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Abstract—As machine learning (ML) algorithms, particularly
neural networks (NN), expand in popularity and capacity, the
quest for more efficient computation methods gains momen-
tum. Memristor crossbar technology emerges as a promising
alternative to traditional computing units, aiming to address
traditional computing challenges. However, conventional matrix-
vector multiplication (MVM) methods on these platforms are
often plagued by device imperfections and drift. In this work,
we introduce an innovative lightweight calculation approach
leveraging bit-transformation for MVM, significantly enhancing
operation precision and, consequently, the performance of ML
algorithms on memristor crossbar platforms. We provide details
of the core algorithm and its extensions, furnish digital validation,
and simulate its efficacy using an autoencoder (AE) neural net-
work with an extended VTEAM model. Our tests demonstrate an
average reconstruction precision improvement of approximately
53.5%. This work’s applicability extends beyond NNs, offering a
foundational method for conducting more precise analog MVM
operations.

Index Terms—Memristor Crossbar, matrix-vector multiplica-
tion (MVM) , Deep Learning, Bit-transformation

I. INTRODUCTION

RECENT strides in neural network (NN) driven artificial
intelligence (AI) have notably reshaped the contempo-

rary landscape [1]–[3]. However, the computational demand of
NNs is intensive, often requiring multiple parallel computing
units for efficient computation. This leads to significant energy
expenditure. While existing parallel computing architectures
such as the central processing unit (CPU) and graphics pro-
cessing units (GPU) suffice, the intrinsic constraints of the tra-
ditional Von Neumann architecture hinder further scalability.
A salient manifestation of this is the memory wall challenge
[4], [5], born from the physical disjunction of computation
and storage units. Owing to the memory wall predicament and
hefty power consumption, memristor technology has attracted
substantial research attention.

The concept of memristors was initially posited in 1971
and realized in 2008 [6], [7]. The central allure of mem-
ristors stems from their conductance modulation in response
to external stimuli. Upon stimulation, for example in the
Phase Change Memory technology, due to joule heating, the

*These authors contributed equally to this work

phase-changing material encased between the two electrodes
transitions from a structured crystalline form to a high-
resistance, amorphous state, elevating the resistance. This
characteristic allows for the application of partial stimuli to
achieve intermediate conductance stages, offering finer control
over the memristor’s state [5], [8]–[13]. However, memristors
have finite intermediate conductance stages and are susceptible
to drift, read noise, and asymmetry due to inherent device im-
perfections [14]–[16], which in turn, constrain the performance
of ML algorithms on crossbar circuits.

In this work, we introduce a novel multiplication algorithm
that leverages the pronounced difference in high/low resistance
and employs bit-wise long multiplication to supplant the
conventional matrix-vector multiplication (MVM) calculation
method, which relies on a direct application of Ohm’s Law
[17], [18]. The paper is structured as follows. First, we will
introduce the preliminary, required steps to reach the final
algorithm. Then, we will simulate the proposed algorithm,
called BITLITE, to study its performance on an autoencoder-
type neural network on a Ge2Sb2Te5 memristor crossbar cir-
cuit. We then demonstrate BITLITE’s reconstruction precision
improvement against previous works [19], [20].

II. PRELIMINARY

We first start with the classic binary multiplication of two
values a, b, expressed with α, β bits respectively. This calcu-
lation can be fully expanded into an expression representing
the long-multiplication method, which processes the result bit-
wise and reflects the traditional shift-and-add algorithm used
in modern digital computing.

a · b =
β∑

k=1

α∑
j=1

(aj · 2α−j)(bk · 2β−k)

=

β∑
k=1

α∑
j=1

ajbk · 2α+β−j−k

(1)

In the above equation, ai and bi are the ith bit of a and b
respectively. Following the same convention, i, j = 1 are the
most significant bits (MSB), and α, β are the least significant
bits (LSB). The term 2α+β−j−k represents a variable left bit
shift depending on the significance of both bits.



Fig. 1. (a) A brief summary of the intended advantages and trade-offs of BITLITE compared to traditional and approximate computing schemes. (b) A
high-level overview of the BitLite algorithm and its application in an example neural network. (c) Pre-processing of input and weights visualized, specifically
the extension of vectors into new base-digit matrices. (d) Processed data encoded as memristor crossbar weights and fed as voltage inputs. Here, recurring
matrices such as CNN kernels are tuned as memristor conductance values. (e) An example encoding of matrix values. Here, target integer values of the
example base-3 system are encoded as specifically tuned resistances.

Extending this expression to a MAC operation over a set of
values ai ∈ [a1, . . . , an], bi ∈ [b1, . . . , bn], the first index
now marks the value’s position in the set. Introducing another
index for the bits, let aij be the jth bit of ai and bik be the
kth bit of bi. Using the above expression, we can expand the
operation to a similar form.

Now, we observe that this binary case is an extension of a
more general expression:

a · b =
β∑

k=1

α∑
j=1

ajbk · θα+β−j−k (2)

Here, a, b are represented in any arbitrary base-θ system
with no theoretical upper bound over the maximum digit count
α, β.

