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Abstract

Solute transport in unsaturated porous media is of interest in many engineering and environmental applications. The interplay

between small-scale, local forces and the porous microstructure exerts a strong control on the transport of fluids and solutes at

the larger, macroscopic scales. Heterogeneity in pore geometry is intrinsic to natural material across a large range of scales. This

multiscale nature, and the intricate links between two-phase flow and solute transport, remain far from well understood, by and

large. Here, we use Direct Numerical Simulation (DNS) to quantify the effects of correlated heterogeneity on solute transport

during drainage under an unfavorable viscosity ratio. We find that increasing spatial correlations in pore sizes increases the size

of the required Representative Elementary Volume (REV). We also show that increasing the correlation length enhances solute

dispersivity through its impact on the spatial distribution of low-velocity (diffusion-dominated) and high-velocity (advection-

dominated) regions. Fluid saturation is shown to directly affect diffusive mass flux among high-and low-velocity zones. Another

indirect effect of correlated heterogeneity on solute transport is through its control of the drainage patterns via rearrangements

of mobile-immobile zones. Our findings improve quantitative understanding of solute mixing and dispersion in unsaturated

conditions, highly relevant to some of our most urgent environmental problems.
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affect diffusive mass flux among high- and low-velocity zones. Another indirect effect of correlated
heterogeneity on solute transport is through its control of the drainage patterns via rearrangements
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Graphical Abstract

Highlights

• Solute transport in correlated media studied by Direct Numerical Simulation

• Solute dispersion increases with correlation length in pore sizes

• Quantitative analysis of the impact of correlated media requires larger domains

• Diffusive mass flux is governed by the contact boundary of mobile-immobile zones

• Lower correlation length can potentially lead to flowing-trapped zones rearrangement
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1. Introduction1

Transport phenomena within porous media play a pivotal role in multiple environmental and2

industrial processes. These applications encompass a wide range of processes, ranging from under-3

ground carbon or hydrogen storage to the migration of pollutants and contaminants in groundwater4

flow (Blunt, 2017). The majority of these processes occur at multiphase conditions, where two or5

more fluids coexist, often referred to as ”unsaturated”. In many cases, the fluids (e.g. gas and6

liquid) are immiscible, and the fluid-fluid interface serves as a boundary for solute transport, con-7

fining the tracer to a single phase only, referred to as the carrier phase therein. Mapping fluid-fluid8

interfaces, and the transport of solute particles in the carrier phase are the key physical processes9

that need to be integrated for predicting the fate of solute particles at unsaturated conditions. De-10

pending on the application and flow condition, the percolating pathways for solute migration can be11

formed by either the simultaneous flow of wetting and non-wetting phase (Jimenez-Martinez et al.,12

2017) or the displacement of one phase by the other phase (Karadimitriou et al., 2017). In drainage13

(displacement of wetting fluid by non-wetting one), the focus of the current study, the spatial fluids14

distribution is controlled by the interplay of various forces, including viscous, capillary, gravita-15

tional, and wetting forces, in addition to the pore morphology of the media (Holtzman, 2016). The16

carrier phase can be categorized according to their topology into (i) interconnected regions that are17

reachable for the solute solution, featuring backbone/mobile and dead-end/immobile zones, and18

(ii) isolated regions that are unreachable for solute solution (Khayrat and Jenny, 2016). Back-19

bone zones constitute the fully connected segments of the flow network, where the all of fluid flow20

takes place, while dead-end zones do not contribute to fluid flow and primarily act as a diffusion-21

controlled sink for tracer. In unsaturated media, solute transport is governed by the competition22

between advection and diffusion, which occur predominantly in the mobile and immobile regions,23

respectively (Karadimitriou et al., 2016). This competition is quantified by the ratio between the24

relative strength of advection and diffusion via the Peclet number, Pe = uL
Dm

, where u is the fluid25

velocity, Dm denotes the molecular diffusion coefficient, and L is a characteristic length.26

Both fluid flow and solute transport are directly impacted by the microstructural heterogeneity27

of the porous domain (Schlüter et al., 2012; Timms et al., 2018). Structural heterogeneity is an in-28

herent feature of natural porous media, and it has been shown that macroscopic responses at large29

scales are governed by the distribution of solid obstacles at smaller scales (Scheibe et al., 2015;30

Tahmasebi and Kamrava, 2018; Armstrong et al., 2021). Unlike Darcy-scale models, pore-scale31

models allow for the inclusion of such small, localised properties and mechanisms by considering32

the domain as discrete void and solid phases (Mehmani and Balhoff, 2015). Different pore-scale33

modeling approaches have been developed to study pore-level mechanisms, including Pore Network34

Modeling (PNM), Lattice Boltzmann Modeling (LBM), and Volume of Fluid (VOF). PNM simu-35

lates fluid motion on idealized pore bodies, typically represented as cylindrical shapes, connected36

by constraining throats. PNM incorporates simplifications to reduce computational costs and en-37

able simulations at larger scales, but at the expense of precise medium geometry and pore-scale38

mechanisms. In contrast, VOF and LBM techniques offer more accurate modeling with sub-pore39

resolution (i.e. control volume smaller than pores/throats), but they demand more computational40

resources and parallel simulation on high-performing clusters. These methods are capable of cap-41

turing pore-scale processes on exact porous structures and are often referred to as direct modeling42

approaches (Saeibehrouzi et al., 2024).43

In many natural porous materials such as soils and rocks, the medium is characterized by44

spatially correlated disorder in pore sizes. Overall, few studies investigated solute transport in45

partially-saturated media, mostly considering random disorder without any spatial correlations46

(Raoof and Hassanizadeh, 2013; Karadimitriou et al., 2016; Jimenez-Martinez et al., 2017; Aziz47
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et al., 2018, 2019; Akai et al., 2020; Noughabi et al., 2023). Much less attention has been given to48

the effects of correlations on unsaturated transport. Babaei and Joekar-Niasar (2016) investigated49

single-phase transport considering the effects of different correlation lengths and Peclet numbers.50

Using PNM, Dashtian et al. (2018) evaluated the relation between throat size correlation and the51

rate of brine evaporation within drying porous media. Borgman et al. (2019) conducted a numerical52

and experimental investigation to quantify the effects of correlation length on the displacement pat-53

tern and sweep efficiency across a range of injection rates and wettability states. An et al. (2020b)54

employed quasi-static PNM to study solute transport and multiphase flow interactions within cor-55

related structures. Although the above-mentioned studies tried to account for the relation between56

correlation length and flow or transport mechanisms at the pore level, there is still no accurate57

and yet efficient numerical study for evaluating unsaturated transport within correlated media.58

