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Abstract13

Significant efforts are made to eliminate biases from models and observations, especially at operational centres. However, these biases still signifi-14

cantly impact the quality of assimilated data products. In the case of numerical weather prediction, residual biases can result in suboptimal utilization15

of available data or even render them unusable. In climate research based on re-analyzed datasets, it can be difficult to distinguish between accurate16

signals and trends from inaccurate ones caused by biases in models and data.This study used a detection algorithm written in the R language to17

perform statistical computing and data analysis. The algorithm was applied to a synthetic study utilizing pseudo-stations based on ERA5 to simulate18

and detect instrumental effects. Rather than using observational data from real-world sources, the study generated artificial scenarios to guarantee19

the quality of the data assessment.ERA5 is a well-known atmospheric reanalysis product that was used to create simulated or pseudo-weather sta-20

tions. These stations were designed to mimic actual stations but were generated computationally to enable controlled experimentation. The study21

constructed twenty-five pseudo-stations in Frankfurt, Germany, within the latitude 49–50° and longitude 8–9° in the Northern Hemisphere. The22

study utilized the ERA5 land surface dataset of hourly 2-m air temperature of September in 2013 and 2014. The study tool significantly impro-23

ves data quality assessment by evaluating the synthetic dataset’s precision, dependability, and general robustness. It introduces a range of factors24

to assess the degree to which the data quality can be enhanced and maintained, including station movements, errors, and noise.To determine the25

likelihood of the threshold correlation occurring at our confirmed noise threshold, the correlation values occurring at 1.53 for each locational trial26

were extracted. Our threshold correlation was evaluated to see if it occurred within a likely range of correlations occurring at 1.53 degrees of noise,27

where 0.9744052 is less than 0.9744667 but greater than 0.9781093. This process helps improve detection methods for data anomalies, contributing28

to advancements in data quality assessment.29

Keywords: ERA5, Weather Station Validation, Statistical Noise, RStudio, Confidence Threshold30

31

1. Introduction32

As time progresses, our society relies more and more heavily on climate data analysis and necessitates reliable wea-33

ther measurement to create long-term climate models, daily weather forecasts or even vulnerabilities assessments (Jo-34

nes et al., (2009) ; Rummukainen, (2012 )). Weather forecasting and climatology first developed distinct traditions and35

data sources during the 19th century. This led to the emergence of climate modeling in the 1960s, bringing together36

the two fields and changing scientists’ perspectives from a local to a global perspective (Barry and Chorley (2009);37

Edwards, (2010); Mauelshagen, (2014); Baker, (2017)). Forecasting the weather, however, was still difficult at the time38

because sampled weather balloons only began operating in the late 50’s and records had poorly and inconsistent sur-39

face stations (Edwards, (2010); Kalnay, (2003). In the 1970s, climate modeling laboratories gained interest in energy40

and environmental policy, leading to an infrastructural overhaul (Edwards, (2010); Maraun and Widmann, (2018)). As41
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the effects of global warming became all too apparent in the 1980s, scientists and policymakers established the Inter-42

governmental Panel on Climate Change (IPCC) to evaluate scientific data on climate change, its impact, and possible43

solutions (IPCC, (2009) ; Edwards, (2010) ; Baker, (2017)). In addition, from the 90’s emerged a new source of global44

climate data through weather records reanalysis (Parker, (2016); Trenberth and Olson, (1988) ; Bengtsson and Shukla,45

(1988)) and nowadays, climate knowledge infrastructure is one of the most reliable source of data, constantly reviewed46

and reanalyzed with added metadata (Edwards, (2010)).47

Climate research and meteorology both rely on station observation and reanalysis techniques. Station observation pro-48

vides real-world data, while reanalysis techniques provide consistent weather information on a global scale and over49

continuous time by integrating multiple observational data and numerical models (Edwards, (2010); Rummukainen,50

(2012); Hersbach et al., (2020)). In scientific research and application, it is often necessary to combine both to obtain51

more comprehensive meteorological data (Salcedo-Sanz et al., (2020); Schauberger et al., (2020)). Simulation models52

rely on physical theory while numerical models were developed by weather forecasters to compute large-scale atmo-53

spheric movements and anticipate weather patterns (Parker, (2016)). Subsequently, climate scientists adopted similar54

methodologies to simulate the Earth’s climate over extended periods, ranging from years to decades (Pitman, (2003);55

Jiao et al., (2021)). Additionally, by modifying the simulated variables and conditions, they utilize models to forecast56

how climate patterns will evolve as human activity affects the composition of the atmosphere and other climate-related57

systems.58

In fact, three types of computer models are now used to understand global climate : simulation, reanalysis and data59

analysis models, however, this study is mainly focusing on the latest two. Reanalysis models originate from weather60

forecasting and are widely used datasets in studying weather and climate (Edwards, (2010); Doddy et al., (2021);61

Jiao et al., (2021)). Unlike pure simulations, these models simulate the weather and blend the results with actual wea-62

ther observations to produce fully global, uniform data (Gleixner et al., (2020); Ghajarnia et al., (2022)). Reanalyses63

are valuable datasets for monitoring and comparing past and present climate conditions, testing the accuracy of past64

forecasts, driving numerical weather prediction (NWP) models, and identifying climate variations and change (Hers-65

bach et al., (2020) ; Jiao et al., (2021)). Unlike data from instruments alone, climate statistics from reanalysis models66

cover the entire planet at all altitudes (Edwards, (2010)) and are increasingly used in various commercial sectors, in-67

cluding energy, agriculture, water resources, and insurance (Gleixner et al., (2020); Doddy et al., (2021)). On the other68

hand, data analysis models refer to the techniques, algorithms, and empirically derived adjustments used to process69

historical weather and climate records. These models are necessary as observing systems have undergone multiple70

changes over time and combining long-term records is still needed. In addition, data analysis models are employed to71

account for various factors such as instrument behaviors, data collection practices and weather station site changes and72

essential to adjust for the unevenness of observations in space and time. All in all, these techniques all are important to73

our society, being for forecasting, assessing current and future climate change but also mitigation. The data and models74

obtained can be used for seasonal drought prediction for example, which lead to better assessments, the development75

of new agricultural and water use policies or the creation of new infrastructures, more suitable or useful to the new76

climate condition, and so on (Bengtsson et al., (2007); Dee et al., (2014)).77

One of the tools using such reanalysis models, is ERA5: in 2010, the European Center for Medium-Range Weather78

Forecasts (ECMWF) developed it as the fifth-generation Re-Analysis dataset and replaced the ERA-Interim dataset79

in 2019 (Hoffmann et al., (2019); Jiao et al., (2021); Ghajarnia et al., (2022)). ERA5 is a weather forecasting system80

that employs advanced techniques like four-dimensional variational data assimilation (4D-Var) and a high-resolution81

numerical weather model to provide more precise and accurate spatial and temporal resolution. Compared to its prede-82

cessors, ERA-Interim, ERA5 has a much higher resolution with 31km and hourly against 79km every 3 hours, making83

it more reliable (Hersbach et al., (2020); McNicholl et al., (2021); Ghajarnia et al., (2022)). ERA5 uses a sophisti-84

cated numerical weather model that assimilates a diverse set of observational data to produce a comprehensive and85

high-quality representation of global atmospheric conditions (Jiao et al., (2021); Yu et al., (2021)). ERA5 combines86

observations from different sources such as weather stations, satellites, and ocean buoys, with a numerical weather mo-87

del to generate a detailed and consistent representation of the Earth’s atmosphere (Cucchi et al., (2020)). This process88

is known as data assimilation, which involves adjusting the initial conditions of the weather model using observations89

to create a more accurate representation of the atmospheric state (Cucchi et al., (2020); Ghajarnia et al., (2022)). Over90

the past few decades, advancements in data assimilation techniques have significantly improved the accuracy of NWP91
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forecasts (Kalnay, (2003); Parker, (2016)).92

In a recent paper, Velikou et al. (2022) conducted an investigation into the ERA5 dataset’s reliability in replicating93

mean and extreme temperatures across Europe. The findings of the study suggest that ERA5 is highly reliable for94

climate investigation over Europe, as it captures the mean and extreme temperatures very well. The high correlations95

ranging from 0.995 to 1.000 indicate that ERA5 can capture the annual cycle very well, as supported by previous96

studies by Doddy et al. (2021) and Jiao et al. (2021). Furthermore, McNicholl et al. (2021) found that satellite tem-97

perature performs better in the temperate region compared to the tropical region. This suggests that the accuracy of98

satellite data is influenced by the time of year and climate region, with milder temperatures producing better estimates.99

These last years, ERA5 has become a widely used data source for temperature modeling due to its coverage of large100

land areas with regular latitude-longitude grids at 0.1° x 0.1° resolution. The reanalysis data also covers a period101

from 1950 to near-real-time hourly data, making it a valuable resource (Li et al., (2022); Essa et al., (2022)). While102

the gridded temperature derived from ERA5 reanalysis data provides the opportunity to interpolate temperature at103

arbitrary locations, this process can introduce errors and uncertainties, as noted in studies by Li et al. (2022) and Shi et104

al. (2021). To improve the accuracy of interpolated ERA5 temperature, a refinement method using an ANN model and105

measured station temperature was used to correct errors, as highlighted in studies by Li et al. (2022) and Hoffmann et106

al. (2019). However, the accuracy and biases of reanalysis datasets based on data assimilation continue to affect107

reanalysis tools, therefore it is essential to evaluate their performance (Yu et al., (2021); Li et al., (2022); Velikou et108

al., (2022)). In regard to that, this study, thus, aims to evaluate the accuracy of the ERA5 temperature dataset, doing109

so by analyzing the measurements of twenty-five stations in Frankfurt from September 2013 and September 2014.110

The main purpose is to identify any potential location errors resulting from incorrect latitude or longitude signs and, if111

necessary, make the appropriate corrections.112

113

2. Methodology114

2.1 Study Location and Air Temperature115

Frankfurt, Germany, is situated in Central Europe inland at geographical coordinates of 50.116 degrees latitude and116

8.684 degrees longitude and sits at an elevation of 117 meters. The topography within a 3-kilometer radius of Frankfurt117

am Main city is mostly flat, with a maximum elevation change of 83 meters and an average elevation above sea level of118

114 meters. Based on data from 1985–2015, the city experiences a peak in temperature in July and August, then slowly119

decreases to its minimum in December and January. September, thus, still shows warm weather, and while September120

