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Abstract

This paper presents the dynamic response of cantilever beam on fractional-order nonlinear viscoelastic foundation subjected to

Gaussian white noise. The control equations of the cantilever beam on viscoelastic foundation are established using Hamilton’s

principle. The problem is solved using the shifted Chebyshev polynomial algorithm, and the control equations are transformed

into a system of nonlinear algebraic equations. Numerical examples analyse the correction error and the second norm error,

confirming the effectiveness and accuracy of the algorithm in solving such problems. Furthermore, the algorithm’s robustness was

verified by comparing the responses of Gaussian white noise and non-Gaussian white noise cantilever beam on the viscoelastic

foundation. The study examined the impact of various loads and parameters on the cantilever beam, as well as the effect of

different harmonic loads on its stress. The research results are in line with the existing literature. These studies offer valuable

guidance for practical engineering and enhance comprehension of the dynamic response of cantilevers on foundation in complex

environments.
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Abstract
This paper presents the dynamic response of cantilever beam on fractional-order nonlinear viscoelastic
foundation subjected to Gaussian white noise. The control equations of the cantilever beam on viscoelastic
foundation are established using Hamilton’s principle. The problem is solved using the shifted Chebyshev
polynomial algorithm, and the control equations are transformed into a system of nonlinear algebraic
equations. Numerical examples analyse the correction error and the second norm error, confirming the
effectiveness and accuracy of the algorithm in solving such problems. Furthermore, the algorithm’s robustness
was verified by comparing the responses of Gaussian white noise and non-Gaussian white noise cantilever
beam on the viscoelastic foundation. The study examined the impact of various loads and parameters on the
cantilever beam, as well as the effect of different harmonic loads on its stress. The research results are in
line with the existing literature. These studies offer valuable guidance for practical engineering and enhance
comprehension of the dynamic response of cantilevers on foundation in complex environments.

K E Y W O R D S

Cantilever beams, Nonlinear viscoelastic foundation, Shifted Chebyshev polynomials, Correction error,

Second norm error,Gaussian white noise

1 INTRODUCTION

The mechanical properties and potential applications of structures have always been of great interest in engineering and
science.1,2,3,4 Cantilever beams are widely used structures that exhibit unique mechanical properties in various fields. Cantilever
beams made of viscoelastic materials exhibit time-dependent and non-linear properties after loading. Viscoelastic cantilever
beams have a wide range of applications in various engineering and scientific fields.5,6,7,8 The study of these beams is crucial
for a deeper understanding of the mechanical behaviour of materials and structures. In engineering applications, viscoelastic
cantilever beams can be designed and analysed to solve a range of problems related to structural vibration, dynamic response
and durability. In their study, Hao et al.9 investigated the deflection and stress of polymer cantilever beams (PET and HDPE)
under different external loads (uniformly distributed and harmonic). Jumel et al.10 performed a fracture test of a single cantilever
beam (SCB) under static loading conditions, focusing on the fracture behaviour of cantilever beams under static loading.

In modern engineering, structures often face complex environments and loads, and are founded on diverse and complex
foundation conditions. The properties of these foundation conditions significantly affect the performance and behaviour of the
structures. Qu et al.11 studied the dynamic behaviour of viscoelastic foundation plates. Arani et al.12 focused on composite
sandwich panels on viscoelastic Winkler-Pasternak foundations. Zhang et al.13 studied buckling and free vibration. Atanackovic
et al.14 investigated the vibration of elastic rods on viscoelastic foundations with complex order fractional derivatives under
constant axial force. Meanwhile, Javadi et al.15 analysed the nonlinear vibration behaviour of Kelvin-Voigt viscoelastic beams

Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor.
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on nonlinear elastic foundations subjected to primary, superharmonic and subharmonic excitation. The cantilever beam on
viscoelastic foundation is a design that takes into account the viscoelastic properties of the foundation soil. This is more in line
with practical engineering situations than traditional rigid foundation beams. Researchers have investigated key issues such
as dynamic response, stability and nonlinear behaviour of cantilever beams on viscoelastic foundation through experimental
matching and theoretical analysis. The research and application of cantilever beams on viscoelastic foundation have received
considerable attention due to the development of modern engineering and the increasing requirements for structural safety.
However, studies in this area are still limited. For example, Hosseini et al.16 conducted vibration studies on viscoelastic cantilever
beams placed on nonlinear elastic foundations, while Jiang et al.17 investigated the structural instability of freely clamped
rectangular and circular beams placed on Winkler foundations.

Establishing and solving the governing equations for a cantilever beams on a viscoelastic foundation is fundamental to
analysing the response of this structure. At present, the study of solving the governing equations for viscoelastic cantilever
beams in the time domain is relatively limited and challenging. Such equations often involve non-linear and time-varying
properties, and various numerical and analytical methods have been proposed by researchers. However, most of the numerical
methods require a more difficult solution process for the equations,18,19,20 which in some cases may lead to instability of the
computational results or accumulation of numerical errors. For example, Çalım et al.21used the complementary function method
to derive the Timoshenko beam theory in the Laplace domain, and in turn used Durbin’s numerical inverse Laplace transform
method to convert the solution results to the real space. Zhen et al.22 by means of Fourier transform, residual theorem and
convolution theorem, converted the Eulerian on a nonlinear basis. The nonlinear partial differential governing equations of
Bernoulli beam motion are simplified to two nonlinear Volterra integral equations. In addition, Ouzizi et al.23 and Javadi et al.15

applied Galyokin’s method to transform the equations related to viscoelastic foundation beams into a coupled fractional order
differential system and nonlinear ordinary differential equations. However, the implementation of these methods is relatively
complex and challenging. Although feasible, they still present some difficulties when faced with nonlinear, time-varying and
multi-scale effects, and do not allow the dynamic response of the governing equations to be solved directly in the time domain.
Shifted Chebyshev polynomials are used as a common mathematical tool to obtain the deflection response of cantilever beams on
viscoelastic foundation directly in the time domain. Such polynomials play a key role in approximation theory, signal processing,
image processing and machine learning due to their special spectral properties and optimal approximation performance.24,25,26