For instance, the common Mixed-Cell Method (MCM) in PNM considers perfect mixing inside59

pore bodies and ignores the effect of parabolic velocity profile on solute shearing (Mehmani et al.,60

2014; Mehmani and Tchelepi, 2017). It is also well-established that the fate of solute species in61

unsaturated porous media fundamentally differs from saturated conditions with unsaturated trans-62

port exhibits non-Fickian behavior and long tailing in Breakthrough Curve (BTC) (Guillon et al.,63

2013; Jimenez-Martinez et al., 2020; Erfani et al., 2021). Therefore, results from the single-phase64

transport cannot elucidate unsaturated transport. Even in unsaturated media, while it is known65

that dispersivity (Hammel and Roth, 1998; Sato et al., 2003; Nützmann et al., 2002; Vanderborght66

and Vereecken, 2007; Raoof et al., 2013; Karadimitriou et al., 2017) and mixing (Ursino et al.,67

2001; Kapetas et al., 2014; Jimenez-Martinez et al., 2015, 2017) behaviors are influenced by multi-68

phase conditions, the way it affects these features is unclear and one finds contradictory findings in69

the literature. These ambiguities underscores the necessity of establishing a more comprehensive70

understanding of the underlying physical mechanisms governing transport in unsaturated porous71

media. Another open question is how non-Fickian characteristics depend on fluid-fluid interface72

locations in correlated structures. Recent studies highlighted the complex dynamics of interfaces73

within the pore-space, showcasing frequent shuffling of flowing pathways in certain multiphase con-74

ditions (Reynolds et al., 2017; Spurin et al., 2020, 2021). For instance, in the drainage scenario, it is75

demonstrated that displacement under unfavorable viscosity ratios can lead to multiple ”breakups”76

of invading phase networks even after the breakthrough, attributed to mechanisms such as snap-off77

(Andrew et al., 2015; Chang et al., 2019; Wei et al., 2022). In a pore-scale modeling approach such78

as quasi-static PNM, which excludes viscous forces, every drainage event occurs independently and79

each pore body is considered as a single simulation node. The percolation theory mainly considers80

capillarity as a local mechanism, quantified based on the idealized geometrical shape of throats81

(Dashtian et al., 2018; An et al., 2020b; Wang et al., 2021). Under such circumstances, achieving82

a fully stabilized fluid distribution is feasible since the model needs to predict whether a pore is83

drained, and once a flow path is established, it remains unchanged. However, experimental and84

numerical evidence has shown that the assumption of percolation theory does not always hold,85

and the location of menisci can play a crucial role in drainage dynamics (Moebius and Or, 2012;86

Armstrong and Berg, 2013; Raeini et al., 2014; Andrew et al., 2015). Armstrong and Berg (2013)87

highlighted the non-local behavior of the drainage, with the existence of a capillary pressure differ-88

ence across multiple pores. It was observed that several pores can contribute to a single pore event89

by providing the non-wetting phase from neighbouring throats, leading to imbibition in nearby90

throats (i.e. receding of interface) and possible redistribution of the invading phase. Similar results91

were obtained by Andrew et al. (2015) using X-ray microtomography imaging in a cm-long core.92

The authors observed frequent snap-offs and re-connections of the non-wetting phase fingers, which93

can occur near the advancing front or further away from it, challenging the traditional assumptions94

of percolation theory. Considering such effects during the modeling of multiphase flows can be of95
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utmost importance as the most common approach in evaluating transport under unsaturated con-96

ditions involves a one-way analysis of transport. This means that solute solution is injected into the97

domain only after stabilization (i.e. steady-state) of fluid-fluid boundaries (Karadimitriou et al.,98

2016; Aziz et al., 2018; Hasan et al., 2019; Jimenez-Martinez et al., 2020; Ben-Noah et al., 2023).99

To this date, it is still unclear how the rearrangement of fluid connectivity during steady-state mul-100

tiphase conditions, especially at correlated media, can impact transport performance. Contrary to101

the PNM approach, DNS with control volumes smaller than a single pore enables us to investigate102

and evaluate such behavior.103

Here, we use DNS to investigate correlated microstructural heterogeneity under unsaturated104

conditions. This is achieved by coupling multiphase displacement and advecting-diffusing solute105

solution within the invaded phase. We employ a methodology to reduce the computational costs of106

DNS by fabricating a mask of drainage fingering pattern at steady-state conditions for the transport107

modeling, allowing analysis of wider numerical cases. Our numerical modeling results indicate that108

the size of numerical domains needs to be tuned based on correlated heterogeneity. Simulations109

also show that the magnitude of dispersivity is influenced by not only the invading phase saturation110

but also by spatial heterogeneity with higher dispersion at higher correlation length. Analysing the111

transport in terms of mobile/immobile regions shows that diffusive mass flux from mobile paths to112

immobile zones is primarily influenced by the saturation of the invading phase and the distribution113

of mobile and immobile zones. We find that the coupled effect of local disorder and drainage non-114

local performance can destabilise the fluid-fluid menisci, leading to the frequent rearrangement of115

mobile-immobile clusters.116

2. Methodology117

2.1. Direct Numerical Simulation118

The finite-volume numerical method is adopted to develop a DNS model using the OpenFAOM119

(Open Field Operation and Manipulation) framework for simulating flow and transport in porous120

media (www.Openfoam.org). Incompressible Navier-Stokes (NS) equations for conservation of121

mass and momentum are solved for each phase i to model multiphase flow as:122

∇ · ui = 0 (1)
123

ρi
∂ui

∂t
+ ρi∇ · (uiui) = −∇Pi +∇ ·

[
µi

(
∇ui +∇ui

T
)]

+ Fs (2)

where, ρ denotes density, µ is viscosity, u is the velocity vector, P is the fluid pressure, and124

Fs represents interfacial forces. The evolution of fluid-fluid interfaces in both time and space is125

accomplished through the VOF technique. This method utilises an indicator (also called color)126

function (γ) to distinguish between phases as:127

γ =


0 for Ω1 (Phase 1)

[0, 1] for Γ (Interface)

1 for Ω2 (Phase 2)

(3)