2013 stays quite stable with a peak in the early days, September 2014 is warmer and a bit more variable. However, if121

we compare the extreme temperatures throughout the year, we can observe similar results. Unstable weather, locally122

both in time and in topography, could be a slight difficulty to test station accuracy as temperatures can be as much as123

4-5°C different from day to day, according to records.124

Appropriate data from the .nc file, such as time, coordinates and temperature values, were extracted and converted125

into .csv format. This was due to the accessible format of .csv files. Csv files are commonly used for the storage126

and distribution of data. Analysis of the ERA5 was initiated once in this format. Originally two variables were127

selected for analysis (2m temperature and surface pressure), however upon initiation of analysis, a single variable,128

temperature, proved to be sufficient.129

Each coordinate within a quarter degree of the chosen window (latitude 49–50° and longitude 8–9°) was extracted130

and assigned to a variable name. This allowed for individual analysis per coordinate or location. The quality and131

distribution for each location was then assessed. For the purposes of reanalysis in this study, the city of Frankfurt was132

divided into 25 distinct locations, which are tabulated below:133

Table 1: Co-ordinates of each of the 25 locations in nearby regions to Frankfurt134

4
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Station location Longitude Latitude Name of location
01 8°E 50°N Oestrich - Winkel
02 8.25°E 50°N Mainz
03 8.5° E 50° N Hasslock (East)
04 8.75° E 50° N Gotzehain
05 9° E 50° N Zellhausen
06 8° E 49.75°N Nack (Northwest)
07 8.25° E 49.75°N Dittelsheim-Hessloch
08 8.5° E 49.75°N Gernsneim
09 8.75° E 49.75°N Webern
10 9° E 49.75°N Nack (North)
11 8° E 49.5°N Hertlinghausen (West)
12 8.25° E 49.5°N Weisenheim am Sand
13 8.5° E 49.5°N Wohlgelegen
14 8.75° E 49.5°N Lampenhain (West)
15 9°E 49.5°N Soitzberg
16 8°E 49.25°N Dernbach
17 8.25°E 49.25°N Oberlustadt
18 8.5°E 49.25°N Waghausel
19 8.75°E 49.25°N Muhlhausen
20 9°E 49.25°N Ehrstadt (North East)
21 8°E 49°N Schleithal (North West)
22 8.25°E 49°N Neuburg am Rhein
23 8.5°E 49°N Grotzingen
24 8.75°E 49°N Kleinvillars
25 9°E 49°N Hohenhaslach

2.2 ERA5135

ERA5 is a dataset created by the European Centre for Medium-Range Weather Forecasts (ECMWF) and managed by136

Copernicus Climate Change Services (C3S). To produce a more precise spatial and temporal resolution compared to137

ERA-Interim, ERA5 uses advanced techniques like 4D-Var and a high-resolution numerical weather model (Hersbach138

et al., (2020)). ERA5 assimilates a broad range of observational data, including satellite measurements, ground-based139

weather stations, and ocean buoys, thus, improving the accuracy of the initial conditions used in weather models.140

This dataset plays a significant role in weather forecasting by assimilating observational data, offering high-resolution141

information, maintaining consistency in data records, providing global coverage, and aiding in model validation. All142

of these factors contribute to the accuracy and reliability of temperature forecasts (Hersbach et al., (2020) ; Yu et al.,143

(2021) ; McNicholl et al., (2022)).144

2.3 Air Temperature and ERA5145

Several studies have assessed ERA5 efficiency both in terms of air temperature data and air temperature trends146

(Almeida and Coelho, (2023) ; Yilmaz, (2023)). According to them, ERA5 has a tendency to slightly underesti-147

mate air temperature in some regions, possesses a greater accuracy with simulations across flatter areas in contrast to148

locations of high altitude and complex, uneven terrain patterns (Almeida and Coelho, (2023)). While it may be best149

to be cautious for short term environmental studies, it is overall really effective to describe air temperature in Europe150

(Almeida and Coelho, (2023)). Focusing more on temperature trends, ERA5 is shown to be consistent with observed151

trends with a better accuracy over long term period, its trends can be on average slightly higher than observed but152

to a negligible level of difference (Yilmaz, (2023)). Factors such as time period, location of study, biases in ground153

5
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Figure 1: Map showing the global distribution of all known weather stations. Note the relatively high station density
in Europe, hence our choice of study in Frankfurt.

observation and inhomogeneities can introduce trends and variability in the dataset that are inconsistent with observed154

values (Almeida and Coelho, (2023)). In light of these points, Almeida and Coelho (2023) suggest carrying out assess-155

ments of reanalysis datasets under different climatic conditions to eliminate as much uncertainty as possible, however,156

all in all, studies still agree that ERA5 can be highly trusted with air temperature. Therefore the data must be simulated157

to determine if an outlying data point is truly incorrect (whether from an alternate data set or a typo), if it is genuinely158

a novel change in data (e.g., freak events, creating a novel area for research), or if it is due to an unrecorded change in159

station location. A step-by-step approach used in the data manipulation, calibration and verification of this process is160

shown below.161

2.4 Analysis Method162

We used the Copernicus Climate Change Service (C3S) Climate Data Store (https://climate.Copernicus.eu/163

climate-reanalysis) to obtain hourly 2-m air temperature from ERA5-Land surface, which the European Cen-164

tre provides for Medium-Range Weather Forecasts (ECMWF). The data was downloaded on December 7, 2023, in165

NetCDF format (CDS, n.d.) for a single month in September 2013 and September 2014; it was available at 0.250 (31166

km) gridded resolution in the latitude 49–50 degrees and longitude 8–9 degrees.167

The R software (version 4.1.2) and the packages “devtools” and GitHub (“ProcessMiner/nlcor”) were used for the168

analyses in this study. The R package ggplot2 was utilised to generate the diagrams in the study. The following169

section of the report contains all scriptable R codes for the analyses performed in this investigation. We began by170

importing NetCDF as an NC file and converted it to CSV format. This is to improve the compatibility and ease in171

opening and manipulating CSV files in RStudio using the R programming language.172

2.5 Statistical Method and Data Analysis173

A statistical summary, including the minimum value, maximum value, quartiles, median and mean, was performed,174

allowing for trend comparison across all locations. The inter quartile range (IQR) was also calculated, providing a175

confidence interval for 50% of distributed data. Annual temperature follows a normal distribution. A Shapiro Wilk test176

was used to test the null hypothesis that temperature data is also normally distributed in our sample data for September.177

Contrary to expectation, the p-value was not insignificant, and so it was accepted that the data was more likely not to178

be normally distributed.179

As the data did not follow a confident normal distribution, future consideration must be applied. Hence the ‘rnorm()’180

6
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Figure 2: Map of the area surrounding Frankfurt, including the 25 locations examined in this study indicated by dots
(refer to Table 1 for precise identification of these locations).

function commonly used in R to simulate normally distributed values, cannot be applied in this instance. Therefore181

an alternative method to simulate our data is required in the determination of false coordinate values. A location was182

chosen at random to test possible alternate methods.

Figure 3: Original data distributions per location. Note the degree of similarity between individual graphs prior to
subsequent analysis

183

Location 7 showed to have the highest correlation with location 8 and then 6, and the lowest correlation with location184

7
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25. If a confidence threshold is produced, it may be possible to statistically determine when a value from location 7 is185

truly from location 8, and not just highly correlated. Therefore various methods were assessed in their confidence to186

accurately reproduce the distribution of data from location 7.187

188

3. Results189

The function ‘descdist()’ was performed to estimate kurtosis and skew in location 7. Kurtosis indicates the length of190

a skew tail, whereas the resulting skew output indicates the skew bias. The function showed a positive skew and a191

kurtosis not far from three. Therefore three common right-skewed distributions could be considered for fit: Weibull,192

gamma and lognormal distributions. As the skew is very short tailed, a possible normal distribution could be accepted193

upon rejection of the other distributions, even with the previously rejected Shapiro-Wilks test.194

The function ‘fitdistr()’ was used to assess each chosen possible distribution (Weibull, gamma, lognormal and nor-195

mal). The resulting value provides a mean as the maximum likelihood parameter. Therefore whichever distribution is196

closest in result to the true mean is selected. The distribution which provided the most promising value was normal197

distribution.198

Transformation of location 7 to a true normal distribution was considered, but given the above results the data was as-199

sumed to be nearest in distribution to a normal distribution. Sample data was then generated using the aforementioned200

normal distribution simulation function and was applied to the distribution of location 7. The resulting sample spread201

,however, showed to have a very low correlation with the data, showing that reproducing sample data for location 7202

with a normal distribution was still inappropriate.203

An alternative idea was then produced: generating sample data under the same distribution curve of location 7. With204

values fitted to a graphical distribution, what amount of adjustment is required for correlation to no longer occur? To205

assess this, it must first be possible to regenerate the sample data to have a correlation of near 1 to the original observed206

values. First the density from the observed values was evaluated and used to create the model of observed distribution.207

The ‘adjust’ function was applied to shift data values in order to create our sample values. Correlation, with minimal208

adjustment, appeared to be close to zero, showing this method to be equally unusable as the previous.209

It was then realised that the function ‘cor()’ was being used to measure the correlation, however this measures linear210

correlation, with our data being non-linear. Therefore ‘nlcor()’ was introduced and previous correlation calculations211

were reassessed non-linearly. The correlation values improved slightly, but not significantly enough to be accepted.212

The need for a probability matrix for each temperature was then considered, however deemed to introduce unwanted213

bias.214

As the previous methods had provided little progression, an entirely different approach was deliberated. Rather than215

creating sample data through the generation of individual values, the existing values could themselves shift slightly,216

therefore, overtime, the data will eventually deviate in correlation from observed location values. The R function used217

to achieve this is the base function ‘jitter()’. If 0.1% of change can be added to each value in progression, at what218

amount of change in jitter (or in this case ‘noise’) can we say that the value no longer belongs to, or correlated with the219

original dataset? If correlation occurs with surrounding data, at what stage or amount of noise does this occur? The220

default amount of jitter created is the factor by one fifth of the smallest difference between observed values. Therefore221

a minimal amount of noise (within realistic values) is applied. However temperature values recorded can be greater222

than 5 significant figures, so the noise applied would be too insignificant. Therefore our chosen noise value is set223

to amount and not factor within the function. This resulted in extremely high correlation, near 1 (0.99999998) with224

p<0.05, so the resulting sample dataset is accepted. This was then applied to location 7 in varying degrees of noise,225

from 0.01 to 4.00 in increments of 0.01, and repeated five times so as to gain more accurate value estimates. Further226

trials would be carried out, however, this test was extensive and required an extended duration. This was also carried227

out on the additional 24 locations.228
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Once 5 trials were run for every location, the max correlation for each row within a trial was calculated. This indicated229

the amount of noise added where the sample data no longer had the highest correlation with observed data for the230

location, and instead had a higher correlation with a nearby location. The degree of noise and correlation were231

extracted for these threshold points.