In recent years, many researchers have used shifted Chebyshev polynomials to approximate the functions, providing new and
effective methods. Nemati et al.27 successfully simplified the equations to a system of linear algebraic equations by using second
class shifted Chebyshev polynomials. Tural-Polat et al.28 used third class shifted Chebyshev polynomials (SCP3) to approximate
multinomial VO FDEs to achieve an efficient numerical solution. Hosseininia et al.29 successfully solved the time fractional
three-dimensional Sobolev equations using two-dimensional shifted Chebyshev basis polynomials of the second class and two-
dimensional shifted Chebyshev polynomials of the second class. To solve this problem, we use a shifted Chebyshev polynomial
algorithm, which can solve nonlinear fractional order equations efficiently and directly in the time domain. This approach has
advantages in dealing with the behaviour of viscoelastic materials. It captures the nonlinear and fractional order properties of
the materials more accurately, while maintaining high numerical stability and reducing the accumulation of numerical errors.
Wang and Dang et al.30,31,32,33 used the shifted Chebyshev polynomials algorithm to solve the control equations of arches, plates
and beams of structural mechanics directly in the time domain and to simplify the solution process. Qu et al.34 used shifted
Chebyshev wavelets to approximate the deflection function of the governing equations of a viscoelastic axially moving plate
and provided the numerical solution of the governing equations. Yang et al.36 used the operator matrix of shifted Chebyshev
polynomials to directly approximate the deflection function of the viscoelastic microbeam control equation in the time domain,
thereby converting the nonlinear fractional order control equation into the form of an operator matrix. Cao et al.35 used this
algorithm to solve the viscoelastic bowing problem under a variable fractional rheology model.

In practical applications, Gaussian white noise is often an unavoidable source of interference. Researchers are dedicated to
developing noise control and reduction techniques to minimise the impact of noise on signal quality and system performance.
Gaussian white noise is a common source of random interference that is prevalent in practical engineering and natural
environments. In the study and application of cantilever beams with viscoelastic foundations, it is essential to understand the
effect of Gaussian white noise on deflection. It is important to note that this text already adheres to the desired characteristics
and is free from errors. The deflection of cantilever beams is affected by the presence of Gaussian white noise, which induces
random oscillations in the system. No changes have been made to the content. The study of this effect is of great theoretical
importance and practical value. Therefore, the aim of this study is to analyse the effect of Gaussian white noise on the deflection
of cantilever beams with viscoelastic foundation. At present, several scholars have studied Gaussian white noise. Hu et al.37
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F I G U R E 1 Schematic diagram of the cantilever beam on viscoelastic foundation

aim to investigate the stochastic stability of fractional order viscoelastic plates under the influence of Gaussian white noise by
determining the pth moment Lyapunov exponent. Malara et al.38 investigate the efficient computation of the nonlinear response
of rods containing fractional-order eigenstructure models under stochastic excitation. Loghman et al.39 investigate the vibrational
characteristics, stability and response of fractional order viscoelastic microbeams under random excitation. These investigate
the vibrational characteristics, stability and response of fractional order viscoelastic microbeams under random excitation. The
study, together with others, explored the behaviour of such materials from different perspectives.

The paper is structured as follows: Section II introduces Caputo’s fractional order derivatives, which form the theoretical
basis. Section III presents the control equations for the cantilever beam on viscoelastic foundation. Section IV introduces the
shifted Chebyshev polynomials, an approximation of the deflection function, and a matrix of differential operators for solving
the control equations established in section II. Section V examines numerical examples of calculations for cantilever beams.
Section VI presents numerical simulations of cantilever beams, taking into account the effect of deflection with different loads,
fractional order derivatives, lengths, as well as Gaussian white noise, and analysing the variation of stresses under the action of
different simple harmonic loads. Finally, Section VII concludes.

2 THEORETICAL BASIS

Definition 1. The function ϕ(t) is differentiable to order k within [0, +∞). β definition of Caputo derivative CDβ
t ϕ(t)

cDβ
t ϕ(t) =

{
1

Γ(k–β)

∫ t
0

ϕ(k)(τ )
(t–τ )β+1–k dτ , 1 ≤ k < β + 1 < k + 1, k ∈ N+

dk

dtk ϕ(t), β = k ∈ N+
(1)

where 0 < β < 1, and Γ is the Gamma function, Γ(y) =
∫∞

0 e–tty–1dt.

According to the above definition, the derivative of β under the Caputo definition is:

cDβ
t tk =

{
0, k ∈ N0 and k < β
Γ(k+1)

Γ(k+1–β) t
k–β , k ∈ N0 and k ≥ β or k /∈ N0 and k > β

3 NONLINEAR GOVERNING EQUATIONS OF THE CANTILEVER BEAM ON VIS-
COELASTIC FOUNDATION

This paper examines a cantilever beam of length L on a nonlinear viscoelastic foundation. As shown in Figure 1, the beam is on
a nonlinear fractional viscoelastic foundation and has one end simply supported and one end free. The governing equation is
given by Hamilton. Establishing the principle:

δ

∫ T2

T1

(V – T + W) dT = 0 (2)

where T denotes the beam’s kinetic energy, V is total strain energy, and W is the amount of work putting in by outside forces.
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T =
1
2
ρA

∫ L

0

(
∂ω(x, t)

∂t

)2

dx (3)

where A is the cross-sectional area of the beam, ρ is the density of the beam, and ω(x, t) is the deflection of the beam axis.
Overall beam strain energy

V =
EA
8L

[∫ L

0

(
∂ω(x, t)

∂x

)2

dx

]2

+
1
2

EI
∫ L

0

(
∂2ω(x, t)

∂x2

)2

dx (4)

where E is the Young’s modulus and I is the moment of inertia, and the strain on the viscoelastic foundation is given by
ε(x, t) = EA

∫ L
0 (∂ω(x,t)

∂x )2dx.
Overall beam strain energy

W =
∫ L

0
f (x, t)ω(x, t)dx –

∫ L

0

(
1
2

kLω
2(x, t) +

1
2
η
∂ω(x, t)