∂γ

∂t
+∇ · (γu) +∇ · (γ(1− γ)ur) = 0 (4)

where ur is the relative velocity between two fluids. The third term on the left-hand side of Eq. (4) is128

an added heuristic term in the conventional VOF formulation, aimed at minimizing the numerical129
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diffusion and preventing excessive spreading of the interface over multiple cells (Rabbani et al.,130

2016; Larsen et al., 2019). Properties at the interface are calculated through volume weighting,131

such that:132

ρ = γρ1 + (1− γ)ρ2

µ = γµ1 + (1− γ)µ2
(5)

The curvature of the interface (κ) is determined by the Continuum Surface Forces (CSF) model133

(Brackbill et al., 1992):134

κ = −∇ · n = −∇ · ∇γ

|∇γ|
(6)

where n is unit normal vector of the interface. According to the CSF, interfacial forces in the NS135

equations are determined using the following formulation:136

Fs = σκ∇γ (7)

where, σ is the interfacial tension between fluids. The contact angle (θ) is defined for the interface-137

solid moving line to satisfy the following equation:138

n = ns cos(θ) + τs sin(θ) (8)

with ns and τs showing vector normal and tangent to the solid wall, respectively. Pressure and139

velocity values are determined by using the Pressure-Implicit with Splitting of Operators (PISO)140

algorithm (Issa, 1986; Moukalled et al., 2016). A relative tolerance of 10−8 for both velocity141

and pressure is considered. To improve the accuracy of all simulations, the time step (∆t) is142

determined such that the Courant number (Co=U∆t
∆x , where U shows the magnitude of velocity,143

and ∆x is typical mesh size) remains below 0.5. While the VOF method has been extensively144

used for modeling multiphase flow in porous media (Rabbani et al., 2018; Suo et al., 2020; Yang145

et al., 2021; Shende et al., 2021), this study conducts verification of the developed model against146

micromodel experiments by Roman et al. (2020) to confirm the accuracy of the employed numerical147

schemes. Further details and the conditions of the numerical model validation can be found in the148

Supplementary Material (SM) section.149

The transport of solute in porous media is modeled by solving the Advection-Diffusion Equation150

(ADE):151

∂C

∂t
+∇ · (uC)−∇ · (Dm∇C) = 0, (9)

where C is the species concentration and Dm is molecular diffusion. In Eq. (9), the first term152

refers to the temporal evolution of the solute, while the second and third terms correspond to153

transport through advection and diffusion, respectively. A typical molecular diffusion coefficient of154

10−9m2/s (Cussler, 2009) is adopted for all simulation scenarios investigated in this study. The time155

derivative is discretized using a 1st order Euler implicit scheme. The diffusive and advective terms156

are discretized using Gauss linear corrected (2nd order) and Gauss Van Leer (2nd order) schemes,157

respectively. The transport matrix is solved with the stabilized preconditioned bi-conjugate gradient158

solver with a relative tolerance of 10−10.159

2.2. Porous Media Geometry160

In this study, the domains under investigation are square structures containing cylindrical pillars161

in square lattices. The size of the numerical domain is L = 70a, where a=60 µm is the lattice length,162

corresponding to the distance between the center of two adjacent pores. The cylindrical pillars have163
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a constant height of 20 µm, and an average radius of 20 µm with a standard deviation of 4 µm. The164

mean value of the throat radius is 40 µm. The spatial correlation length is generated by making165

a random rough surface, whose Fourier transform is characterized by a Gaussian distribution of166

intensities centered around zero. This is accomplished by incorporating 104 sinusoidal waves, with167

wave numbers extracted from a uniform distribution, and their amplitude, orientation, and phase168

chosen from random uniform distributions. The correlation length (λ) of the surface has an inverse169

relationship with the width of this distribution in the Fourier domain, measured in units of the170

lattice length. A higher λ increases the likelihood of similar-sized pillars residing adjacent to each171

other. More information on the creation of this type of rough surface can be found in Persson172

et al. (2004); Borgman et al. (2017). In this study, porous media with λ of 1 (60 µm), 3 (180 µm),173

and 5 (300 µm) at three different realizations (domains with different random seeds but with same174

statistical attributes) are generated to obtain statistically representative numerical results.175

2.3. Domain Discretization and Boundary Conditions176

The numerical domains are created in a two-dimensional Cartesian coordinate system utilizing177

the OpenFOAM SnappyHexMesh utility, and by employing the porous structures in STL format.178

Mesh sensitivity analysis follows the method outlined in Ferrari and Lunati (2013). Ferrari’s study179

showed that differences in results between simulations using a mesh length of ∆x = d/12, where ∆x180

denotes the typical cell size and d is mean pillar diameter, and finer mesh sizes (d/∆x = 15, 24, 48)181

are below 10 %. To enhance simulation precision, all numerical domains are discretized with182

a typical cell size of 1.68 µm, resulting in nearly 4 million cells for each realization (d/∆x ≃183

24). Constant injection rate at the inlet face is imposed, while the no-slip boundary condition is184

applied to the side walls of the domain and the fluid-fluid-solid contact line. To generate simulation185

results with various degrees of saturation, distinct injection rates are applied, quantified through186

dimensionless capillary number Ca=µinvuinv/σ, where inv subscript denotes the invading phase.187

Multiphase simulations are performed at three injection rates, Ca=10−4, 10−5, and 10−6, for all188

realizations, resulting in a total of 27 cases (three realizations x three correlation lengths x three189

injection rates). In this study, the viscosity of invading and defending fluids is set to 10−3 Pa.s and190

10−1 Pa.s, respectively. The interfacial tension between the fluids is set to 70 mN
m . Initially, the191

domain is fully saturated with the defending fluid, and the invading fluid, acting as the non-wetting192

phase, is introduced into the domain with a constant contact angle of 120◦, mimicking the drainage193

scenario at an unfavorable viscosity ratio.194

After reaching steady-state conditions, a mask, with identical mesh density to the initial mul-195

tiphase model, is generated based on the fingering pattern of the invaded fluid for each realization.196

Solute migration is then modeled within the invaded fingers using the fabricated masks, which197

serve as new numerical domains. This involves establishing laminar, steady-state velocity fields198

within the invaded fingers by solving single-phase Stokes equations. This technique reduces the199

computational cost by solving the transport equation in the single-phase scenario and ensures a200

fixed fluid map without diffusive mass flux between the phases. For all cases, the no-slip boundary201

condition is applied at fluid-fluid boundaries. While simplifying the calculation, this boundary202

condition has a negligible effect on transport characteristics (Guédon et al., 2019; Triadis et al.,203