Figure 4: R elative correlation values between locations. Darkest coloured dots equate to greater correlation frequency.

232

Each location was then plotted by highest correlation frequency, allowing for visualisation in the spread of locational233

correlations for each location. It was hence decided that locations that did not have all neighbouring locations present234

9
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were excluded, as this lack in data could cause a potential skew in our results, as potential correlations could not occur.235

Therefore locations 7, 8, 9, 12, 13, 14, 17, 18, 19 were chosen to continue with analysis.236

Sample data for the spread of values in correlations and degree of noise were created to generate larger datasets,237

ensuing confidence in our resulting data. These were validated using a t-test. A Shapiro-Wilks test was performed to238

assess distribution. Both variables indicated normal distribution, however original correlation values, when plotted,239

showed to have a slight skew to the left, and so the degree of noise was accepted as our variable for analysis, due to its240

visual confidence and clear statistical normal distribution.

Figure 5: Histogram of original locational noise values. Threshold value indicating correlation deviance shown in blue

241

A confidence interval was then created within two standard deviations of the mean. This was to ensure that our lowest242

threshold value () was confidently within expected or possible threshold values. 1.481252 <1.53 >2.427654

Figure 6: Sampled noise with threshold value and confidence interval included

10
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To assess the likelihood of the threshold correlation occurring at our confirmed noise threshold, the correlation values243

occurring at 1.53 for each locational trial were extracted. Our threshold correlation was assessed to see if it occurred244

within a likely range of correlations occurring at 1.53 degrees of noise. 0.9744052 < 0.9744667 > 0.9781093

Figure 7: Precise frequency of correlation values between all 25 locations given a value of simulated noise of 1.53
degrees

245

4. Discussion246

4.1 Location Errors in the ERA5 datasets247

The distribution of temperature based on satellite measurements, on a given time and date, can be seen for the 25248

stations in Fig. 3. From this graph, it is clear that in the surrounding areas of Frankfurt, the temperature values249

are spread evenly. The even spread of temperatures shows that the temperature data produced by ERA5 is potentially250

reliable, as opposed to a dataset with large fluctuations between data points. The high spatial resolution of ERA5 means251

that temperatures can potentially be mapped out accurately over relatively small geographical areas. This would make252

it a valuable dataset, which has been noted in Figure 4. It is clear that for each year, the temperature difference varies253

in a cyclic pattern. This can be observed when following the median of each location as the maximum likelihood254

parameter. Location 7 , 8, 9, 12, 13, 14, 17, 18, 19 were chosen to continue further analysis of true mean with255

promising value for a normal distribution with the result shown in Figure 5.256

The accuracy of results reflected within ERA5 datasets has been shown to be significantly dependent on the location of257

the area being studied, with some areas known for having less reanalysis potential in comparison to others. Antarctica258

is a notable example of this, owing its lack of study potential to a lack of long-term direct observations, most of which259

are largely constrained to coastal areas (Tetzner et al., 2019). Therefore, reanalysis is often used as the sole means260

to obtain reliable estimates of atmospheric structure through time by constraining a physical atmospheric model by261

use of what few observational records exist (Bracegirdle, 2013). Though we do not anticipate a lack of observations262

to be a significant issue in this study, there still remains some potential sources for significant biases and errors in263

our measurements, such as land use cover and change, which can have notable implications for factors such as albedo264

and rates of radiative surface temperature change (Li et al., 2023). From this observation, it stands to reason that265

heavily urbanised areas would frequently display higher temperature measurements due to the presence of the urban266
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island heating effect, creating a potential positive skew of measurements unrepresentative of true temperature values.267

Furthermore, as explained previously, there were a significant number of cases in which certain locations displayed268

particularly strong correlations with others. Given the lack of geological complexity within the study area, it stands to269

reason that there was noticeable error in the data, and that it was likely influenced by potential misreporting of station270

location.271

Errors in station location can arise due to several factors, including inaccuracies in GPS signals, interference caused272

by multipath or atmospheric conditions, poor satellite geometry, errors with receiver clocks, or even deliberate inter-273

ference. These variables can result in inaccuracies when calculating the precise position of a GPS receiver.274

For location coordinates, noise can contribute to inaccuracies, causing slight variations or shifts in the reported location275

as shown in Figure 7. In the case of 2-meter surface temperature data, noise can introduce errors or biases into276

temperature readings, making it difficult to identify accurate temperature patterns and trends. This can impact the277

reliability of weather forecasts, climate studies, and other applications that rely on precise temperature data.278

4.2 Data Reliability and ERA Datasets279

Owing to the relatively flat gradient of the locations of study surrounding Frankfurt and the high number of available280

weather stations there, we managed to obtain surface temperature measurements of relatively high accuracy within281

the city. This network of numerous, interconnected weather monitoring stations operate in a manner that optimises282

economic and social benefit that stands as a testament to the careful consideration given to their establishment (Amorim283

et al., 2012). In anticipation of the inherently random nature of temperature variations, the simulated noise levels were284

deemed necessary in accounting for this unpredictability, and indeed we were able to generate correlation values for285

each location at a given level of noise. However, as we extracted our chosen data solely from the ERA5 dataset, the286

accuracy of our analysis may have had the opportunity to improve in significant degrees if the dataset’s land-based287

counterpart, ERA5-Land (Gleixner et al., 2020), was used in conjunction with the data obtained in this study. This288

would have allowed for the potential identification of any non-surface variables, such as cloud cover, for any potential289

influence on surface temperature. This also may have potentially mitigated any significant lack of clarity in the data290

resulting from the coarse resolution of the ERA5 dataset (Gleixner et al., 2020).291

We assess the synthetic dataset’s precision, dependability, and general robustness to improve the data quality as-292

sessment. A range of factors were considered to evaluate the degree to which the data quality can be enhanced and293

maintained, including station movements, errors, and noise. The analysis in Figure 3 helps us pinpoint which locations294

were most sensitive or responsive to the introduction of noise, providing insights into how noise affects the correlation295

between temperature data and location coordinates for different weather stations. Noise, in this sense, refers to the296

unpredictable variations in the temperature data. For example, if location 1 has a correlation of 0.9633642, it means297

there is a strong positive variable (temperature) being measured at location 1 with low noise or random variability in298

the data.299

4.3 Meteorological data loss300

Weather radars often suffer from data loss issues, which limits their data quality and applications. The traditional301

weather radar missing data completion method based on radar physics and statistics has defects in various aspects302

(Gong, et al., 2023).Modern weather radars are powerful tools in today’s real-time weather monitoring. Thanks to303

their high spatial resolution and short scanning interval, radars can usually obtain more comprehensive and finer-304

grained observations in regions than rain gauges and satellites. Despite the advantages of radars, they suffer from the305

data-missing problem that limits their data quality. A significant cause of radar missing data is beam blockage, which306

occurs when radar beams are obstructed by terrain objects like mountains and buildings, resulting in wedge-shaped307

blind zones behind the objects. Some data is missing. This may also cause abnormal temperature data (Gong, et al.,308

2023). [?]Besides beam blockage, other equally significant factors include the phenomenon of attenuation, whereby309

radar signals are weakened as they pass through intense rainfall, which leads to underestimations of rainfall and linked310

temperature data (Fabry, 1996). [?][?]These restrictions in radar technology can cause gaps in meteorological data,311

which could lead to inaccurate temperature results. [?]312
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4.4 Local factors313

Due to the largely spherical shape of the Earth, it stands to reason that it receives unequal amounts of heat energy from314

the Sun across such a large spatial scale. However, the global-scale temperature regime is made even more nonlinear315

and inconsistent across several regions due to the influence of local meteorological and climatological controls over316

smaller-scale areas.317

Local variations in topography are well known to exert significant control over, and bring about distortions in, small-318

scale temperature regimes over given locations (Zhu et al., 2021), which presents an obstacle in calculating the true319

values for surface air temperature. This observational gap in data may be evidently shown by separate stations as far320

apart as 3km given sufficient altitudinal differences (Zhu et al., 2021). The potential for trees to influence air flow and321

precipitation patterns brings to attention the land-use cover and change (LUCC) regime of the specified area. Research322

conducted by Li et al. (2023) demonstrates the cooling effect of reforestation efforts, with areas of grassland-to-forest323

conversion displaying lower daily maximum surface temperatures in summer and autumn over reforested areas of324

southern China. The degree of continentality (distance from the sea or ocean) of a given area must also be considered.325

Locations at a closer proximity to the coast are shown to experience variations in temperature in lesser magnitude than326

locations found in inland environments, due to the faster rate of temperature change observed in continental rock in327

comparison to the ocean, resulting in general decrease in land-surface temperature in areas closer to the ocean (Ning et328

al., 2018). This factor can result in temperature regimes that are inconsistent with the latitudinal location of a given329

region: for example, the cities of Glasgow and Moscow are located at similar latitudes, but the location of the former330

city closer to the coast results in milder, warmer winters than that of the latter (BBC, n.d.).331

4.5 Future Consideration332

ERA5 reanalysis studies are often hindered by a similar set of obstacles, such as complex terrain and a lack of in situ333

observations (Gleixner et al., 2020). And in the case of the ERA5 model itself, its resolution value of 0.25 degrees is334

considered too coarse for small-scale regional modelling and impact models (Gleixner et al., 2020) (though its land-335

only counterpart, ERA5-Land, is often used instead to counteract this limitation (Gleixner et al., 2020)). Nevertheless,336