∂t
ω(x, t) +

1
4

kNLω
4(x, t) +

1
2
µDα

T ω
2(x, t)

)
dx (5)

where f (x, t) is used to represent the external load which is the cantilever beam on viscoelastic foundation.
The following is the governing equation of the cantilever beam on viscoelastic foundation when Equations 3 4 5 are entered in

formula Equation 2:

ρA∂2ω(x,t)
∂t2 + EI ∂4ω(x,t)

∂x4 – EA
2L

∂2ω(x,t)
∂x2

∫ L
0

(
∂ω(x,t)
∂x

)2
dx + kLω(x, t) + η ∂ω(x,t)

∂t + kNLω
3(x, t)

+µcDα
t ω(x, t) + f (x, t) = 0

(6)

4 THE SHIFTED CHEBYSHEV POLYNOMIALS

In this part, we convert the nonlinear fractional-order integral-differential control equations into algebraic equations using the
shifted Chebyshev polynomials to approximate an unknown function. In other words, we simplify the solution of the control
problem by discretising the derivative components in the differential equation and turning it into a system of equations.

The following recursive connection is satisfied by first order Chebyshev polynomials in the range [–1, 1]:

Ti+1(x) = 2xTi(x) – Ti–1(x), i ∈ N+ (7)

where T is a Chebyshev polynomial and T0(x) = 1, T1(x) = x.
The shifted Chebyshev polynomial of each interval can be discovered by mapping. By including a variable x = 2t

L – 1 in
equation 7, the recursive relation of the shifted Chebyshev polynomial in the range [0, L] is created

Ti+1(t) = 2
(

2t
L

– 1
)

Ti(t) – Ti–1(t), i ∈ N+ (8)

where T0(t) = 1, T1(t) = 2t
L – 1.

The general form of the shifted Chebyshev polynomial in the range [0, L]:

Ti(t) = i
i∑

n=0

(–1)i–n (i + n – 1)!22n

(i – n)!(2n)!Ln tn, i ∈ N+ (9)

A matrix that contains the shifted Chebyshev polynomial is as follows:

Φn(t) = [T0(t), T1(t), . . . , Tn(t)]T (10)

Matrix form
Φn(t) = KtGn(t) (11)
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where Gn(t) =
[
1, t, t2, · · · , tn

]T
. Kt is the coefficient matrix of the shifted Chebyshev polynomial

Kt =
[
kij
]n

i,j–0 , kij =


1, i = j = 0
2
( 2

H ki–1,j–1 – ki–1,j
)

– ki–2j, others.
0, i < j

(12)

4.1 Displacement function approximation

For the infinitely microsquare integrable function ω(x), the approximate form of the shifted Chebyshev polynomial can be
obtained in the localisation domain [0, L].

ω(x) ≈
n∑

i=0

aiTi(x) = ATΦn(x) (13)

where ai is the coefficient of the shifted Chebyshev polynomial, ai =
1
ki

∫ L

0
ω(x)Ti(x)ωL(x)dx , A = [ai]n

i=0. Φn(x) is the shifted

Chebyshev polynomial matrix,Φn(x) = [T0(x), T1(x), · · · Tn(x)]T .
The sequence for any continuous two-dimensional function ω(x, t) ∈ L2([0, L] × [0, T]) may be written as

ω(x, t) ≈
n∑

i=0

n∑
j=0

wijTi(x)Tj(t) = ΦT
n (x)WΦn(t) (14)

The shifted Chebyshev polynomial has W =
[
wij

]n,n

i,j=0
as its coefficient.

wij = 1
kikj

∫ L
0

∫ T
0 ω(x, t)Ti(x)Tj(t)ωL(x)ωT (t)dtdx. Φn(x)and Φn(t) are the shifted Chebyshev polynomial matrices.

4.2 Matrix of the shifted Chebyshev polynomials differential operators

4.2.1 Matrix of the integer differential operato

Definition 2. If a matrix exists H1
x satisfying Φ′

n(x) = H1
xΦn(x), H1

x is a first-order differential operator matrix of the shifted
Chebyshev polynomials. The first derivative

Φ′
n(x) = (KxGx(x))′ = Kx (Gx(x))′ = Kx

(
K–1

x Φn(x)
)′

= KxPK–1
x Φn(x) = HxΦn(x) (15)

where P =
[

pij

]n

i,j=0
, pij =

{
i, i = j + 1

0, otherwise
.

Definition 3. If a matrix exists H2
x satisfying Φ′′

n (x) =
(
KxPK–1

x

)2
, H2

x is known as the second order differential operator matrix
of the shifted Chebyshev polynomial. The second derivative Φ′′

n (x) may be written as

Φ′′
n (x) =

(
KxPK–1

x Φn(x)
)′

= KxPK–1
x Φ′

n(x) =
(
KxPK–1

x

)2
Φn(x) = H2

xΦn(x) (16)

obviouslyH2
x =

(
H1

x

)2
=
(
KxPK–1

x

)2
.

The matrix of the integer differential operator of the shifted Chebyshev polynomial is therefore

Φ(m)
n (x) =

(
KxPK–1

x

)m
Φn(x)

Φ(m)
n (t) =

(
KtPK–1

t

)m
Φn(t)

(17)

where Kt is the replacement of t for x in Kx.
Obtain the following formula:

∂2ω(x,t)
∂x2 ≈ ∂2(ΦT

n (x)WΦn(t))
∂x2 = ∂2ΦT

n (x)
∂x2 WΦn(t) = ΦT

n (x)
(
KxP (Kx)–1)2

WΦn(t)
= ΦT

n (x)H2
x WΦn(t)

(18)
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∂4ω(x,t)
∂x4 ≈ ∂4(ΦT

n (x)WΦn(t))
∂x4 = ∂4ΦT

n (x)
∂x4 WΦn(t) = ΦT

n (x)
(
KxP (Kx)–1)4

WΦn(t)
= ΦT

n (x)H4
x WΦn(t)

(19)