2019; Jimenez-Martinez et al., 2020). See SM for details on the boundary conditions and the mask204

extraction process. In our simulation, the solute concentration is dimensionless and ranges from205

0 (no solute) to 1 (fully saturated with solute). Initially, the invading fingers are solute-free, and206

the solute is introduced into the domain from the inlet with a concentration of 1. All simulations207

are compiled on High-Performance Computing (HPC) clusters with 32 to 64 CPUs (depending on208

mesh density).209
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2.4. Upscaling Simulation Results210

Whilst simulations are done at the pore level with data of concentration fields in cells smaller211

than pore throat, macroscopic properties, such as dispersion coefficients, are defined for the Rep-212

resentative Elementary Volume (REV) of the system. On this account, it is required to upscale213

simulation results to examine properties at the Darcy scale. This involves Upscaling the concentra-214

tion values obtained at each time step to the macroscopic scale, allowing us to determine the BTC215

and overall concentration-time curves within the domain. The BTCs for each case are determined216

by calculating the average concentration values over the outlet cells, weighted by the flux of each217

cell (qi):218

Ce =

∑N
i Ciqi∑N
i qi

(10)

The concentration-time evolution within the domain is estimated by averaging the concentration219

value in each cell, with weighting based on the volume of each cell (Vi):220

C =

∑N
i CiVi∑N
i Vi

(11)

2.4.1. Estimating Dispersion Coefficient221

The coupled effects of diffusion at the pore-level and the recurrent divergence and convergence222

of flow pathways in porous structures lead to hydrodynamic dispersion. Dispersion mainly ac-223

counts for deviation of velocities in pore-scale compared to the macroscopic velocity (Neuman and224

Tartakovsky, 2009; Sahimi, 2012). Curve fitting of data to analytical solutions is one common225

methodology to determine the dispersion coefficient (Karadimitriou et al., 2016; Aziz et al., 2018;226

Hasan et al., 2019; Erfani et al., 2021). This study adopts the analytical solution proposed by227

Ogata and Banks (1961) to estimate the longitudinal dispersion coefficient in the domains. For228

the Dirichlet boundary condition applied in the simulation (with continuous injection of solute),229

the 1D analytical solution of the advection-dispersion equation for the inlet solute concentration230

of C0 [C(0, t) = C0, t ≥ 0] in a solute free domain [C(x, 0) = 0, x > 0] with a zero concentration231

gradient condition at the outlet can be written as (Ogata and Banks, 1961):232

C(x, t) =
1

2
C0

[
erfc

(
x− vt

2
√
Dt

)
+ exv/D erfc

(
x+ vt

2
√
Dt

)]
(12)

where, D is longitudinal dispersion coefficient, and v is macroscopic flow velocity. This analytical233

solution was proposed for single-phase scenarios with Fickian behavior. However, it is well-known234

that immobile zones alter transport characteristics to non-Fickian (Ben-Noah et al., 2023). The235

computational data generated by Aziz et al. (2018) has indicated that transport in flowing regions236

can still be approximated as Fickian during the early stages of the process. Hence, we use the237

solution proposed by Ogata and Banks (1961) for mobile regions exhibiting Fickian behavior.238

To mitigate the effects of tailing observed in the BTCs during the fitting procedure, data up239

to a point where the flowing fingers are nearly fully developed (i.e. averaged concentration of240

0.99) are employed. The distinction between flowing (advection-controlled) and trapped (diffusion-241

controlled) regions is accomplished using pore-scale velocities.242

2.4.2. Mass Exchange Rate Between Flowing and Stagnant Zones243

Mixing is a key parameter for determining transport characteristics in porous media, especially244

in the presence of chemical reactions. It plays a crucial role in facilitating encounters between solute245

8



particles already present in the domain and those introduced into the domain, aiming to homogenize246

concentration values in space (Borgman et al., 2023). In unsaturated media, the diffusive mass247

exchange between flowing and trapped regions is a significant factor in characterizing the mixing,248

directing solute particles from flowing networks to stagnant zones (Karadimitriou et al., 2016;249

Jimenez-Martinez et al., 2017). In this study, the non-Fickian Mobile-Immobile Model (MIM)250

is employed to analyze the DNS simulation results. The MIM estimates the mass flux between251

flowing and stagnant zones by employing a non-equilibrium mass transfer model (Van Genuchten252

and Wierenga, 1976):253

Ssφ
∂Cs

∂t
= α (Cf − Cs) (13)

where, Ss is stagnant saturation, φ denotes porosity, Cs and Cf refer to macroscopic concen-254

tration in stagnant and flowing regions, respectively, and α is the mass transfer rate.255

3. Results and Discussion256

3.1. Correlated Disorder Increases the Representative Elementary Volume Size257

Fluid invasion patterns, and hence the required size of REV and the domain, are sensitive258

to pore-scale heterogeneity, including both random and spatially-correlated disorder (Holtzman,259

2016; Borgman et al., 2017, 2019; An et al., 2020b). Macroscopic models, from the fundamental260

conservation laws such as the advection-dispersion equation to the empirical constitutive relations261

such as Brooks-Corey relative permeability correlations, are computed assuming that domain size262

is much larger than the REV. This assumption requires the input variables to be spatially and263

temporally independent (Neuman and Tartakovsky, 2009; Mehmani et al., 2020). A common264

approach for finding the REV of a medium is determining Darcy-scale properties, e.g. porosity, at265

various fields of view (Erfani et al., 2021). However, in this study, the extensive number of cases,266

including different realizations for each λ, inhibits the implementation of such a technique.267

To ensure the independence of simulations from specific realizations, the calculated macroscopic268

properties across all realizations are compared. Fig. 1 shows the BTCs and the corresponding269

dispersion coefficients, obtained using Eq. 12, for all realizations under saturated conditions at270

macroscopic Pe = Uinlet∗L
Dm

= 280 with L being the length of domain. The accuracy of fitted271

dispersion coefficients can be evaluated by calculating the Normalized Mean Square Error (NMSE)272

between the fitted and numerical results as NMSE =∥Xi−X̂i∥2 / ∥(Xi−X̄i)∥2, where ∥2 shows the273

