduling model and algorithms provide a viable framework for multi-variety mixed-model scheduling in practical man-
ufacturing systems. In the future, more complex constraints and objectives can be incorporated, or metaheuristic optimization
methods can be applied to solve large-scale problems.
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TABLE 5 Difference of experimental average gap WIP between different algorithms

No. VNS and GA(%) PSO and GA(%) Q-learning and GA(%)

1 17.88 15.78 0.08
2 18.33 18.69 8.49
3 27.36 21.56 12.81
4 1.91 5.78 −3.96
5 −0.13 3.09 0.99
6 7.41 8.04 6.42
7 1.70 4.24 0.95
8 2.53 20.91 1.86
9 5.28 14.46 0.52
10 −0.62 5.65 2.30
11 0.43 12.97 −7.31
12 2.25 6.67 0.43
13 6.41 8.36 0.13

TABLE 6 Difference of experimental minimum WIP between different algorithms

No. VNS and GA(%) PSO and GA(%) Q-learning and GA(%)

1 17.78 10.32 −3.16
2 16.48 14.70 7.25
3 24.63 16.14 9.90
4 −0.68 3.48 −5.25
5 −1.30 1.57 0.09
6 5.32 7.80 4.32
7 1.47 2.84 −0.41
8 −5.16 20.91 0.69
9 3.48 7.63 0.16
10 −1.68 0.96 1472
11 0.42 4.76 −8.40
12 2.25 2.64 0.01
13 1.27 2.25 −0.24

In the future, more complex constraints and objectives can be incorporated, or metaheuristic optimization methods can be
applied to solve large-scale problems.
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