∂ω(x,t)
∂t ≈ ∂(ΦT

n (x)WΦn(t))
∂t = ΦT

n (x)W ∂Φn(t)
∂t = ΦT

n (x)W
(
KtP (Kt)–1)Φn(t)

= ΦT
n (x)WH1

t Φn(t)
(20)

∂ω2(x,t)
∂t2 ≈ ∂2(ΦT

n (x)WΦn(t))
∂t2 = ΦT

n (x)W ∂2Φn(t)
∂t2 = ΦT

n (x)W
(
KtP (Kt)–1)2

Φn(t)
= ΦT

n (x)WH2
t Φn(t)

(21)

4.2.2 Matrix of a fractional differential operator

Definition 4. If a matrix exists Hα
t (t), and cDα

t Φn(t) = Hα
t (t)Φn(t), Hα

t (t) is the shifted Chebyshev polynomial with an fractional
differential operator matrix that can be written as:

CDα
t ω(x, t) ≈C Dα

t

(
ΦT

n (x)WΦn(t)
)

= ΦT
n (x)WCDα

t Φn(t)

= ΦT
n (x)WKt

[
0 Γ(2)

Γ(2–α) t
1–α · · · Γ(n+1)

Γ(n+1–α) t
n–α

]T

= ΦT
n (x)WKtPαGn(t)

= ΦT
n (x)WKtPαK–1

t Φn(t)

(22)

Therefore Hα
t (t) = KtPαK–1

t , where pα =
[

pαij

]n

i,j=0
, pαij =

{
0 i ̸= jori = j = 0
Γ(i+1)

Γ(i+1–α) , i = j ̸= 0
.

4.2.3 Managing nonlinear terms∫ L

0
(
∂ω(x, t)

∂x
)2dx

≈
∫ L

0
(
∂ω(x, t)

∂x
)T (

∂ω(x, t)
∂x

)dx

=
∫ L

0
ΦT

n (t)WHxΦn(x)ΦT
n (x)HxWΦn(t)dx

= ΦT
n (t)WHx

∫ L

0
Φn(x)ΦT

n (x)dxHxWΦn(t)

= ΦT
n (t)WHxAHxWΦn(t)

(23)

where A =
∫ L

0 Φn(x)ΦT
n (x)dx.

4.3 Calculate the governing equations of the cantilever beam on viscoelastic foundation

Insert the above Equations 18 19 20 21 22 23 into Equation 6.

ρAΦT
n (x)WH2

t Φn(t) + EIΦT
n (x)H4

x WΦn(t)
– EA

2L Φ
T
n (x)H2

x WΦn(t)ΦT
n (t)WHxAHxWΦn(t)

+kLΦ
T
n (x)WΦn(t) + ηΦT

n (x)WH1
t Φn(t) + kNL

(
ΦT

n (x)WΦn(t)
)3

+µΦT
n (x)WKTPαK–1

T Φn(t) + f (x, t) = 0

(24)

Initial and boundary conditions:

ω(0, t) =
∂ω(0, t)

∂t
= 0 (25)
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5 ERROR ANALYSIS AND NUMERICAL EXAMPLES

This chapter starts with an analysis of errors in the proposed algorithm. It then provides a numerical example to calculate the
absolute error and correction error, and evaluates the second norm error. The accuracy and stability of the proposed algorithm
are thoroughly assessed through error analysis and numerical examples.

5.1 Error Analysis

This section presents an error analysis of shifted Chebyshev polynomials.

Theorem 1. Error Analysis. Assuming that function ω(x)is an exact solution, ωn(x) is the best approximation of the shifted
Chebyshev polynomial of ω(x)on the interval [0, L] ,ωn(x) = ATΦn(x) . Therefore, the error can be expressed as:

∥en(x)∥2 = ∥ω(x) – ωn(x)∥2 ≤ H
(n + 1)!

· Ln+1

22n+1 ·
√

L

Proof. Assuming that ωi(x)is the interpolation polynomial of ω(x) through node xi, i = 0, 1, · · · , n , where xi, i = 0, 1, · · · , n
represents the root of the n + 1-order shifted Chebyshev polynomial in [0, L] , it can be determined that

∣∣ω(x) – ωi(x)
∣∣ = |

ω(n+1)(ξ)
(n + 1)!

n∏
i=0

(x – xi)| , ξ ∈ [0, L]

Therefore, it is possible to compute the error estimation for the zero-point interpolation of the shifted Chebyshev polynomial.

∣∣ω(x) – ωi(x)
∣∣ = |

ω(n+1)(ξ)
(n + 1)!

n∏
i=0

(x – xi)| ≤
H

(n + 1)!
· Ln+1

22n+1

The second norm error between the exact solution ω(x) and the numerical solution ωn(x) can be expressed.

∥en(x)∥2
2 = ∥ω(x) – ωn(x)∥2

2 ≤ ∥ω(x) – ωi(x)∥2
2

=
∫ L

0
|ω(x) – ωi(x)|2dx ≤

∫ L

0
(

H
(n + 1)!

· Ln+1

22n+1 )2dx

= (
H

(n + 1)!
· Ln+1

22n+1 )2L

among H = max0≤x≤L

∣∣∣ω(n+1)(x)
∣∣∣ = max0≤x≤L

∣∣∣ω(n+1)
n (x)

∣∣∣.
By taking the square root of both sides of the equation at the same time, Theorem 1 is proved.

Theorem 2. Convergence Analysis. The method described in this article uniformly converges on [0, L] , meaning that it does so
when n → ∞ and ∥en∥ → 0.

Proof. Based on the error estimate provided by Theorem 1, it can be concluded that

∥en(x)∥2 = ∥ω(x) – ωn(x)∥2 ≤ H
(n + 1)!

· Ln+1

22n+1 ·
√

L

among H = max0≤x≤L

∣∣∣ω(n+1)(x)
∣∣∣ = max0≤x≤L

∣∣∣ω(n+1)
n (x)

∣∣∣.
When n → ∞ ,∥en(x)∥2 = ∥ω(x) – ωn(x)∥2 → 0
Thus, this paper’s method uniformly converges within the interval, and Theorem 2 is proven.