ERA5 is widely agreed to be a vast improvement upon its predecessor, the ERA-interim dataset, on the grounds of337

precipitation measurements, as well as those of temperature (Gleixner et al., 2020). This will ultimately prove essential338

when observational values are needed in conjunction with multiple climate variables in order to, for example, model the339

natural variability of coupled systems (Trenberth et al., 2008). Whether or not any improvements in ERA5 will prove340

significant will depend on the outcome of future studies, which often test such newfound capabilities in regions whose341

climate is difficult to analyse, e.g. East Africa (Gleixner et al., 2020), which features complex terrain and frequently342

heavy cloud cover (Holmes et al., 2016) in addition to a sparsity of in situ measurements (Gleixner et al., 2020). A343

wealth of advantages obtained in any reanalysis study therefore allows for additional statistical experimentation to be344

performed, as is the case with our study, in which sufficient data was made available for the assimilation of random345

variation of surface temperature in our calculations. Due to this, we can state with more confidence that shifts in station346

location remain one of the most likely sources of error or bias in the data. Though another method to consider is one347

suggested by Almeida and Coelho (2023), involving the simulation of different climatic conditions in a study area348

to eliminate further uncertainties. In the case of this study, it may have proved useful in identifying further potential349

sources of skew in location correlation data.350

5. Conclusion351

The study yielded valuable insights into the strengths and limitations of the ERA5 temperature dataset, especially352

in data quality assessment. The findings are significant in advancing the methodologies used to evaluate reanalysis353

products and underscore the need to consider the dataset’s limitations when interpreting climate research outcomes.354

ERA5 reanalysis data is highly reliable and provides detailed information on global atmospheric conditions at high355

spatial (up to 0.25 degrees) and temporal (hourly) resolutions. It is possible to conduct comprehensive climate studies356

by considering various atmospheric variables, such as wind, humidity, precipitation, and temperature. ERA5 employs357
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advanced data assimilation techniques, combining observational data with model outputs to represent atmospheric358

conditions more accurately.359

Biases, also known as systematic errors, are commonly found in data-assimilation systems. All system components,360

including the forecast model, boundary conditions, observations, observation operators, and covariance models, can361

introduce, extrapolate, or amplify biases. To detect biases, differences between observations and their model-predicted362

equivalents can be monitored on the input side. At the same time, systematic features of the analysis increments can be363

examined on the output side. Identifying different sources of bias requires additional information, such as independent364

observations, knowledge of underlying causes, or hypotheses about the error characteristics of possible sources.365

Most data assimilation systems do not correct biases during the analysis step, although developing bias-aware assim-366

ilation methods is conceptually straightforward. The main challenge is correctly attributing detected biases to their367

sources and developing applicable models for them. Assimilation may correct the wrong source when multiple sources368

produce similar biases. This risk increases when more degrees of freedom are added to the system. For example, in a369

weak-constraint variational analysis, parameters for radiance bias correction support the model-error correction. It is370

still being determined whether constraints on the correction terms can be designed to ensure that model and observation371

biases can always be correctly and simultaneously identified in the analysis.372

A bias-aware analysis scheme designed to correct bias in either the background or the observations will reduce mean373

analysis increments by construction, but not necessarily for the correct reason. It is necessary to test whether the374

analysis has improved by verifying that the bias attribution is accurate. Figure 7 illustrates how a successful bias375

correction of the background during assimilation should lead to better analysis and reduced forecast errors. However,376

reducing the bias in the initial conditions may only improve the forecast in practice if the model itself is changed.377

Model bias correction is particularly challenging because it is difficult to develop valuable representations for the biases378

or the mechanisms that cause them. Intermittent bias correction of background estimates in a sequential estimation379

scheme does not prevent the generation of bias during the integration of the model. Incremental bias correction380

schemes, which use bias estimates to correct model tendencies, may be more effective in guiding the model to an381

unbiased forecast, provided the corrections are physically meaningful.382
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Code Used:  
 

setwd("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_ERA
5_Analysis") 
#install.packages("ncdf4") 
library(ncdf4) 
ERA5_F_2013_14_cdf<- nc_open("ERA5_F_2013_14.nc") 
print(ERA5_F_2013_14_cdf) 
names(ERA5_F_2013_14_cdf$var) 
ncvar_get(ERA5_F_2013_14_cdf, varid="t2m") 
attributes(ERA5_F_2013_14_cdf) 
attributes(ERA5_F_2013_14_cdf$var) 
attributes(ERA5_F_2013_14_cdf$dim) 
lat<- ncvar_get(ERA5_F_2013_14_cdf, "latitude") 
dim(lat) 
lon<- ncvar_get(ERA5_F_2013_14_cdf, "longitude") 
dim(lon) 
print(c(dim(lon), dim(lat))) 
tim<- ncvar_get(ERA5_F_2013_14_cdf, "time") 
head(tim) 
dim(tim) 
t2m_array<- ncvar_get(ERA5_F_2013_14_cdf,"t2m")  
fillvalue<- ncatt_get(ERA5_F_2013_14_cdf,"t2m","_FillValue") 
dim(t2m_array) 
t2m_array[t2m_array==fillvalue$value]<- NA 

t2m_array 

#install.packages("anytime") 
library(anytime) 
mins<-tim*60 

secs<-mins*60 

time_units2<- as.POSIXct(secs, origin = "1900-01-01 00:00:00.0", tz ="GMT") 
dim(time_units2) 
range(time_units2) 
lonlattime <- as.matrix(expand.grid(lon,lat,time_units2)) 
head(lonlattime) 
t2m_vector<- as.vector(t2m_array) 
length(t2m_vector) 
head(t2m_vector) 
t2m_df<- data.frame(cbind(lonlattime, t2m_vector)) 
colnames(t2m_df)<-c("longitude", "latitude", "time", "tempK") 
head(t2m_df) 
write.csv(t2m_df, "ERA5_F_2013_14.csv", row.names=T) 
###################################################################
############ 

ERA5_F_2013_14<-read.csv("ERA5_F_2013_14.csv") 
table(ERA5_F_2013_14[,2]) 
long_coords<-c(8, 8.25, 8.5, 8.75, 9) 
table(ERA5_F_2013_14[,3]) #switched log/lat by accident (no effect on output) 
lat_coords<-c(49, 49.25, 49.5, 49.75, 50) 
E<-ERA5_F_2013_14 



station_coords = NULL 

for (i in long_coords) { for (j in lat_coords) { 
  station = E[(E$longitude==i) & (E$latitude==j), 1:3] 
  station_row = c(station[,1]) 
  station_lat = c(station[,2]) 
  station_lon = c(station[,3]) 
  station_coords0 = data.frame(station_row, station_lat, station_lon) 
  station_coords = rbind(station_coords, station_coords0)}} 
colnames(station_coords)<-c("row","latitude","longitude") 
head(station_coords) 
station_coords<-data.frame(station_coords) 
S<- station_coords 

row_num = c() 
for (i in long_coords) { for(j in lat_coords){ 
  row_sample = S[(S[,2]==i) & (S[,3]==j), 1] 
  row_sample0 = data.frame(rep("row",6),row_sample) 
  row_num = cbind(row_num, row_sample0[,2])}} 
head(row_num) 
location_01<-E[(E$longitude==8) & (E$latitude==50), ]  
location_02<-E[(E$longitude==8.25) & (E$latitude==50), ] 
location_03<-E[(E$longitude==8.5) & (E$latitude==50), ]  
location_04<-E[(E$longitude==8.75) & (E$latitude==50), ]  
location_05<-E[(E$longitude==9) & (E$latitude==50), ]  
location_06<-E[(E$longitude==8) & (E$latitude==49.75), ]  
location_07<-E[(E$longitude==8.25) & (E$latitude==49.75), ] 
location_08<-E[(E$longitude==8.5) & (E$latitude==49.75), ]  
location_09<-E[(E$longitude==8.75) & (E$latitude==49.75), ]  
location_10<-E[(E$longitude==9) & (E$latitude==49.75), ]  
location_11<-E[(E$longitude==8) & (E$latitude==49.5), ]  
location_12<-E[(E$longitude==8.25) & (E$latitude==49.5), ]  
location_13<-E[(E$longitude==8.5) & (E$latitude==49.5), ]  
location_14<-E[(E$longitude==8.75) & (E$latitude==49.5), ]  
location_15<-E[(E$longitude==9) & (E$latitude==49.5), ]  
location_16<-E[(E$longitude==8) & (E$latitude==49.25), ]  
location_17<-E[(E$longitude==8.25) & (E$latitude==49.25), ]  
location_18<-E[(E$longitude==8.5) & (E$latitude==49.25), ] 
location_19<-E[(E$longitude==8.75) & (E$latitude==49.25), ]  
location_20<-E[(E$longitude==9) & (E$latitude==49.25), ]  
location_21<-E[(E$longitude==8) & (E$latitude==49), ]  
location_22<-E[(E$longitude==8.25) & (E$latitude==49), ]  
location_23<-E[(E$longitude==8.5) & (E$latitude==49), ]  
location_24<-E[(E$longitude==8.75) & (E$latitude==49), ]  
location_25<-E[(E$longitude==9) & (E$latitude==49), ]  
station_sums = c() 
for (i in long_coords) { for (j in lat_coords) { 
  station_sum0 = E[(E$longitude==i) & (E$latitude==j), 5] 
  station_sum = c(i,j,summary(station_sum0)) 
  station_sums = rbind(station_sums, station_sum)}} 
station_sums<- data.frame(station_sums) 
onetwentyfive<-seq(from = 1, to = 25, length.out =25) 



station_summaries<-cbind(onetwentyfive, station_sums) 
colnames(station_summaries)<- c("station", "longitude", "latitude", "Min", "Q1", 
"Med", "Mean", "Q3", "Max") 
rownames(station_summaries)<-NULL 

station_summaries 

location_list <- 
list(location_01,location_02,location_03,location_04,location_05,location_06, 
                      location_07,location_08,location_09,location_10,location_11, 
location_12, 
                      location_13, location_14, location_15, location_16, location_17, 
location_18, 
                      location_19, location_20, location_21, location_22, location_23, 
location_24, location_25) 
location_shapiro<- c() 
for (i in location_list) {result = shapiro.test(i[,5]) 
result = c(i[1,1],result) 
location_shapiro = rbind(location_shapiro, result)} 
location_shapiroW<-location_shapiro[,1:3] 
row.names(location_shapiroW)<- NULL 

colnames(location_shapiroW)<- c("location", "SW-statistic", "p-value") 
location_shapiroW 

location_IQR<- c() 
for (i in location_list) {result = IQR(i[,5]) 
result = c(i[1,1],result) 
location_IQR = rbind(location_IQR, result)} 
colnames(location_IQR)<-c("location","IQR") 
row.names(location_IQR)<-NULL 