2-norm of a vector, and X̂i, Xi, and X̄i are curve fitting output values, curve fitting input values274

from simulation, and mean values, respectively. In all fitting cases, the NMSE value was below 0.01.275

As can be seen from the figure, similar dispersion coefficients are estimated for λ = 1 and λ = 3276

with superimposed BTCs. However, for the most correlated structures, the dispersion coefficient’s277

value varies markedly from one case to another and is realization-dependent. Another evidence is278

provided by comparing the saturation values at the steady-state condition for all realizations across279

the range of applied Ca (see Fig. S5 in SM). Contrary to λ=5 with scatter values, the saturation280

remains nearly the same for all realizations of λ=1 and λ=3 at each injection rate. This shows that281

the structural heterogeneity of media with λ=5 results in a REV larger than the dimensions of the282

domains, making the results realization-dependent.283

For the model investigated in this study, the domain size should be at least 23 times the284

correlation length (considering the domain size as 4.2 mm and correlation length of λ=3 or 180285

µm) to obtain quantitatively representative porous media. This is aligned with the findings of An286

et al. (2020b). This is particularly relevant as a common approach to measure flow and transport287

characteristics is using images captured from X-ray microtomography, with specimens often on the288
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Figure 1: Breakthrough curves for three realizations (R denotes realization) simulating saturated transport at Pe =
280 with fitted dispersion coefficients (D), for mediums of three correlation lengths, λ: 1, 3, and 5 in panels (a–c)
respectively.

order of mm, depending on the device specifications (Moreno-Atanasio et al., 2010; Scanziani et al.,289

2017). In carbonate rocks, for instance, characterized by multiscale heterogeneity and correlation290

length in the range of >> 1 mm (Vik et al., 2013a,b), utilizing samples smaller than the REV291

can lead to misinterpretations. In such cases, a marginal shift in sample volume can result in292

substantial changes in determined bulk properties (Nordahl and Ringrose, 2008). Given these293

considerations and due to the runtime costs of rerunning all simulation cases with larger domain294

sizes, the transport analysis is focused on domains with λ of 1 and 3.295

3.2. Fluid-Fluid Displacement Topology and Diffusion-Controlled Zones296

The final fingering patterns across the range of applied Ca are illustrated in Fig. 2 for one set297

of realizations. For the lowest injection rates (Ca of 10−6 and 10−5), the flow is predominantly298

governed by capillary forces. The invading phase enters throats and follows pore bodies with the299

path of least resistance, with branching in the transversal direction. An increase in the injection300

rate intensifies viscous forces, resulting in the emergence of additional pathways (fingers) for the301

invading phase. At a higher injection rate (Ca = 10−4), the developed fingers stretch out primarily302

in the direction of flow and less perpendicular to it, resulting in thinner fingers. The coupled effect of303

capillary with pore morphology causes some fingers to advance obliquely and not straight, reaching304

the outlet diagonally (e.g. observe the formed diagonal fingers in λ=3 and 5). The displacement305

pattern at this injection rate (Ca = 10−4) can be ascribed to a transitional zone between capillary306

and viscous fingering. This is also in agreement with previous experimental and numerical findings307

(Zhang et al., 2011; Wei et al., 2022).308

At an identical Ca, the variation in λ significantly influences the injection phase saturation and309

the number of formed fingers. Higher values of λ introduce spatial heterogeneity that results in310

the formation of clusters of regions with similar pore radii. These clusters develop zonal contrasts311

in medium permeability, characterized by pathways with high fluid conductivity coexisting with312

pathways of low conductivity. This spatial heterogeneity not only reduces the number of formed313

fingers but also leads to the development of thicker fingers with larger branches in the lateral314

direction (e.g. compare patterns for λ=1 and λ=3 at Ca = 10−5). According to the pore-scale315

Pe=u∗R̄
Dm

with R̄ being average pillar radius (Aziz et al., 2018), the interconnected fingers of the316
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Figure 2: Two-phase fluid displacement patterns at different correlation lengths (λ) and flow rates (Ca). Flow is
from left to right. White represents invading fluid, black is defending fluid and solid matrix. Bottom panels show the
corresponding pillar radius distribution in one set of realizations.
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invading phase can be decomposed into two parts: i) zones mostly in the direction of flow with317

very high velocity and dominated by advection, and ii) dead-end zones, mainly perpendicular to318

the mainstream of flow with remarkably small pore-scale Pe and governed primarily by diffusivity.319

Here, we consider the pore-scale value of Pe=0.01 as a threshold to distinguish between diffusion-320

and advection-controlled zones, as suggested by Babaei and Joekar-Niasar (2016). The influence of321

λ on the volume of diffusion-dominated zones of the invading phase network can become evident322

by comparing the value of trapped saturation at different degrees of invading phase saturation, Si323

(displayed in Fig. 3). Trapped saturation is defined as STr = VTr/VP , with VTr denoting the total324

volume of trapped zones (i.e. zones of invading fingers with pore-scale Pe ≺0.01) and VP is the325

total pore volume of the medium. To provide a comprehensive analysis and expand the dataset326

range, two additional drainage simulations are conducted for realizations with λ equal to 1 and 3327

at Ca of 10−3, resulting in higher Si. In Fig. 3, each Si value corresponds to one Ca ranging from328

10−3 to 10−6.329

A monotonic decrease in trapped saturation is observed for λ=1 and 3 versus Si (Fig. 3).330

The results also highlight that increasing λ corresponds to a reduction in the volume of diffusion-331

governed zones across all Si. This is attributed to the lack of favourable pathways at lower λ values,332

characterized by higher randomness in the local conductivity. At the same Ca (injection rate in333

our case), the lack of favourable pathways for domains with lower correlation length results in the334

formation of more fingers that remain trapped, i.e. do not reach the outlet, and hence are reachable335

for the solute solution mainly by diffusivity due to small values of pore-scale Pe.336

The nonlinear relationship observed in Fig. 3 between injection rates and Si, i.e. an order of337

magnitude reduction in Ca leading to a distinct reduction in Si, can be explained by the dynamics of338

the drainage process. In drainage, local pore morphology predominantly influences the displacement339

pattern and, consequently, saturation. In accordance with the Young-Laplace equation (Young,340