5.2 NUMERICAL EXAMPLES

Take the following dimensionless equation as an example, where f (x, t) is found by exact solution
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86.51
∂2ωn(x, t)

∂t2 + (1 × 10–15)
∂4ωn(x, t)

∂x4 – (4.1 × 10–15)
∂2ωn(x, t)

∂x2

∫ L

0

(
∂ωn(x, t)

∂x

)2

dx

+1290ωn(x, t) + (1 × 103)
∂ωn(x, t)

∂t
+ (1 ∗ 103)ω3

n(x, t) + (1 × 104)cDα
t ωn(x, t) – f (x, t) = 0

(26)

The exact solution of the equation is ω(x, t) = x4t2. Among

f (x, t) = 43.255x4 + (2.4 × 10–1x)t2 – (1.125 × 10–2)x2t6 + 1290x4t2 + (1 × 103)x12t6 + (1 × 104)x4 (27)

During the solution process, a residual function is obtained. This function represents the difference between the numerical
solution and the exact solution. By calculating the residual function, the precision and accuracy of the numerical solution can be
evaluated. Furthermore, analyzing the residual function allows for the calculation of the correction error, which can be used to
improve the accuracy of the numerical solution.

The following is the correction error equation and residual function solved through numerical examples:

86.51
∂2En(x, t)

∂t2 + (1 × 10–15)
∂4En(x, t)

∂x4 – (4.1 × 10–15)
∂2En(x, t)

∂x2

∫ L

0

(
∂En(x, t)

∂x

)L

dx

+1290En(x, t) + (1 × 103)
∂En(x, t)

∂t
+ (1∗103)E3

n(x, t) + (1 × 104)cDα
t En(x, t) = –Rn(x, t)

(28)

where En(x, t) is correction error solution, en(x, t) is absolute error solution, en(x, t) =
∣∣ω(x, t) – ωn(x, t)

∣∣, Rn(x, t) is the residual
function,

Rn(x, t) = 86.51
∂2ωn(x, t)

∂t2 + (1 × 10–15)
∂4ωn(x, t)

∂x4 – (4.1 × 10–15)
∂2ωn(x, t)

∂x2

∫ L

0

(
∂ωn(x, t)

∂x

)2

dx

+1290ωn(x, t) + (1 × 103)
∂ωn(x, t)

∂t
+ (1∗103)ω3

n(x, t) + (1 × 104)cDα
t ωn(x, t) – f (x, t)

(29)

Figure 2 shows the numerical calculation example, Figure 2a is the numerical solution, Figure 2b is the exact solution, Figure
2c is the absolute error and Figure 2d is the correction error. In the given example, according to the algorithm proposed in this
article, when the shifted Chebyshev algorithm takes n = 4, the numerical solution and the exact solution are highly consistent,
and the error can reach 10–6 at some points. At the same time, the correction error can reach 10–9 at some points. In other words,
this shows that the algorithm is efficient and accurate under the given conditions. At the same time, comparing the obtained
absolute error and the correction error, it is found that the correction error is more accurate than the absolute error at some points,
which further verifies the feasibility and accuracy of the algorithm.

Furthermore, the two-norm error of the numerical solution and the exact solution is given by

∥ω(x, t) – ωn(x, t)∥2 =

√√√√ ∞∑
n=1

∣∣ω(x, t) – ωn(x, t)
∣∣2

Figure 3 shows the second norm error at different orders, Figures 3a 3b 3c shows the second norm error for the order α = 0.2,
α = 0.3, α = 0.4 respectively. It can be observed that the second norm error can reach 10–6 and 10–7 at some points. This
demonstrates the excellent performance of the fractional order in error metrics. In particular, as the order of the fractional order
increases, the second norm error gradually decreases, further highlighting the significant advantages of the fractional order in
improving the accuracy of the algorithm. This observation highlights the flexibility of the fractional order as a parameter and the
sensitivity to errors, providing the algorithm with more reliable numerical performance in practical applications.

6 NUMERICAL SIMULATION OF THE CANTILEVER BEAM ON FRACTIONAL
VISCOELASTIC FOUNDATION

This chapter presents numerical simulations of cantilever beam on viscoelastic foundation. The parameters used in subsequent
studies are listed in Table 1. Using MATLAB programming, the deflection of the cantilever beam under different loads at t = 0.8s
was simulated and a detailed analysis was carried out. In addition, the influence of Gaussian white noise and other parameter
changes on the deflection of the cantilever beam is considered, and the stress distribution under different simple harmonic loads
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(a) Numerical Solution (b) Exact solution

(c) Absolute error (d) Correction error

F I G U R E 2 Numerical calculation example

(a) α = 0.2 (b) α = 0.3 (c) α = 0.4

F I G U R E 3 The second norm error

is studied in detail. Through these analyses, a deeper understanding of the response and behaviour of cantilever beams in actual
engineering can be obtained.
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T A B L E 1 Parameters of cantilever beams on viscoelastic foundation.

Symbol Name Value

A Cross-sectional area 7.69 × 10–4

E Young’s modulus 210
I Second moment of area 1.055 × 105

ρ Mass density 7850
η Viscous damping 1.7325 × 106

kL Linear stiffness 3.503 × 105

kNL Nonlinear stiffness 4 × 1014

µ Fractional coefficient 1.7325 × 105

L Length 4

6.1 Influence of Different Loads on the Deflection of Cantilever Beam on Viscoelastic
Foundation

(a) Uniform load (b) Linear load

(c) Simple harmonic load (d) Simple harmonic load

F I G U R E 4 Deflection Response of Cantilever Beam on Viscoelastic Foundation Under Different Loads

Figure 4 shows the deflection results of the cantilever beam on the viscoelastic foundation under different loads at t = 0.8s. As
shown in Figure 1 , the left end of the cantilever is simply supported and the right end is free. Looking at Figure 4 , we can see
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that the deflection of the left end of the cantilever is almost zero, which is in accordance with the boundary conditions. At the
same time, the deflection of the cantilever beam increases with the increase of x coordinate and reaches the maximum value at
the right end, which is consistent with the actual situation and agrees with the results in the literature.16