location_IQR 

location_stats<-cbind(location_shapiroW, location_IQR[,2]) 
colnames(location_stats)<- c("location", "SW-statistic", "p-value", "IQR") 
location_stats 

loc_cor00 = NULL 

loc_cor0 = NULL 

loc_cor = NULL 

for (i in location_list) {for(j in location_list){ 
  loc_cor00 = c(cor(i[,5],j[,5]),i[1,1],j[1,1]) 
  loc_cor0 = rbind(loc_cor0,loc_cor00)}} 
loc_cor000<-loc_cor0[order(loc_cor0[,3]),] 
loc_cor<- matrix(data = loc_cor000[,1], nrow = 25, ncol = 25, byrow = TRUE) 
colnames(loc_cor)<-c("1":"25") 
location_stats<-cbind(location_stats, loc_cor) 
head(location_stats) 
head(E) 
#install.packages("sf") 
library(sf) 
#install.packages("rjson") 
library(rjson) 
europe<-st_read("europe.geo.json") 
EJSON<- st_as_sf(x = E, coords = c("longitude", "latitude"), crs = st_crs(europe)) 
#install.packages("tmap") 



library(tmap) 
tmap_mode('view') 
base_map <-leaflet::providers$CartoDB.Positron 

tm_basemap(base_map)+ tm_shape(EJSON) + tm_bubbles(col = "pink4", size = 
0.01) +   
  tm_shape(europe[europe$sov_a3=="DEU",]) + tm_borders() 
kelvin<- c(E[,5]) 
kelvin -273.15 ->celcius 

celcius 

E.C<- cbind(E, celcius) 
location_07.stats<- location_stats[7,] 
location_07.stats 

summary(location_07) 
mock_07d<-rnonnorm(1440, mean = 288.5 , sd = 3.913184, skew = 0.55883625, kurt 
= 0.72209601)  
mock_07<-data.frame(mock_07d) 
plot(location_07[,5]) 
plot(mock_07[,1]) 
cor(location_07[,5],mock_07[,1]) 
mock_n_07<-rnorm(location_07[,5]) 
plot(mock_n_07) 
cor(location_07[,5], mock_n_07)  
mock_iqr_07d<-rnonnorm(1440, mean = 288.5 , sd = 4.771247, skew = 0.55883625, 
kurt = 0.72209601)  
mock_iqr_07d<-data.frame(mock_iqr_07d) 
plot(mock_iqr_07d[,1]) 
cor(location_07[,5], mock_iqr_07d[,1]) 
t2m_07<-location_07[,5] 
mock_07dd<-rnonnorm(1440, mean = 288.5 , sd = 3.913184, skew = 0.55883625, 
kurt = 0.72209601)$t2m_07 

#install.packages("mnonr") 
library(mnonr) 
location_07m<-data.matrix(location_07[,5]) 
mardia_07<-mardia(location_07m, na.rm = TRUE) 
mardia_07 

#install.packages("fitdistrplus") 
library(fitdistrplus) 
t2m_07<-location_07[,5] 
descdist(t2m_07) 
descdist(t2m_07, boot= 1440) 
#install.packages("MASS") 
library(MASS) 
fitdistr(t2m_07,"weibull") 
fitdistr(t2m_07,"gamma") 
fitdistr(t2m_07,"lognormal") 
fitdistr(t2m_07,"normal") 
hist(t2m_07) 
set.seed(00) 
sample1_07<-rnorm(1440, 288.5, 3.9) 
head(sample1_07) 



summary(sample1_07) 
sd(sample1_07) 
cor(t2m_07,sample1_07) 
plot(sample1_07) 
plot(t2m_07) 
set.seed(01) 
sample2_07<-rnorm(1440, 288.5, 3.5) 
summary(sample2_07) 
sd(sample2_07)  
cor(t2m_07,sample2_07) 
plot(sample2_07) 
barplot(sample2_07) 
barplot(t2m_07) 
dens_07a = density(t2m_07, adjust=0.8) 
set.seed(03) 
sample2a_07 = sample(dens_07a$x, 1440, replace=TRUE, prob=dens_07a$y) 
summary(sample2a_07) 
sd(sample2a_07) 
cor(sample2a_07, t2m_07) 
par() 
plot(sample2a_07) 
plot_sept_loc=function(x){ 
  par(mfrow=c(5,5), mar = c(1, 1, 1, 1))  
  plot_draw=lapply(x, function(x)  plot(x[,5], cex=0.2))} 
plot_sept_loc(location_list) 
#install.packages("devtools") 
library(devtools) 
#install_github("ProcessMiner/nlcor") 
library(nlcor) 
cor(t2m_07, sample1_07) 
cor(t2m_07, sample2_07) 
cor(t2m_07, sample2a_07) 
nlcor(t2m_07, sample1_07, plt = T) 
nlcor(t2m_07, sample2_07, plt = T) 
nlcor(t2m_07, sample2a_07, plt = T) 
set.seed(NULL) 
dens_07.1 = density(t2m_07, adjust=1) 
set.seed(1) 
sample_07.1 = sample(dens_07.1$x, 1440, replace=TRUE, prob=dens_07.1$y) 
nlcor(t2m_07, sample_07.1, plt = T) 
summary(t2m_07) 
individual_07t<- seq(278.3,302.7, by=0.1) 
rounded_07.1<- round(t2m_07, digits = 1) 
rounded_07.2<- round(t2m_07, digits = 2) 
#install.packages("plyr") 
library(plyr) 
count(rounded_07.1) 
freq_mat_07<- as.matrix(count(rounded_07.2)) 
nlcor(t2m_07, sample_07.1, refine = 0.95, plt = T) 
set.seed(NULL) 



set.seed(01) 
noise_07.1<-jitter(t2m_07, factor=0.01) 
nlcor(t2m_07, noise_07.1, refine = 0.95, plt = T) 
noise_factor<-seq(0.01, 1, by= 0.01) 
noise_07 = NULL 

for (i in noise_factor) { 
  a = jitter(t2m_07, factor=i) 
  b = nlcor(t2m_07, a, refine = 0.95, plt = T)  
  c = b$cor.estimate 

  d = b$adjusted.p.value 

  e = c(i,c,d) 
  noise_07 = rbind(noise_07, e)} 
tail(noise_07) 
noise_factor2<-seq(3, 6, by= 0.01) 
noise_07.2 = NULL 

for (i in noise_factor2) { 
  a = jitter(t2m_07, factor=i) 
  b = nlcor(t2m_07, a, refine = 0.95, plt = T)  
  c = b$cor.estimate 

  d = b$adjusted.p.value 

  e = c(i,c,d) 
  noise_07.2 = rbind(noise_07.2, e)} 
tail(noise_07.2) 
noise_factor2<-seq(3, 6, by= 0.01) 
noise_07.2 = NULL 

for (i in noise_factor2) { 
  a = jitter(t2m_07, amount = i) 
  b = nlcor(t2m_07, a, refine = 0.95, plt = T)  
  c = b$cor.estimate 

  d = b$adjusted.p.value 

  e = c(i,c,d) 
  noise_07.2 = rbind(noise_07.2, e)} 
tail(noise_07.2) 
head(noise_07.2) 
noise_factor<-seq(0.01, 3, by= 0.01) 
noise_07 = NULL 

set.seed(300) 
for (i in noise_factor) { 
  a = jitter(t2m_07, amount = i) 
  b = nlcor(t2m_07, a, refine = 0.95, plt = T)  
  c = b$cor.estimate 

  d = b$adjusted.p.value 

  e = c(i,c,d) 
  noise_07 = rbind(noise_07, e)} 
noise_07<- data.frame(noise_07) 
colnames(noise_07)<- c("noise factor", "correlation", "p-value") #analyse then in tab? 

rownames(noise_07)<-NULL 

set.seed(NULL) 
set.seed(42) 
noise_07.42<-jitter(t2m_07, amount =0.42) 



noise_07.42_cor<-nlcor(t2m_07, noise_07.42, refine = 0.95, plt = T)  
print(noise_07.42_cor$cor.estimate, digits = 9) 
print(nlcor(location_08[,5], noise_07.42, refine = 0.95, plt = T), digits = 9) 
par() 
plot(noise_07.42) 
plot(t2m_07) 
noise_factor_small<-seq(0.01, 1.5, by= 0.01) 
loc_noise_cor = NULL 

for (j in location_list) { for(i in noise_factor_small){ 
  a = jitter(t2m_07, amount = i) 
  b = nlcor(j[,5], a, refine = 0.95, plt = T)  
  c = b$cor.estimate 

  d = b$adjusted.p.value 

  e = c(i,j[1,1],c,d) 
  loc_noise_cor = rbind(loc_noise_cor, e)}} 
head(loc_noise_cor) #19mins 

loc_noise_cor<- loc_noise_cor[,1:3] 
rownames(loc_noise_cor)<- NULL 

noise_cor_list<-loc_noise_cor[,3] 
loc_noise_cor0<- matrix(data = noise_cor_list,ncol = 25, byrow = F) 
colnames(loc_noise_cor0)<-c("1":"25") 
rownames(loc_noise_cor0)<-seq(0.01, 1.50, by = 0.01) 
noise_cor_w_loc<- data.frame(loc_noise_cor0) 
head(noise_cor_w_loc) 
write.csv(noise_cor_w_loc, "noise_cor_w_loc.csv", row.names=T) 
max_cor_w_07 = NULL 

for (i in 1:150) { 
  m = max(noise_cor_w_loc[i,])  
  col_plus_max = c(i, m) 
  max_cor_w_07 = rbind(max_cor_w_07, col_plus_max)} 
colnames(max_cor_w_07)<-c("factor","max cor per f.") 
rownames(max_cor_w_07)<-seq(0.01, 1.50, by = 0.01) 
max_cor_w_07 

noise_factor_med<-seq(1.51, 4, by= 0.01) #15.42 to 16.20 

loc_noise_cor2 = NULL 

for (j in location_list) { for(i in noise_factor_med){ 
  a = jitter(t2m_07, amount = i) 
  b = nlcor(j[,5], a, refine = 0.95, plt = T)  
  c = b$cor.estimate 

  d = b$adjusted.p.value 

  e = c(i,j[1,1],c,d) 
  loc_noise_cor2 = rbind(loc_noise_cor2, e)}} 
head(loc_noise_cor2)  
loc_noise_cor2<- loc_noise_cor2[,1:3] 
rownames(loc_noise_cor2)<- NULL 