1805), when a non-wetting phase enters a saturated domain, the local potential energy of the non-341

wetting phase accumulates until it surpasses the capillary entry pressure of the widest throat, and342

then draining the connected pore body (Moura et al., 2020). Based on the applied pressure and343

pore space characterization, i.e. throats geometry and distribution, only a subset of throats are344

available for the penetrated phase at each Ca. Consequently, the variation in accessible pore bodies345

versus injection rate can exhibit a nonlinear relationship, leading to distinct Si value (An et al.,346

2020a).347

0.1 0.2 0.3 0.4 0.5 0.6

S
i
 [-]

0.05

0.1

0.15

0.2

S
T

r [
-]

=1

=3

Figure 3: Variation of trapped saturation (within the invading phase) calculated at Pe=280 versus invading phase
saturation Si (corresponding to Ca=10−3 to 10−6) for different correlation lengths.
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3.3. Contribution of Mobile and Immobile Zones to Transport348

The fluid-fluid boundaries segment the penetrated phase network into mobile and immobile349

regions with distinct transport characteristics. To evaluate the contribution of each zone to the350

transport process, the probability of pore-level Pe at different invading phase saturation for λ = 1351

are compared in Fig. 4. In the saturated case, a single peak is evident, predicting the dominance352

of advection in regions predominantly characterized by Pe > 0.01. For the unsaturated cases, two353

zones with a bimodal variation can be observed across all saturation ranges, demonstrating the354

migration of solute solution with significant contributions from both advective and diffusive forces.355

Zone 1 corresponds to regions with high-velocity values, where advection is the primary transport356

mechanism, i.e. mobile zone. The formation of dead-end branches leads to a second peak (Zone 2),357

characterized by low-velocity values and governed by diffusive forces. As the influence of diffusive358

forces intensifies, the transition from Zone 1 to Zone 2 results in the emergence of regions with an359

interplay of both forces (intermediate Pe), followed by regions where advection plays a minimal360

role (i.e. considerably small Pe).361

Figure 4: Probability distribution of logarithmic pore-level Pe number for λ = 1 at variable invading phase saturation
Si (corresponding to Ca=10−3 to 10−5 for Si ≺ 100 %). Zone 1 and 2 refer to the advective- and diffusive-dominated
zones, respectively.

A notable difference among unsaturated cases is the magnitude of each peak. Comparing the362

overall distribution of pore-scale Pe probabilities shows that an inverse relationship exists between363

the Si and the prevalence of completely diffusion-dominate zones (the peak in Zone 2) within the364

medium. For instance, for invading phase saturation Si = 26%, the probability of both peaks in365

the pore-scale Peclet number distribution is similar, indicating a nearly balanced contribution from366

both advection and diffusion to the transport process. At higher saturation levels (e.g. Si=58%)367

the peak in Zone 2 is smaller than the corresponding peak in Zone 1. While according to Fig. 3,368

reducing Si decreases the overall volume of immobile zones (Zone 2), Fig. 4 shows that at lower Si369

Zone 2 is constituted mostly by totally diffusion-dominated regions with very small Pe. Multiphase370

pore-scale mechanisms control this behavior. At a high Ca like 10−3 (resulting in Si =58%),371

the displacement pattern exhibits viscous fingering, facilitating the flow of the non-wetting phase372

predominantly in the direction parallel to the applied pressure drop. As a result, fewer dead-end373
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fingers, corresponding to the peak in Zone 2, are formed in both lateral and parallel directions.374

However, at lower injection rates multiple fully trapped fingers can develop in the direction of375

flow without reaching the outlet, resulting in an increase in the probability of considerably small376

pore-scale Pe (e.g. compare mobile and immobile zones in Fig. 5 for saturation of 58% and 22%).377

Figure 5: Comparison between mobile (blue) and immobile (red) areas in Pe=280 for λ=1 at invading saturation of
Left) 22% (Ca=10−6), and Right) 58% (Ca=10−3), in the carrier (invading) phase containing solutes. White refers
to the solid and defending phase (where there is no solute transport).

3.4. Solute concentrations378

Next, we show the impact of fluid velocities in solute transport under partially-saturated con-379

ditions. As predicted above from the Pe distributions, solute concentration in immobile zones380

increases more rapidly (with injected volumes) for higher Si, see Fig. 6.381

The cumulative volume of injected solute solution required to raise concentration in the immobile382

zones also increases with the macroscopic (sample-averaged) Peclet value, e.g. compare Pe of 280383

with 28 in Fig. 6. This is due to the relatively low diffusivity in the domain: the weak advective384

forces in the immobile zones make diffusion the primary transport mechanism. Provided that solute385

solution is present in the mobile zones (i.e. Pe ≫ 1 ), diffusivity requires a similar amount of time386

to direct solute solution from mobile pathways to the immobile zones at both Pe levels for each387

saturation degree. This indicates that at higher Pe, a large number of introduced solute solution388

exit the domain without being diverted toward the trapped zones. Increasing the Pe by injecting at389

higher rates primarily boosts advective forces in the mobile zones without any appreciable effect on390

transport in immobile zones. The long time required to achieve 100 % concentration in immobile391

zones contributes to the dual characteristic time scales of non-Fickian transport, including an early392

breakthrough of the solute solution with the rapid development of mobile zones (marked with red393

circles in Fig. 6 for the concentration of 90%), followed by a prolonged period of slow mass transfer394

between mobile and immobile regions. In Section 3.6 we analyze the mass flux between these zones.395

3.5. Dispersion-Saturation Relation396

It is widely acknowledged that transitioning from single-phase to multiphase transport scenarios397

can amplify tracer dispersivity by order of magnitudes, due to the constriction of available pathways398

for solute solution migration. However, there is no clear agreement regarding the behavior of399

dispersivity in unsaturated media. For instance, some studies have reported an increase in solute400

solution spreading with decreasing saturation (Nützmann et al., 2002; Sato et al., 2003), whereas401

others demonstrated a reduction in dispersion coefficients (Hammel and Roth, 1998; Vanderborght402
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Figure 6: Solute concentrations in immobile zones (Zone 2) versus injected pore volume at a range of saturation for
λ=1. a) Pe=280, and b) Pe=28. Red circles mark the time at which mobile zones are at 90% concentration.