Specifically, Figures 4a , 4b , 4c and 4d show the deflection changes under uniform load, linear load and simple harmonic load
respectively. Figure 4a shows the deflection response of the cantilever under the load of f = 10N, f = 100N and f = 1000N. As
the uniform load increases, the deflection of the cantilever on the viscoelastic foundation also increases. Linear load (Figure 4b
represents the corresponding deflection under the action of f = 1 + 2x, f = 1 + 4x and f = 1 + 6x) and simple harmonic load
(Figure 4c represents deflection response under the action of f = sin t cos x, f = sin t cos 2x, f = sin t cos 4x, Figure 4d shows
f = sin t cosx, f = sin 2t cos x, f = sin 4t cos x) all show similar results, which is consistent with the changing trend of cantilever
beam deflection in the existing literature.9

These results show that the deflection curve of the numerical simulation agrees well with the experimental results, proving
that the adopted numerical algorithm based on shifted Chebyshev has high accuracy. This provides a reliable numerical basis for
further in-depth study of the dynamic response of cantilever beams.

6.2 Influence of Gaussian White Noise on the Deflection of Cantilever Beam on Viscoelastic
Foundation

(a) f = 10N (b) f = 1 + 2x (c) f = sin t cos x

F I G U R E 5 Deflection Response of Cantilever Beam on Viscoelastic Foundation Under Gaussian White Noise

Figure 5 displays the cantilever beam on a viscoelastic foundation under different conditions at various times (t = 0.1s,
t = 0.3s, t = 0.5s, t = 0.7s, t = 0.9s). The deflection comparison under load considers the impact of Gaussian white noise
and non-Gaussian white noise. The dotted line in the figure represents the deflection change in a non-Gaussian white noise
environment, while the circles indicate the deflection in the presence of Gaussian white noise. The acronym ’GWN’ is used to
represent Gaussian white noise in this context. Different colours are used to represent different time points. Upon observing
Figure 5 in its entirety, it becomes apparent that the trend of deflection is consistent with the results presented in the previous
section. The deflection of the beam gradually increases over time, which is in line with real-world observations.

Specifically, Figure 5a shows the deflection comparison under the uniform load f = 10N. Under the influence of Gaussian
white noise, the deflection change is basically the same as without Gaussian white noise, indicating that the shift Chebyshev
algorithm is effective in dealing with this type of problem. Figures 5b and 5c show the deflection comparison under the linear
load f = 1 + 2x and the simple harmonic load f = sin t cos x respectively, which is consistent with the results in Figure 5a. In this
section, the algorithm is applied to calculate the deflection response of a cantilever beam on a viscoelastic foundation under the
influence of Gaussian white noise. The results show that regardless of the type of load, the shifted Chebyshev algorithm can give
the same results as without white noise. Consistent deflection results.

This finding highlights the robustness of the shifted Chebyshev algorithm in dealing with deflection problems of cantilevers
on viscoelastic foundations. This algorithm can effectively simulate the deflection response under different types of loads and
can maintain basically consistent results even in the presence of Gaussian white noise. Therefore, this algorithm provides a
reliable numerical solution method for further research and analysis of the dynamic behaviour of cantilever beams on viscoelastic
foundations.
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6.3 Influence of Different Parameters on the Deflection of Cantilever Beam on Viscoelastic
Foundation

(a) Fractional derivative α (b) Length L

F I G U R E 6 Deflection Response of cantilever beam on viscoelastic foundation under different parameters

Figure 6 provides an in-depth study of the influence of different parameters on the deflection of the cantilever on a viscoelastic
foundation at t = 0.8s, focusing on the fractional order (Figure 6a) and the cantilever length (Figure 6b). At the same time, the
accuracy of the shifted Chebyshev polynomial algorithm is verified by comparison with the actual situation.

First, Figure 6a examines the effect of fractional order changes on the deflection of the cantilever beam. The results show that
as the fractional derivative increases, so does the deflection of the cantilever. This is because the fractional order can describe the
viscoelastic properties of the material and a higher fractional order corresponds to a stronger viscoelastic effect. Therefore, as
the fractional order increases, so does the deflection. This result is consistent with the actual situation and confirms the accuracy
of the Chebyshev polynomial algorithm in describing viscoelastic behaviour.

Secondly, Figure 6b examines the effect of increasing the length of the cantilever on the deflection. The research results show
that as the length of the cantilever increases, so does the deflection. This result is consistent with the results in the existing
literature,40 further verified the accuracy of the Chebyshev polynomial algorithm when considering the length of the cantilever
beam.

Through these systematic studies, a deeper understanding of the influence of different parameters on the deflection of the
cantilever beam can be obtained, while the reliability of the adopted algorithm is confirmed.

6.4 Stress Variation of Cantilever Beam on Viscoelastic Foundation

The stress-strain equation in this section is as follows

σ(x, t) = Eε(x, t) + η
∂αε(x, t)
∂tα

Figure 7 shows the change in stress of a cantilever beam on a viscoelastic foundation under different simple harmonic loads.
Specifically, Figures 7a 7b 7c represent f = sin t cos x, f = sinThestresschangeofthecantileverbeamundertheactionoft cos 2x,
f = sin t cos 4x, respectively. The three-dimensional diagram clearly shows the stress distribution of the cantilever on the
viscoelastic foundation and its relationship with time and position under the action of a simple harmonic load.

Specifically, at the fixed end of the cantilever beam (x = 0m), the stress of the cantilever beam on viscoelastic foundation
reaches the maximum value, which is consistent with the initial conditions of the control equation of the cantilever beam on
viscoelastic foundation and is consistent with the results of related literature9. Along the x axis, the deformation resistance of the
cantilever beam on viscoelastic foundation gradually decreases, so that the stress value of the whole cantilever beam gradually
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(a) f = sin t cos x (b) f = sin t cos 2x (c) f = sin t cos 4x

F I G U R E 7 Stress Variation of Cantilever Beam on Viscoelastic Foundation

decreases. At the free end of the cantilever (x = 1m), the stress of the cantilever on viscoelastic foundation is close to zero, which
corresponds to the boundary condition of the cantilever on viscoelastic foundation.