noise_cor_list2<-loc_noise_cor2[,3] 
loc_noise_cor02<- matrix(data = noise_cor_list2,ncol = 25, byrow = F) 
colnames(loc_noise_cor02)<-c("1":"25") 
rownames(loc_noise_cor02)<-seq(1.51, 4, by = 0.01) 
noise_cor_w_loc2<- data.frame(loc_noise_cor02) 



head(noise_cor_w_loc2) 
write.csv(noise_cor_w_loc2, "noise_cor_w_loc2.csv", row.names=T) 
max_cor2_w_07 = NULL 

for (i in 1:250) { 
  m = max(noise_cor_w_loc2[i,])  
  col_plus_max = c(i, m) 
  max_cor2_w_07 = rbind(max_cor2_w_07, col_plus_max)} 
colnames(max_cor2_w_07)<-c("factor","max cor per f.") 
rownames(max_cor2_w_07)<-seq(1.51, 4, by = 0.01) 
max_cor2_w_07 

n2<-noise_cor_w_loc2 

cor_point = NULL 

for (i in noise_cor_list2){ 
  indice = which(n2==i,arr.ind=TRUE) 
  cor_point = rbind(cor_point, indice)} 
head(cor_point ) 
noise_cor_w_loc3<- rbind(noise_cor_w_loc,noise_cor_w_loc2) #now shows corrs for 
stats 0.01 to 4.00 

max_cor3_w_07<- rbind(max_cor_w_07, max_cor2_w_07) 
head(max_cor3_w_07) 
tail(max_cor3_w_07) 
n3<-noise_cor_w_loc3 

cor_point = NULL 

for (i in max_cor3_w_07){ 
  indice = which(n3==i,arr.ind=TRUE) 
  cor_point = rbind(cor_point, indice)} 
head(cor_point) 
tail(cor_point) 
cor_point<-data.frame(cor_point) 
write.csv(noise_cor_w_loc3, "noise_cor_w_loc3.csv", row.names=T) 
##########################Reproducible###############################
###################### 

E <- read.csv("ERA5_F_2013_14.csv") #a) tell R to read this file in (it has to be in 

# your working directory first) 
 

#b) group the temperature information per station: 
location_01<-E[(E$longitude==8) & (E$latitude==50), ]  
location_02<-E[(E$longitude==8.25) & (E$latitude==50), ] 
location_03<-E[(E$longitude==8.5) & (E$latitude==50), ]  
location_04<-E[(E$longitude==8.75) & (E$latitude==50), ]  
location_05<-E[(E$longitude==9) & (E$latitude==50), ]  
location_06<-E[(E$longitude==8) & (E$latitude==49.75), ]  
location_07<-E[(E$longitude==8.25) & (E$latitude==49.75), ] 
location_08<-E[(E$longitude==8.5) & (E$latitude==49.75), ]  
location_09<-E[(E$longitude==8.75) & (E$latitude==49.75), ]  
location_10<-E[(E$longitude==9) & (E$latitude==49.75), ]  
location_11<-E[(E$longitude==8) & (E$latitude==49.5), ]  
location_12<-E[(E$longitude==8.25) & (E$latitude==49.5), ]  
location_13<-E[(E$longitude==8.5) & (E$latitude==49.5), ]  
location_14<-E[(E$longitude==8.75) & (E$latitude==49.5), ]  



location_15<-E[(E$longitude==9) & (E$latitude==49.5), ]  
location_16<-E[(E$longitude==8) & (E$latitude==49.25), ]  
location_17<-E[(E$longitude==8.25) & (E$latitude==49.25), ]  
location_18<-E[(E$longitude==8.5) & (E$latitude==49.25), ] 
location_19<-E[(E$longitude==8.75) & (E$latitude==49.25), ]  
location_20<-E[(E$longitude==9) & (E$latitude==49.25), ]  
location_21<-E[(E$longitude==8) & (E$latitude==49), ]  
location_22<-E[(E$longitude==8.25) & (E$latitude==49), ]  
location_23<-E[(E$longitude==8.5) & (E$latitude==49), ]  
location_24<-E[(E$longitude==8.75) & (E$latitude==49), ]  
location_25<-E[(E$longitude==9) & (E$latitude==49), ]  
 

#c) list each location to be accessible under one function: 
location_list <- list(location_01,location_02,location_03,location_04,location_05, 
                      location_06,location_07,location_08,location_09,location_10, 
                      location_11, location_12,location_13, location_14, location_15, 
                      location_16, location_17, location_18,location_19, location_20, 
                      location_21, location_22, location_23, location_24, location_25) 
 

t2m_0<-location_07[,5] #d) extract only the temperature information 

 

# (do this for your chosen location only, i.e. location 7 is used in this example, 
# but if you are working on e.g. location 25, change this to: t2m_0<-location_25[,5] 
etc.) 
# (don't forget to change any names in the code below if they were changed in this 
section) 
 

noise_factor <- seq(0.01, 4, by= 0.01) #e) create a vector of the range of noise added 

 

############### 2: Correlate Generated Noise to all Location Co-ords 
########### 

 

#f) print all the correlations per location whene correlated with the noise added 

# to our chosen location: 
loc_noise_cor1 = NULL 

for (j in location_list) { for(i in noise_factor){ 
  a1 = jitter(t2m_0, amount = i) 
  b1 = nlcor(j[,5], a1, refine = 0.95, plt = T)  
  c1 = b1$cor.estimate 

  d1 = b1$adjusted.p.value 

  e1 = c(i,j[1,1],c1,d1) #11.48:12.39 

  loc_noise_cor1 = rbind(loc_noise_cor1, e1)}} 
head(loc_noise_cor1) # view the first six lines to make sure you have 4 columns: 
# noise factor, location, correlation, p-value (p-value will be 0) 
 

#g) give these columns names and remove p-value (as is 0)   
loc_noise_cor1<- loc_noise_cor1[,1:3] 
rownames(loc_noise_cor1)<- NULL 

noise_cor_list1<-loc_noise_cor1[,3] 
loc_noise_cor_01<- matrix(data = noise_cor_list1, ncol = 25, byrow = F) 



colnames(loc_noise_cor_01)<-c("1":"25") 
rownames(loc_noise_cor_01)<-seq(0.01, 4, by = 0.01) 
 

#h) make this data into an extractable dataframe and save as a csv to your computer: 
noise_cor_w_loc1<- data.frame(loc_noise_cor_01) 
write.csv(noise_cor_w_loc1, "noise_cor_w_loc_7_2.csv", row.names=T) 
head(noise_cor_w_loc1) 
 

trial07_2<- read.csv("noise_cor_w_loc_7_2.csv") 
trial07_2<- data.frame(trial07_2[,2:26]) 
max_cor_trial07_2 = NULL 

for (i in 1:400) { 
  m = max(trial07_2[i,])  
  col_plus_max = c(i, m) 
  max_cor_trial07_2 = rbind(max_cor_trial07_2, col_plus_max)} 
colnames(max_cor_trial07_2)<-c("factor","max cor per f.") # name the rows and cols 

rownames(max_cor_trial07_2)<-seq(0.01, 4, by = 0.01) 
head(max_cor_trial07_2) 
tail(max_cor_trial07_2) 
max_cor_trial07_2<- max_cor_trial07_2[,2] 
cor_point_t2 = NULL 

#for i in the list of max value per row: 
for (i in max_cor_trial07_2){ 
  indice = which(trial07_2==i, arr.ind=TRUE) 
  cor_point_t2 = rbind(cor_point_t2, indice)} 
head(cor_point_t2) 
write.csv(cor_point_t2, "cor_point_7_1.csv", row.names=T) 
 

setwd("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_ERA
5_Analysis/trials/7") 
y<-read.csv("cor_point_7_1.csv")  
x<- read.csv("noise_cor_w_loc_7_1.csv") 
x<- data.frame(x[,2:26]) 
max_cors = NULL 

for (i in 1:400) { 
  m = max(x[i,])  
  col_plus_max = c(i, m) 
  max_cors = rbind(max_cors, col_plus_max)} 
colnames(max_cors)<-c("factor","corr") 
rownames(max_cors)<-seq(0.01, 4, by = 0.01) 
max_cors<-data.frame(max_cors) 
cor_w_max<-cbind(y,max_cors$corr) 
colnames(cor_w_max)<-c("noise","row","location","max_corr_per_row") 
E2<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/ERA5_F_2013_14.csv")  
Elong<-E2[c(1:25),2] 
Elat<-E2[c(1:25),3] 
long<- NULL 

for (i in cor_w_max$location) { 



  z <- Elong[i] 
  long<- rbind(long,z)} 
cor_w_max$long<-long 

lat<- NULL 

for (i in cor_w_max$location) { 
  z <- Elat[i] 
  lat<- rbind(lat,z)} 
cor_w_max$lat<-lat 
head(cor_w_max) 
write.csv(cor_w_max, "cor_w_max_7_2.csv", row.names=T) 
 

max_1<-read.csv("cor_w_max_7_2.csv") 
freq_0= NULL 

for (i in c(1:400)) { 
  x = max_1[i,4] 
  y = nrow(max_1[max_1$location== x,]) 
  z = c(x,y) 
  freq_0<- rbind(freq_0, z)} 
freq_0<-data.frame(freq_0) 
max_1$freq<- freq_0[,2] 
head(max_1) 
write.csv(max_7, 
"/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_ERA5_Anal
ysis/trials/7/cor_w_max_7_2.csv", row.names=T) 
 

setwd("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_ERA
5_Analysis") 
CORR<- read.csv("CORR.csv") 
c_7<-CORR[CORR$Location==7,] 
c_8<-CORR[CORR$Location==8,] 
c_9<-CORR[CORR$Location==9,] 
c_12<-CORR[CORR$Location==12,] 
c_13<-CORR[CORR$Location==13,] 
c_14<-CORR[CORR$Location==14,] 
c_17<-CORR[CORR$Location==17,] 
c_18<-CORR[CORR$Location==18,] 
c_19<-CORR[CORR$Location==19,] 
summary(CORR$Correlation) 
sd(CORR$Correlation) 
summary(CORR$Noise) 
sd(CORR$Noise) 
summary(c_7$Correlation) #0.9677  0.9678  0.9693  0.9694  0.9699  0.9724 