and Vereecken, 2007). Some studies also presented a non-monotonic trend between dispersion403

coefficients and carrier phase saturation (Raoof et al., 2013; Karadimitriou et al., 2017; Zhuang404

et al., 2021).405

To improve understanding of the equivocal nature of the dispersion-saturation relation, we406

compute the dispersion coefficient at various invading phase saturation for different media (spatial407

correlations, λ, of 1 and 3) and macroscopic Peclet values (Fig. 7). We find that increasing λ408

enhances the solute spreading, regardless of the value of Pe (injection rate). This can be explained409

by the reduced number of developed fingers at higher λ. At the same applied injection rate, a lower410

number of formed fingers results in a faster spreading of the entered solute solution and a shorter411

period of time for it to leave the domain. The non-monotonic dependence of dispersion on Si (Fig. 7)412

can be attributed to the tortuosity of velocity streamlines, with the maximum dispersivity at a fluid413

configuration with the most heterogeneous pathways (Gong and Piri, 2020). The simulation results414

show that the dispersion coefficient peaks at invading phase saturation of Si ∼37 %, which belongs415

to the transient regime between capillary fingering and viscous fingering. The formed diagonal416

fingers at the transient regime increase the path length, tortuosity, for the solute solution and417

finally lead to an enhancement of the dispersion coefficient. At identical saturation, increasing the418

macroscopic Pe from 28 to 280 enhances the advective force and helps the solute solution to travel419

faster in flowing areas, manifesting itself by a higher dispersion coefficient.420

3.6. Mobile-Immobile Mass Flux421

The common perspective on mixing under unsaturated conditions suggests that concentrating422

the transport process into a limited number of pathways restricts mixing by reducing the residence423

time for tracer particles (i.e. shorter mixing time) (Kapetas et al., 2014). However, Jimenez-424

Martinez et al. (2015) demonstrated experimentally that fingering in the longitudinal direction can425

also lead to a concentration gradient in the transverse direction, enhancing mixing by promoting426

diffusive flux to immobile zones. Findings from multiple physical and computational studies have427

outlined the time-dependency of mass exchange rates between mobile and immobile parts of domain428

(Karadimitriou et al., 2016; Aziz et al., 2018; Hasan et al., 2019; Li and Berkowitz, 2019; An429

et al., 2020b). However, the variation of the mass exchange rate over time was inconsistent in430

the literature. For instance, Aziz et al. (2018) demonstrated a non-monotonic trend for the mass431

exchange rate coefficient in an uncorrelated medium, concluding two stages for mixing, including432
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Figure 7: Dispersion-invading phase saturation relation for λ=1 and λ=3 at (a) Pe=280 and (b)Pe=28.

an initial increase in the mass exchange rate followed by a subsequent decrease. However, An et al.433

(2020b) showed a monotonic reduction in the mass transfer rate over time for both correlated and434

uncorrelated structures.435

Fig. 8 depicts the temporal variation of mass transfer rate (α in Eq. 13) for λ=1 and λ=3 at436

two Pe. A non-monotonic trend can be observed for Pe=280 at both λ values. In the early stages437

of the process, the boundary area between mobile and immobile zones is established, and solute438

start transporting into the trapped zones, leading to the enhancement of diffusive mass flux. Due439

to the rapid development of mobile zones, the duration of this stage is relatively short. This stage440

is followed by a gradual decrease in diffusive mass flux as the tracer is directed to significantly441

low-velocity zones far from the mobile pathways. However, for the highest saturation at both442

correlation lengths, the mass exchange rate displays a monotonic decrease. The initial delay in443

increasing the concentration of the mobile zones, which is related to the larger clusters of flowing444

regions at the highest saturation, postpones the formation of the boundary area between mobile445

and immobile zones. Subsequently, this delay masks the initial increase of α at the beginning of446

the process. Similarly, for Pe=28, the mass exchange rate shows a continuous decrease for both447

correlation lengths at all degrees of saturation. Here, the delay in the development of mobile zones,448

caused by a reduction in advective forces within the domain, is responsible for masking the initial449

increase of α. These results clearly underline the significance of fingering topology, affecting the450

contact areas between mobile and immobile zones, and the ratio of advective to diffusive forces451

in determining the mass exchange rate. For instance, compare the difference in the magnitude of452

diffusive mass flux for λ=3 at the saturation of 55% with lower degrees of saturation. The temporal453

evolution of the mass exchange rate can vary depending on the spatial distribution of mobile and454

immobile clusters, and the injection rates for each fluid configuration.455

3.7. Effect of Drainage Non-local Dynamics on Transport456

In porous media, fluid-fluid interfaces advance through pore-scale mechanisms, such as Haines457

jumps and cooperative pore-filling. The prevalence of these mechanisms depends on the wettability458

and the rates (Ca) (Holtzman and Segre, 2015). During drainage, the pressure of the invading459

phase increases until it reaches the threshold required to overcome the local capillary pressure of460

a constriction (throat). The interface then ”jumps” to the next equilibrium state within the pore461

body. The sequence of such events leads to fluctuations in the pressure drop along the domain, as462

depicted in Fig. 9, for different λ at two injection rates. A similar pressure fluctuations was observed463

in the drying of correlated media (Biswas et al., 2018), and forced drainage in uncorrelated media464
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Figure 8: Temporal evolution of mass exchange rate between mobile and immobile zones for top) λ=1 and bottom)

λ=3 at left) Pe=280, and right)Pe=28. Mass exchange rate is non-dimensionalized by α∗W2

Dm
where W is the width

of domain.

(Ambekar et al., 2021a,b). In all cases, the inlet pressure increases with some oscillations until the465

first breakthrough, which is followed by a reduction in pressure.466

Fig. 9 highlights varying post-breakthrough pressure behavior across different λ values tested in467

this study at identical periods. In the most correlated medium, λ=5, the pressure nearly stabilizes468

with a small reduction after all fingers breakthrough, indicating unchanged fluid-fluid boundaries.469

However, pressure fluctuations persist for lower correlation lengths, particularly for λ=1. The470

oscillation in the pressure gradient during the post-breakthrough phase is indicative of variation in471

the invading phase topology. The intensity of fluctuations depends on the applied Ca. For instance,472

while post-breakthrough oscillation is not persistent for λ = 3 at Ca=10−6, the opposite can be473

seen at Ca=10−5 with pressure fluctuation after breakthrough.474

To better understand this, Fig. 10 displays the occurrence of a snap-off event within an already475

established finger in a domain with λ=1. As depicted in the figure, the propagation in one finger476