From Figure 7 it can be seen that as the applied simple harmonic load increases, the stress of the cantilever on the viscoelastic
foundation also increases. This is because the increase in load causes a greater bending deformation of the cantilever, resulting in
a greater stress on the internal materials. Therefore, as the applied load increases, the stress of the cantilever on the viscoelastic
foundation will also increase accordingly, which is consistent with the actual situation.

In summary, these observation results show that the stress distribution of the cantilever beam on viscoelastic foundation
under the action of a simple harmonic load is consistent with reality and with the initial and boundary conditions of the control
equation of the cantilever beam on viscoelastic foundation.

6.5 CONCLUSION

In this study, the differential control equation of the cantilever beam on viscoelastic foundation was established by using
Hamilton’s principle, and the shifted Chebyshev was used to directly solve the nonlinear differential-integral equation in the
time domain. Through error analysis and numerical examples, the absolute error, correction error and the second norm error of
the numerical solution and the exact solution were calculated, and the convergence and accuracy of the algorithm were verified.
The main conclusions of the study are as follows:

1. Under the action of uniform, linear and simple harmonic loads, the deflection of the cantilever beam on viscoelastic foundation
increases with the increase of the external load.

2. Under the influence of Gaussian white noise, the deflection is almost the same as that without noise.
3. The deflection increases with increasing fractional order and length.
4. The maximum value of the stress appears at the fixed end of the beam and increases with the increase of the simple harmonic

load.

ACKNOWLEDGMENTS
This work is supported by National Natural Science Foundation of China (52074126), the Natural Science Foundation of Hebei
Province (E2022209110) in China and the LE STUDIUM RESEARCH PROFESSORSHIP award of Centre-Val de Loire region
in France.

CONFLICT OF INTEREST
The authors have no financial or proprietary interests in any material discussed in this article.

REFERENCES
1. Hau LcC, Fung E. Multi-objective optimization of an active constrained layer damping treatment for shape control of flexible beams. Smart

materials and structures. 2004;13(4):896.
2. Zhang Z, Nie X, Cao J. Variational inequalities of multilayer viscoelastic systems with interlayer Tresca friction: Existence and uniqueness of

solution and convergence of numerical solution. Mathematical Methods in the Applied Sciences. 2024.
3. Su ZZ, Guo YP. Exact controllability of the transmission string–beam equations with a single boundary control. Mathematical Methods in the

Applied Sciences. 2023;46(14):15352–15366.



14 TAYLOR ET AL.

4. Ramírez-Torres A, Penta R, Grillo A. Effective properties of fractional viscoelastic composites via two-scale asymptotic homogenization.
Mathematical Methods in the Applied Sciences. 2023;46(16):16500–16520.

5. Zhang Z, Zhang Z, Jin X. Investigation on band gap mechanism and vibration attenuation characteristics of cantilever-beam-type power-exponent
prismatic phononic crystal plates. Applied Acoustics. 2023;206:109314.

6. Wu Z, Xu Z, Qiao H, Chen Y, Chen L, Chen W. Study on anti-progressive collapse performance of assembled steel frame joints with Z-type
cantilever beam splices. Journal of Constructional Steel Research. 2022;199:107593.

7. Mara’Beh RA, Al-Dweik AY, Yilbas B, Sunar M. Closed form solution of nonlinear oscillation of a cantilever beam using λ-symmetry linearization
criteria. Heliyon. 2022;8(11).

8. Xiong X, He L, Bao L. Experimental study on flexural behavior of full-scale retard-bonded prestressed UHPC variable section cantilever beams.
Engineering Structures. 2023;284:115943.

9. Hao Y, Zhang M, Cui Y, Cheng G, Xie J, Chen Y. Dynamic analysis of variable fractional order cantilever beam based on shifted Legendre
polynomials algorithm. Journal of Computational and Applied Mathematics. 2023;423:114952.

10. Jumel J, Chauffaille S, Budzik MK, Shanahan ME, Guitard J. Viscoelastic foundation analysis of single cantilevered beam (SCB) test under
stationary loading. European Journal of Mechanics-A/Solids. 2013;39:170–179.

11. Qu J, Zhang Q, Cui Y, Yang A, Chen Y. Dynamic analysis of viscoelastic foundation plate with fractional Kelvin–Voigt model using shifted
Bernstein polynomials. Mathematical Methods in the Applied Sciences.

12. Arani HK, Shariyat M. Nonlinear 2D-DQ volume-preservative global–local dynamic analysis of composite sandwich plates with soft hyperelastic
cores and viscoelastic Winkler-Pasternak foundations. In: . 55. Elsevier. 2023:727–746.

13. Zhang P, Schiavone P, Qing H. Stress-driven local/nonlocal mixture model for buckling and free vibration of FG sandwich Timoshenko beams
resting on a nonlocal elastic foundation. Composite Structures. 2022;289:115473.

14. Atanackovic TM, Janev M, Konjik S, Pilipovic S, Zorica D. Vibrations of an elastic rod on a viscoelastic foundation of complex fractional
Kelvin–Voigt type. Meccanica. 2015;50:1679–1692.

15. Javadi M, Rahmanian M. Nonlinear vibration of fractional Kelvin–Voigt viscoelastic beam on nonlinear elastic foundation. Communications in
Nonlinear Science and Numerical Simulation. 2021;98:105784.

16. Hosseini SM, Kalhori H, Shooshtari A, Mahmoodi SN. Analytical solution for nonlinear forced response of a viscoelastic piezoelectric cantilever
beam resting on a nonlinear elastic foundation to an external harmonic excitation. Composites Part B: Engineering. 2014;67:464–471.

17. Jiang ZC, Ma WL, Li XF. Stability of cantilever on elastic foundation under a subtangential follower force via shear deformation beam theories.
Thin-Walled Structures. 2020;154:106853.

18. Colbrook MJ, Ayton LJ. A contour method for time-fractional PDEs and an application to fractional viscoelastic beam equations. Journal of
Computational Physics. 2022;454:110995.