sd(c_7$Correlation) #0.001927486 

summary(c_8$Correlation) #0.9611  0.9676  0.9720  0.9696  0.9726  0.9745 

sd(c_8$Correlation) #0.005359999 

summary(c_9$Correlation) #0.9554  0.9569  0.9587  0.9595  0.9623  0.9642 

sd(c_9$Correlation) #0.003667868 

summary(c_12$Correlation) #0.9600  0.9604  0.9655  0.9646  0.9656  0.9715  
sd(c_12$Correlation) #0.004715054 

summary(c_13$Correlation) #0.9528  0.9552  0.9567  0.9590  0.9616  0.9686 



sd(c_13$Correlation) #0.006251089 

summary(c_14$Correlation) #0.9376  0.9442  0.9505  0.9489  0.9521  0.9603 

sd(c_14$Correlation) #0.008546863 

summary(c_17$Correlation) #0.9524  0.9541  0.9586  0.9594  0.9607  0.9710  
sd(c_17$Correlation) #0.007308597 

summary(c_18$Correlation) #0.9483  0.9530  0.9599  0.9595  0.9672  0.9691 

sd(c_18$Correlation) #0.00893114 

summary(c_19$Correlation) #0.9573  0.9655  0.9660  0.9655  0.9686  0.9700 

sd(c_19$Correlation) #0.00492992 

m_iCorr<-c(mean(c_7$Correlation), mean(c_8$Correlation), mean(c_9$Correlation),  
           mean(c_12$Correlation), mean(c_13$Correlation), mean(c_14$Correlation), 
           mean(c_17$Correlation), mean(c_18$Correlation), mean(c_19$Correlation)) 
mean(m_iCorr) 
sd(m_iCorr) 
sd_iCorr<-c(sd(c_7$Correlation), sd(c_8$Correlation), sd(c_9$Correlation), 
sd(c_12$Correlation), 
            sd(c_13$Correlation), sd(c_14$Correlation), sd(c_17$Correlation), 
sd(c_18$Correlation), 
            sd(c_19$Correlation))  
mean(sd_iCorr) 
sd(sd_iCorr) 
summary(c_7$Noise) #  1.62    1.71    1.71    1.71    1.75    1.76 

sd(c_7$Noise) #0.05522681 

summary(c_8$Noise) #  1.530   1.590   1.620   1.678   1.710   1.940  
sd(c_8$Noise) #0.1602186 

summary(c_9$Noise) #  1.870   1.930   2.050   2.002   2.070   2.090  
sd(c_9$Noise) #0.09654015 

summary(c_12$Noise) # 1.640   1.810   1.840   1.846   1.960   1.980  
sd(c_12$Noise) #0.1366748 

summary(c_13$Noise) #   1.73    1.92    2.09    2.00    2.09    2.17  
sd(c_13$Noise) #0.1763519 

summary(c_14$Noise) #  2.020   2.180   2.210   2.278   2.410   2.570  
sd(c_14$Noise) #0.2141728 

summary(c_17$Noise) #  1.680   2.000   2.050   2.024   2.170   2.220  
sd(c_17$Noise) #0.211731 

summary(c_18$Noise) #  1.760   1.820   2.010   2.028   2.220   2.330  
sd(c_18$Noise) #0.2467185 

summary(c_19$Noise) #  1.760   1.790   1.850   1.892   1.930   2.130  
sd(c_19$Noise) #0.148054 

m_iNoise<-c(mean(c_7$Noise), mean(c_8$Noise), mean(c_9$Noise), 
mean(c_12$Noise), mean(c_13$Noise), 
            mean(c_14$Noise), mean(c_17$Noise), mean(c_18$Noise), 
mean(c_19$Noise)) 
mean(m_iNoise) 
sd(m_iNoise) 
sd_iNoise<-c(sd(c_7$Noise), sd(c_8$Noise), sd(c_9$Noise), sd(c_12$Noise), 
sd(c_13$Noise), 
             sd(c_14$Noise), sd(c_17$Noise), sd(c_18$Noise), sd(c_19$Noise))  
mean(sd_iNoise) 
sd(sd_iNoise) 



set.seed(1) 
sample_Corr<- rnorm(1000, 0.96170, 0.008261583)  
set.seed(2) 
sample_Noise<- rnorm(1000, 1.94, 0.2331161) 
t.test(sample_Corr, CORR$Correlation) 
t.test(m_iCorr, CORR$Correlation) 
t.test(sample_Noise, CORR$Noise) 
t.test(m_iNoise, CORR$Noise) 
hist(CORR$Correlation) 
hist(CORR$Noise) 
hist(sample_Noise) 
sd(CORR$Correlation)/sqrt(length(CORR$Correlation)) 
sd(CORR$Noise)/sqrt(length(CORR$Noise)) 
qt(p=0.05/2, df=(length(CORR$Correlation)-1),lower.tail=F)  
ME_Corr<-2.015368*0.001231564  
ME_Noise<-2.015368*0.0347509  
CI_Corr<- c(mean(CORR$Correlation)-ME_Corr, mean(CORR$Correlation) + 
ME_Corr) 
CI_Noise<- c(mean(CORR$Correlation)-ME_Noise, mean(CORR$Correlation) + 
ME_Noise) 
shapiro.test(CORR$Correlation)  
shapiro.test(CORR$Noise) 
hist(CORR$Noise, xlim = c(1,3), ylim = c(0,15),  
     main= "Noise Degree of Alternate Location Correlation", 
     xlab= "Degree of Noise") 
abline(v=mean(CORR$Noise),col='red', lwd=2) 
text(x=1.97, y=7,'mean', col='red', srt=90) 
abline(v=mean(CORR$Noise)-(2*sd(CORR$Noise)), col='lightblue4', lwd=2) 
text(x=1.44, y=7,'-2*SD', col='darkgrey', srt=90) 
abline(v=mean(CORR$Noise)+(2*sd(CORR$Noise)), col='lightblue4', lwd=2) 
text(x=2.44, y=7,'+2*SD', col='darkgrey', srt=90) 
text(x=1.94, y=15,'<----95% Confidence Interval---->', col='black') 
abline(v=1.53, col='darkblue', lwd=2) 
text(x=1.27, y=4,'threshold value--->', col='black') 
hist(sample_Noise, xlim = c(1,3),  
     main= "Sample Noise Degree of Alternate Location Correlation", 
     xlab= "Degree of Noise") 
abline(v=mean(sample_Noise),col='red', lwd=2) 
text(x=1.98, y=75,'mean', col='red', srt=90) 
abline(v=mean(sample_Noise)-(2*sd(sample_Noise)), col='lightblue4', lwd=2) 
text(x=1.45, y=75,'-2*SD', col='darkgrey', srt=90) 
abline(v=mean(sample_Noise)+(2*sd(sample_Noise)), col='lightblue4', lwd=2) 
text(x=2.46, y=75,'+2*SD', col='darkgrey', srt=90) 
text(x=1.95, y=125,'<----95% Confidence Interval---->', col='black') 
abline(v=1.53, col='darkblue', lwd=2) 
text(x=1.27, y=50,'threshold value--->', col='black') 
setwd("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_ERA
5_Analysis") 
noise_1.53<- read.csv("1_53corrs.csv") 
summary(noise_1.53$max_corr_per_row) 



sd(noise_1.53$max_corr_per_row) 
hist(noise_1.53$max_corr_per_row)  
wo_outliers_153<- noise_1.53[c(1:85,87:125),6] 
hist(wo_outliers_153, breaks = 124, ylim = c(0,6),  
     main = "Correlations at 1.53 degrees of Noise", xlab = "correlation") 
abline(v=mean(wo_outliers_153),col='red', lwd=2) 
text(x=0.976325, y=4.5,'mean', col='red', srt=90) 
abline(v=0.9744667, col='darkblue', lwd=2) 
text(x=0.9751, y=4.5,'<----threshold value', col='black') 
abline(v=mean(wo_outliers_153)-(2*sd(wo_outliers_153)), col='lightblue4', lwd=2) 
text(x=0.97455, y=3.5,'-2*SD', col='darkgrey', srt=90) 
abline(v=mean(wo_outliers_153)+(2*sd(wo_outliers_153)), col='lightblue4', lwd=2) 
text(x=0.9782, y=3.5,'+2*SD', col='darkgrey', srt=90) 
text(x=mean(wo_outliers_153), y=6,'<---------95% Confidence Interval--------->', 
     col='black') 
mean(sample_Noise)-(2*sd(sample_Noise)) #1.481252 vs##1.53 

mean(sample_Noise)+(2*sd(sample_Noise)) #2.427654 

mean(wo_outliers_153)-(2*sd(wo_outliers_153)) #0.9744052 vs##0.9744667 

mean(wo_outliers_153)+(2*sd(wo_outliers_153)) #0.9781093 

setwd("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_ERA
5_Analysis") 
library(sf) 
#install.packages("rjson") 
library(rjson) 
#install.packages("tmap") 
library(tmap) 
#install.packages("geojson") 
library(geojson) 
E<-read.csv("ERA5_F_2013_14.csv") 
europe<-st_read("europe.geo.json") 
germany<-europe[europe$sovereignt== "Germany",] 
EJSON<- st_as_sf(x = E, coords = c("longitude", "latitude"), crs = st_crs(europe)) 
tmap_mode('view') 
base_map <-leaflet::providers$CartoDB.Positron 

tm_basemap(base_map)+ tm_shape(EJSON) + tm_bubbles(col = "pink4", size = 
0.01) +   
  tm_shape(europe[europe$sov_a3=="DEU",]) + tm_borders() 
tmap_mode('plot') 
tm_shape(germany) + tm_borders() + tm_shape(EJSON) + tm_bubbles(col = "pink4", 
size = 0.01) 
st_bbox(EJSON) #find bounding box coordinates: (x-min: 8, y-min: 49, x-max: 9, y-
max: 50)  
bbox_new<- st_bbox(EJSON)          
bbox_new[1] <- bbox_new[1] - 0.25  
bbox_new[2] <- bbox_new[2] - 0.25 

bbox_new[3] <- bbox_new[3] + 0.25  
bbox_new[4] <- bbox_new[4] + 0.25 

tmap_mode('plot') 
tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "pink4", size = 0.1) +  
  tm_shape(germany) + tm_borders() 



long_coords<-c(8, 8.25, 8.5, 8.75, 9) 
lat_coords<-c(49, 49.25, 49.5, 49.75, 50) 
station_coords = NULL 