In the simplest case, we can directly apply the above equa-
tion to a simple multiply-and-accumulate (MAC) operation,
achieving a vector dot product. We extend both vectors into
their individual digits and express the operation using a similar
form.

n∑
i=1

aibi =

β∑
k=1

α∑
j=1

n∑
i=1

aijbik · θα+β−j−k (3)

III. VARIABLE-BASE MEMRISTOR MATRIX
MULTIPLICATION

Using a memristor crossbar, matrix-vector multiplication
can easily be performed using Ohm’s Law, expressed alter-
natively using conductance G = 1/R.

I = V G

By taking advantage of the circuit behavior of memristor
crossbars, direct MVM can be performed in one step. Here,
we state a similar expression in matrix form to reflect the
crossbar:

GV⃗ = I⃗ (4)

Above is the memristor analogue of the classic expression
Ax⃗ = b⃗. Voltage inputs are fed into a conductance-tuned
crossbar array, and the resulting outputs yield the required
MVM results.

We now start with the simplest case as presented in section
II: some vector a⃗ to be expressed in extended form over the
crossbar and an input vector b⃗ to perform the dot product a⃗ · b⃗.
Over some arbitrary base system, the two 1 × n vectors a⃗, b⃗
are separated by digit to form matrices:

A =

a11 · · · a1n
...

. . . · · ·
aα1 · · · aαn

 B =

b11 · · · b1β
...

. . . · · ·
bn1 · · · bnβ

 (5)

In the extended representations above, aij is the ith digit
of the jth entry in the original vector a⃗, and bij is the jth

digit of the ith entry in the original vector b⃗. The transposition
of the bit and entry indexes is essential for consistent matrix
multiplication dimensionality.

By sequentially inputting these voltage vectors and reading
the outputs, we achieve a full output matrix. The values of this
matrix can be manipulated into the desired MAC result. The
full resulting output matrix produced by reading the current
outputs is as follows:

AB =



∑n
i=1 a1ibi1

∑n
i=1 a1ibi2 · · ·

∑n
i=1 a1ibiβ∑n

i=1 a2ibi1
∑n

i=1 a2ibi2 · · ·
∑n

i=1 a2ibiβ

...
...

. . .
...∑n

i=1 aαibi1
∑n

i=1 aαibi2 · · ·
∑n

i=1 aαibiβ


(6)

The entries of the output matrix AbinVbin do not include the
digit-shift terms, however. Each vector passed into the crossbar
holds the digits of a consistent significance; this is likewise for
the digits encoded in each column of the crossbar.

Summing results directly from the crossbar would therefore
yield an incorrect result in base 10. For some θ-base system,



Fig. 2. A full BITLITE algorithm flowchart separated into three major sections: pre-processing, crossbar computations, and post-processing. This top-down
view of the entire process also includes key functional features such as scaling and sign splitting.

we must first incorporate these exponential terms, of form
θα+β−i−j , which hold variables for the significance of the
input vector and the column from which the output current
was read. Specifically, i is the significance of the column, and
j is the significance of the vector input.

θout =


θα+β−1−1 θα+β−1−2 · · · θα+β−1−β

θα+β−1−2 θα+β−2−2 · · · θα+β−2−β

...
...

. . .
...

θα+β−α−1 θα+β−α−2 · · · θα+β−α−β

 (7)

The exponent terms have been left uncombined to explicitly
show the digit-shifting behavior of this algorithm. The sum of
all the entries of the resulting matrix ABθout gives us the
desired dot product result corresponding to equation (3). With
this formulation, we have achieved a crossbar-based approach
generalized to any base system. This algorithm can further be
extended to MVM, where each row of a desired LHS matrix
is extended into a 2-dimensional digit representation as shown
in equation (5).

IV. EXPERIMENTAL SECTION

Knowing the algorithm and its derivation, we now analyze
BITLITE’s performance in a simulated environment. As shown
in Fig. 3(a), to better illustrate BITLITE’s advantage in im-
proving MVM accuracy, we trained a simple autoencoder on
the MNIST dataset to demonstrate the improved reconstruction
precision against a pure analog implementation. Due to the bit-
expansion nature of the platform, BITLITE is best suited for
places where precision is needed and MVM operations are not
overly large. Thus, we will utilize BITLITE to implement the
MVM operation in the bottleneck layer. For a single vector, the
bit expanded matrix will be sized n×β, where n is the number
of elements in the input vector and β is the bit width. To
program the encoding, we interpolate these values and fit them
into the appropriate conductance range. To program zeros,
we selectively turn off memristors, blocking the incoming
current from the input to that column. Finally, we program

TABLE I
AVERAGE PRECISION WITH DIFFERENT METHODS

Digital Analog Analog + BITLITE BITLITE

0.0054 0.0642 0.0378 0.0299

- - 41.1% 53.5%

the expanded matrix of the first row of the weight matrix onto
the memristor crossbar array. A sample programming result is
shown in Fig. 3(b, c). From here, we can progressively feed
the rest of the rows after to obtain the complete MVM result.