19. Abouelregal AE, Salem MG. The thermal vibration of small-sized rotating fractional viscoelastic beams positioned on a flexible foundation in the
light of the Moore–Gibson–Thompson model. Journal of Ocean Engineering and Science. 2022.

20. Loghman E, Bakhtiari-Nejad F, Kamali A, Abbaszadeh M, Amabili M. Nonlinear vibration of fractional viscoelastic micro-beams. International
Journal of Non-Linear Mechanics. 2021;137:103811.

21. Çalım FF. Dynamic analysis of beams on viscoelastic foundation. European Journal of Mechanics-A/Solids. 2009;28(3):469–476.
22. Zhen B, Xu J, Sun J. Analytical solutions for steady state responses of an infinite Euler-Bernoulli beam on a nonlinear viscoelastic foundation

subjected to a harmonic moving load. Journal of Sound and Vibration. 2020;476:115271.
23. Ouzizi A, Abdoun F, Azrar L. Nonlinear dynamics of beams on nonlinear fractional viscoelastic foundation subjected to moving load with variable

speed. Journal of Sound and Vibration. 2022;523:116730.
24. Kafash B, Delavarkhalafi A, Karbassi SM. Application of Chebyshev polynomials to derive efficient algorithms for the solution of optimal control

problems. Scientia Iranica. 2012;19(3):795–805.
25. Wang Y, Nie R, Chi P, et al. A novel fractional structural adaptive grey Chebyshev polynomial Bernoulli model and its application in forecasting

renewable energy production of China. Expert Systems with Applications. 2022;210:118500.
26. Giesbrecht M, Kaltofen E, Lee Ws. Algorithms for computing sparsest shifts of polynomials in power, Chebyshev, and Pochhammer bases. Journal

of Symbolic Computation. 2003;36(3-4):401–424.
27. Nemati S, Sedaghat S, Mohammadi I. A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential

equations with weakly singular kernels. Journal of Computational and Applied Mathematics. 2016;308:231–242.
28. Tural-Polat SN, Dincel AT. Numerical solution method for multi-term variable order fractional differential equations by shifted Chebyshev

polynomials of the third kind. Alexandria Engineering Journal. 2022;61(7):5145–5153.
29. Hosseininia M, Heydari M, Razzaghi M. A hybrid spectral approach based on 2D cardinal and classical second kind Chebyshev polynomials for

time fractional 3D Sobolev equation. Mathematical Methods in the Applied Sciences. 2023;46(18):18768–18788.
30. Wang L, Chen Y, Cheng G, Barrière T. Numerical analysis of fractional partial differential equations applied to polymeric visco-elastic Euler-

Bernoulli beam under quasi-static loads. Chaos, Solitons & Fractals. 2020;140:110255.
31. Wang L, Chen YM. Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam. Chaos,

Solitons & Fractals. 2020;132:109585.
32. Dang R, Chen Y. Fractional modelling and numerical simulations of variable-section viscoelastic arches. Applied Mathematics and Computation.

2021;409:126376.
33. Dang R, Yang A, Chen Y, Wei Y, Yu C. Vibration analysis of variable fractional viscoelastic plate based on shifted Chebyshev wavelets algorithm.

Computers & Mathematics with Applications. 2022;119:149–158.
34. Qu J, Zhang Q, Yang A, Chen Y, Zhang Q. Variational fractional-order modeling of viscoelastic axially moving plates and vibration simulation.

Communications in Nonlinear Science and Numerical Simulation. 2024;130:107707.
35. Cao J, Chen Y, Wang Y, Zhang H. Numerical analysis of nonlinear variable fractional viscoelastic arch based on shifted Legendre polynomials.

Mathematical Methods in the Applied Sciences. 2021;44(11):8798–8813.
36. Yang A, Zhang Q, Qu J, Cui Y, Chen Y. Solving and Numerical Simulations of Fractional-Order Governing Equation for Micro-Beams. Fractal

and Fractional. 2023;7(2):204.
37. Hu D, Mao X, Han L. Stochastic stability analysis of a fractional viscoelastic plate excited by Gaussian white noise. Mechanical Systems and

Signal Processing. 2022;177:109181.



PLEASE INSERT YOUR ARTICLE TITLE HERE 15

38. Malara G, Pomaro B, Spanos PD. Nonlinear stochastic vibration of a variable cross-section rod with a fractional derivative element. International
Journal of Non-Linear Mechanics. 2021;135:103770.

39. Loghman E, Bakhtiari-Nejad F, Kamali A, Abbaszadeh M. Nonlinear random vibrations of micro-beams with fractional viscoelastic core.
Probabilistic Engineering Mechanics. 2022;69:103274.

40. Ding H, Chen LQ, Yang SP. Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving
load. Journal of Sound and Vibration. 2012;331(10):2426–2442.


	Dynamic vibration analysis of cantilever beams on nonlinear fractional viscoelastic foundation under Gaussian white noise
	Abstract
	Introduction
	Theoretical basis
	Nonlinear Governing Equations of the Cantilever Beam on Viscoelastic Foundation
	The Shifted Chebyshev polynomials
	Displacement function approximation
	Matrix of the shifted Chebyshev polynomials differential operators
	Matrix of the integer differential operato
	Matrix of a fractional differential operator
	Managing nonlinear terms

	Calculate the governing equations of the cantilever beam on viscoelastic foundation

	Error Analysis and Numerical Examples
	Error Analysis
	NUMERICAL EXAMPLES

	Numerical simulation of the cantilever beam on fractional viscoelastic foundation
	Influence of Different Loads on the Deflection of Cantilever Beam on Viscoelastic Foundation
	Influence of Gaussian White Noise on the Deflection of Cantilever Beam on Viscoelastic Foundation
	Influence of Different Parameters on the Deflection of Cantilever Beam on Viscoelastic Foundation
	Stress Variation of Cantilever Beam on Viscoelastic Foundation
	CONCLUSION

	Acknowledgments
	Conflict of interest
	REFERENCES