for (i in long_coords) { for (j in lat_coords) { 
  station = E[(E$longitude==i) & (E$latitude==j), 1:3] 
  station_row = c(station[,1]) 
  station_lat = c(station[,2]) 
  station_lon = c(station[,3]) 
  station_coords0 = data.frame(station_row, station_lat, station_lon) 
  station_coords = rbind(station_coords, station_coords0)}} 
colnames(station_coords)<-c("row","latitude","longitude") 
head(station_coords) 
station_coords<-data.frame(station_coords) 
S<- station_coords 

row_num0 = c() 
for (i in long_coords) { for(j in lat_coords){ 
  row_sample = S[(S[,2]==i) & (S[,3]==j), 1] 
  row_sample0 = data.frame(rep("row",6),row_sample) 
  row_num0 = cbind(row_num0, row_sample0[,2])}} 
head(row_num0) 
row_num<-
row_num0[,c(5,10,15,20,25,4,9,14,19,24,3,8,13,18,23,2,7,12,17,22,1,6,11,16,21)] 
head(row_num)  
EJSON$loc<- EJSON$X 

for (i in c(1:25)) {for (j in row_num[,i]) { 
  EJSON$loc[EJSON$loc == j] <- i}} 
tmap_mode('view') 
base_map <-leaflet::providers$CartoDB.Positron 

tm_basemap(base_map)+ tm_shape(EJSON[c(1:25),], bbox = bbox_new) +  
  tm_bubbles(col = "white", size = 0.75) +  
  tm_text("loc", size = 1, col = "black", shadow = TRUE) + 

  tm_shape(germany) + tm_borders() 
tmap_mode('plot') 
tm_shape(EJSON[c(1:25),], bbox = bbox_new) +  
  tm_text("loc", size = 1, col = "black", shadow = TRUE) +  
  tm_shape(germany) + tm_borders()  
max_1<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/1/cor_w_max_1_2.csv")  
head(max_1) 
max_2<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/2/cor_w_max_2_5.csv") 
head(max_2) 
max_3<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/3/cor_w_max_3_1.csv") 
head(max_3) 



max_4<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/4/cor_w_max_4_2.csv") 
head(max_4) 
max_5<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/5/cor_w_max_5_3.csv") 
head(max_5) 
max_6<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/6/cor_w_max_6_4.csv") 
head(max_6) 
max_7<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/7/cor_w_max_07_5.csv") 
head(max_7) 
max_8<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/8/cor_w_max_8_4.csv") 
head(max_8) 
max_9<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/9/cor_w_max_9_2.csv") 
head(max_9) 
max_10<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/10/cor_w_max_10_3.csv") 
head(max_10) 
max_11<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/11/cor_w_max_11_5.csv") 
head(max_11) 
max_12<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/12/cor_w_max_12_3.csv") 
head(max_12) 
max_13<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/13/cor_w_max_13_5.csv") 
head(max_13) 
max_14<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/14/cor_w_max_14_3.csv") 
head(max_14) 
max_15<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/15/cor_w_max_15_1.csv") 
head(max_15) 



max_16<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/16/cor_w_max_16_3.csv") 
head(max_16) 
max_17<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/17/cor_w_max_17_4.csv") 
head(max_17) 
max_18<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/18/cor_w_max_18_4.csv") 
head(max_18) 
max_19<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/19/cor_w_max_19_4.csv") 
head(max_19) 
max_20<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/20/cor_w_max_20_2.csv") 
head(max_20) 
max_21<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/21/cor_w_max_21_1.csv") 
head(max_21) 
max_22<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/22/cor_w_max_22_4.csv") 
head(max_22) 
max_23<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/23/cor_w_max_23_2.csv") 
head(max_23) 
max_24<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/24/cor_w_max_24_3.csv") 
head(max_24) 
max_25<- 
read.csv("/Users/elizabeth/Documents/GY652_Applied_Climate_Sciences/Group_E
RA5_Analysis/trials/25/cor_w_max_25_3.csv") 
head(max_25) 
l_1<- st_as_sf(x = max_1, coords = c("long", "lat"), crs = st_crs(europe)) 
l_2<- st_as_sf(x = max_2, coords = c("long", "lat"), crs = st_crs(europe)) 
l_3<- st_as_sf(x = max_3, coords = c("long", "lat"), crs = st_crs(europe)) 
l_4<- st_as_sf(x = max_4, coords = c("long", "lat"), crs = st_crs(europe)) 
l_5<- st_as_sf(x = max_5, coords = c("long", "lat"), crs = st_crs(europe)) 
l_6<- st_as_sf(x = max_6, coords = c("long", "lat"), crs = st_crs(europe)) 
l_7<- st_as_sf(x = max_7, coords = c("long", "lat"), crs = st_crs(europe)) 
l_8<- st_as_sf(x = max_8, coords = c("long", "lat"), crs = st_crs(europe)) 
l_9<- st_as_sf(x = max_9, coords = c("long", "lat"), crs = st_crs(europe)) 
l_10<- st_as_sf(x = max_10, coords = c("long", "lat"), crs = st_crs(europe)) 



l_11<- st_as_sf(x = max_11, coords = c("long", "lat"), crs = st_crs(europe)) 
l_12<- st_as_sf(x = max_12, coords = c("long", "lat"), crs = st_crs(europe)) 
l_13<- st_as_sf(x = max_13, coords = c("long", "lat"), crs = st_crs(europe)) 
l_14<- st_as_sf(x = max_14, coords = c("long", "lat"), crs = st_crs(europe)) 
l_15<- st_as_sf(x = max_15, coords = c("long", "lat"), crs = st_crs(europe)) 
l_16<- st_as_sf(x = max_16, coords = c("long", "lat"), crs = st_crs(europe)) 
l_17<- st_as_sf(x = max_17, coords = c("long", "lat"), crs = st_crs(europe)) 
l_18<- st_as_sf(x = max_18, coords = c("long", "lat"), crs = st_crs(europe)) 
l_19<- st_as_sf(x = max_19, coords = c("long", "lat"), crs = st_crs(europe)) 
l_20<- st_as_sf(x = max_20, coords = c("long", "lat"), crs = st_crs(europe)) 
l_21<- st_as_sf(x = max_21, coords = c("long", "lat"), crs = st_crs(europe)) 
l_22<- st_as_sf(x = max_22, coords = c("long", "lat"), crs = st_crs(europe)) 
l_23<- st_as_sf(x = max_23, coords = c("long", "lat"), crs = st_crs(europe)) 
l_24<- st_as_sf(x = max_24, coords = c("long", "lat"), crs = st_crs(europe)) 
l_25<- st_as_sf(x = max_25, coords = c("long", "lat"), crs = st_crs(europe)) 
tmap_mode('plot') 
p1<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) +  
  tm_shape(l_1, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                              size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 1", main.title.position = "center") 
p2<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) +  
  tm_shape(l_2, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                              size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 2", main.title.position = "center") 
p3<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) +  
  tm_shape(l_3, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                              size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 3", main.title.position = "center") 
p4<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) +  
  tm_shape(l_4, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                              size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 4", main.title.position = "center") 
p5<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) +  
  tm_shape(l_5, bbox = bbox_new) + tm_bubbles(col = "freq", 
                                              size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 5", main.title.position = "center") 
p6<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) +  
  tm_shape(l_6, bbox = bbox_new) + tm_bubbles(col = "freq", 
                                              size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 6", main.title.position = "center") 
p7<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) +  
  tm_shape(l_7, bbox = bbox_new) + tm_bubbles(col = "freq", 
                                              size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  



  tm_layout(legend.show = F, main.title = "Location 7", main.title.position = "center") 
p8<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) +  
  tm_shape(l_8, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                              size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 8", main.title.position = "center") 
p9<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) +  
  tm_shape(l_9, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                              size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 9", main.title.position = "center") 
p10<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) 
+  
  tm_shape(l_10, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                               size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 10", main.title.position = "center") 
p11<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) 
+  
  tm_shape(l_11, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                               size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 11", main.title.position = "center") 
p12<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) 
+  
  tm_shape(l_12, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                               size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 12", main.title.position = "center") 
p13<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) 
+  
  tm_shape(l_13, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                               size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 13", main.title.position = "center") 
p14<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) 
+  
  tm_shape(l_14, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                               size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 14", main.title.position = "center") 
p15<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) 
+  
  tm_shape(l_15, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                               size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 15", main.title.position = "center") 
p16<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) 
+  
  tm_shape(l_16, bbox = bbox_new) + tm_bubbles(col = "freq",  



                                               size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 16", main.title.position = "center") 
p17<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) 
+  
  tm_shape(l_17, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                               size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 17", main.title.position = "center") 
p18<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) 
+  
  tm_shape(l_18, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                               size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 18", main.title.position = "center") 
p19<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) 
+  
  tm_shape(l_19, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                               size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 19", main.title.position = "center") 
p20<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) 
+  
  tm_shape(l_20, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                               size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 20", main.title.position = "center") 
p21<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) 
+  
  tm_shape(l_21, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                               size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 21", main.title.position = "center") 
p22<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) 
+  
  tm_shape(l_22, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                               size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 22", main.title.position = "center") 
p23<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) 
+  
  tm_shape(l_23, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                               size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 23", main.title.position = "center") 
p24<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) 
+  
  tm_shape(l_24, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                               size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  



  tm_layout(legend.show = F, main.title = "Location 24", main.title.position = "center") 
p25<- tm_shape(EJSON, bbox = bbox_new) + tm_bubbles(col = "white", size = 0.1) 
+  
  tm_shape(l_25, bbox = bbox_new) + tm_bubbles(col = "freq",  
                                               size = 1.25, style = "cont", palette = "Reds") + 
tm_shape(germany) + tm_borders() +  
  tm_layout(legend.show = F, main.title = "Location 25", main.title.position = "center") 
tmap_mode('plot') 
tmap_arrange(p1,p2,p3,p4,p5, nrow=1)  
tmap_arrange(p6,p7,p8,p9,p10, nrow=1)  
tmap_arrange(p11,p12,p13,p14,p15, nrow=1)  
tmap_arrange(p16,p17,p18,p19,p20, nrow=1)  
tmap_arrange(p21,p22,p23,p24,p25, nrow=1) 
plot_sept_loc=function(x){ 
  par(mfrow=c(5,5), mar = c(2, 1, 1.5, 1))  
  plot_draw=lapply(x, function(x)  plot(x[,5], cex=0.2, main= x[1,1], yaxt="n", 
xaxt="n"))} 
plot_sept_loc(location_list) 
 