(shown with yellow) leads to interface receding in the other finger (shown with black). Recruiting477

some parts of the non-wetting phase for pore-level drainage events in one finger from another finger478

can reduce the capillary pressure far from the invasion front, and potentially destabilize the interface479

in the ”source” finger. The destabilization of the interface continues until the pressure reaches the480

snap-off threshold, and the swelled wetting phase rapidly fills the throat, disconnecting parts of the481
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Figure 9: Time evolution of pressure drop along the domains for realizations with different correlation lengths at a)
Ca=10−5, and b) Ca=10−6.

invading phase network (green arrows in Fig. 10). These non-local (”distal”, as termed by Andrew482

et al. (2015)) snap-offs can result in immobile or mobile ganglia. As the broken-up finger attempts483

to attain equilibrium, it starts propagating again within the domain, either to coalesce with the484

disconnected region or bypass it. For both injection rates (Ca=10−5, 10−6), while interface receding485

still occurs for λ=5, distal snap-off does not take place. The absence of such pore-level events may be486

related to the underlying porous microstructure, as follows: the higher correlation length increases487

the likelihood of larger throats residing next to each other. The snap-off threshold depends on the488

throats’ size, with invading phase snap-off occurring in the smallest throats at the highest capillary489

pressure (Andrew et al., 2014). The pore space morphology at higher correlations λ generates very490

low capillary snap-off pressure (due to greater throat size) within the preferred pathways of the491

invading phase that may hardly be reached. Forcing the non-wetting phase to smaller throats at492

higher injection rates increases the maximum value of snap-off capillary threshold and raises the493

chance of non-wet phase break-up as shown in Fig 9 for λ=3. These findings show the influence494

of correlations on the distal snap-off occurrence. We hypothesize that increasing correlation length495

reduces the local instabilities of menisci, and enhances the stability of the fluid-fluid interface. This496

aligns with the observation of Wu et al. (2021) on the greater local instability of interface evolving497

in domains with more local disorder (corresponding to the lower correlation length in the present498

study).499

Different criteria can be used to indicate the establishment of steady-state conditions. Examples500

include vanishing variations in the saturation of invading phase (Leclaire et al., 2017) or in interfaces501

position (Karadimitriou et al., 2016). From the analysis of numerical simulations, we find that502

for low correlation length (more random disorder), fully stable interface boundaries may not be503

achievable due to drainage dynamics associated with the disorder. Our analysis indicates that504

even a minute perturbation caused by a local pore-scale event during the macroscopically steady-505

state regime, can cause an evident change in interface morphology. To exemplify this, Fig. 11506

illustrates the evolution of pressure and saturation for a domain with λ=1 and corresponding fluid507

configuration at two different times with similar displacement patterns but varying by a single pore508

invasion. While the saturation of the invading phase reaches a plateau, marginal fluctuation in509

the pressure gradient can affect the topology of the invading phase causing a snap-off (highlighted510

with red circles in Fig. 11c,d). Such variations in displacement pattern (e.g. snap-off event) can511
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Figure 10: Comparison between multiphase boundaries for a domain with λ=1 at t=t1, and t=t2 by superimposing
on the same image. Blue and red colour shows the invading and defending phases, respectively. Black areas display
interface receding from t1 to t2 for invading phase. Yellow areas represent invading phase advancement from t1 to
t2. Green arrows show interface destabilization within an established finger.

occur repeatedly with further finger thinning and advancement in other locations, according to the512

pore space characteristics and snap-off pressure. Based on the considered criteria for multiphase513

steady-state conditions (i.e. marginal variation in saturation or fluids distribution), each of the514

fluid configurations (Fig. 11c and d) can serve as the steady-state displacement pattern for one-515

way examining of unsaturated transport. However, the probability distribution of pore-level Pe in516

Fig. 11b reveals that the transport behavior, at an identical injection rate, varies among the two517

patterns. The breakup (by snap-off) of a finger which reaches the outlet can alter the streamlines518

and thus the distribution of flowing-trapped clusters. This rearrangement in velocity pathways519

evidently affects the spreading and mixing properties of solute particles. In this study, to minimize520

the effects of alterations in fluid pathways in domains with high local disorder, the quantities (e.g.521

in dispersion-saturation relation) are determined by averaging them from all realizations and cases522

with the least rearrangement in fluid-fluid boundaries are mainly considered for analysis.523

Interfacial redistribution at steady-state is also a common observation in intermittent flows (i.e.524

during co-injection of the two phases) (Armstrong et al., 2016; Spurin et al., 2019, 2020). The525

continuous alteration in fluid connectivity causes the phases to move within porous media through526

periodic events of disconnection and coalescence. A common approach to study solute transport at527

this so-called “dynamic steady-state” conditions is to select a fluid arrangement when the saturation528

of the wetting phase in the domain is nearly constant with minimum variation in fluid pathways529

(Jimenez-Martinez et al., 2015, 2017). We note, however, that at a constant saturation, interfaces530

can evolve affecting relative permeability (Armstrong et al., 2016). Given the high sensitivity of531

transport to the connectivity of pathways (e.g. shown in Fig. 11b for a single snap-off), a more532

complex transport behavior is expected for intermittent flows compared to the drainage case.533

4. Conclusion534

The transport of solutes in partially-saturated (two-phase) conditions was studied for porous535

media with correlated disorder. DNS was used to demonstrate that correlation length in pore sizes536
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Figure 11: Effect of drainage dynamics on fingering topology for a medium with λ=1 at Ca=10−5, showing: evolution
of pressure and saturation with time (a); probability distribution of pore-scale Pe for two adjacent times [shown in
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can significantly impact the REV of the system (requiring a larger domain), and, consequently,537

derivation of upscaled quantities. We find that the dispersion coefficient depends on the structural538

disorder, with a non-monotonic dependence on the invading phase saturation. The presence of539

fluid-fluid interfaces in the unsaturated case result in bimodal velocity distribution, promoting rapid540

development of mobile regions and a prolonged diffusive mass flux between mobile and immobile541

zones. The synergistic effect of advective forces and the arrangement of mobile-immobile clusters542

influence the magnitude and temporal variation of the diffusive mass flux over time.543

Pore-scale disorder is known to have a decisive role on drainage dynamics. This paper demon-544

strates that increasing the correlation length enhances fluid-fluid interface stability, i.e. time-545

independent distribution of fluids. We show that even a minor perturbation in invaded phase546

connectivity, for instance a snap-off in a single pore, can have an evident impact on solute trans-547

port by changing the distribution of mobile and immobile zones.548
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