We also round down the results we obtain from the MVM
operation since in an ideal world, all MVM results should
be integers in BITLITE. Table 1 compares different methods
like ideal, pure analog, and BITLITE variants in terms of
how precisely they reconstruct data. Using BITLITE just
for the critical forward pass increased precision by 41.1%
over a fully analog setup. Fig. 3(d) shows examples where
improvements range up to 83.9% and average a 53.5% increase
in performance.

BITLITE can be used in binary form by using only the
lowest resistant state and the off state. In this form, BITLITE
does not require expensive reprogramming for each memristor
after every MVM operation. Rather, BITLITE simply switches
off the required memristors to achieve the zero encoding
and leave the rest on for the one encoding, speeding up
weight programming drastically. Due to the nature of using
memristors as bits, BITLITE brings another useful advantage:
it simplifies the design of the input DACs since the conversion
range is tiny. In our experiment, we used up to base 8. As a
result, we only need 3-bit DACs to effectively apply the input
currents to the crossbar circuit.

Moreover, BITLITE is more resistant to device imperfec-
tions. We proved this by intentionally increasing noise and
drift levels in our tests. Table 2 shows that with a 10% increase
in these factors, traditional methods experienced about a 30%
drop in performance, while BITLITE’s performance decreased
by only 10%. Under more extreme conditions, BITLITE was
up to 218% more robust than standard MVM methods.



Fig. 3. (a): The inputs are simple handwriting digits from the MNIST dataset. The task is image reconstruction using an autoencoder. We apply BITLITE in
the bottleneck layer for better illustration. (b): We randomly select two memristors and observe their conductance state after some read/programming pulses.
(c): The conductance map for the first 80 by 80 memristors on the crossbar. (d): The reconstruction result comparison between different calculation methods.

TABLE II
COMPARISON OF MEMRISTOR-BASED MVM TECHNIQUES

Ge2Sb2Te5 [23], 1× n input, n× n matrix, β-digit input in base-θ

Pure Analog k Parallel Kernels
[22] BITLITE

Crossbar
Footprint n2 k · n2 β · n2

Max Power
Draw† (W) n3V 2

maxR
−1
LRS n2kV 2

maxR
−1
LRS n2βV 2

maxR
−1
LRS

Complexity O(1) O(1) O(β)

Non-Ideality
Impacts Linear Linear Digit-wise

Linear

10% Artificial
Noise -28.6% - -10.9%

50% Artificial
Noise -79.3% - -36.4%

† Vmax → Vth = 1.48 V, RLRS = 0.94 kΩ

Given our experimental results, BITLITE’s trade-offs in the
approximate MVM space are clear (see Table II). Firstly, at
the expense of a sequential input of digit vectors, we attain
a vastly superior representation of matrix entries; a maximum
positive integer value of θβ − 1 is achieved. Pure analog and
other speed-focused approaches built upon a straightforward,
single memristor and voltage input encoding scheme fail to
replicate this level of precision.

BITLITE is also constrained in performance by the number
of digits, which offers practical limitations to an otherwise
theoretically unbound formulation. The multiplicative effect
of introducing more digits per entry directly impacts the
overall footprint of a BITLITE-based architecture, which then
has the potential to amplify the effects of non-idealities. An
even more pronounced effect on matrix entries is therefore

observed. Namely, the drift of memristors responsible for the
most significant digits can result in significant disparities from
an intended value, though our initial observations still present
a marked improvement from the analog case. This calls for
techniques to mitigate drift, periodically tune conductance
values, and create a more robust architecture overall.

Finally, it is important to note that the magnitude of these
drawbacks are by design. The variable precision introduced by
an optimized digit-base combination minimizes unnecessary
precision, thereby lowering the overall footprint and impact
of these sources of error. BITLITE is a versatile approximate
MVM scheme suited to accelerated applications that require
higher precision than is feasible by 1-to-1 encoding.

V. CONCLUSION

In this research, we explored the challenges of traditional
MVM methods when implemented on memristor crossbar
platforms, particularly issues arising from device imperfec-
tions. We proposed a new lightweight calculation technique
incorporating bit-transformation, which notably improves the
precision of MVM operations. This enhancement directly con-
tributes to better performance in machine learning algorithms
running on memristor platforms. We validated our method in
a simulated environment and an AE neural network, where we
observed an average precision improvement of approximately
53.5%. While our focus was on neural networks, the proposed
technique has broader applications. It lays a foundation for
future work aiming to refine analog MVM operations on
memristor platforms.



REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘ImageNet Classification
with Deep Convolutional Neural Networks’, in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, Lake Tahoe, Nevada, 2012, pp. 1097–1105.

[2] R. Yang and Y. Yu, “Artificial convolutional neural network in object
detection and semantic segmentation for medical imaging analysis,”
Frontiers in Oncology, vol. 11, 2021.

[3] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin,
P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J.,
Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano,
P., Leike, J. & Lowe, R. Training language models to follow instructions
with human feedback. (2022)

[4] W. A. Wulf and S. A. McKee, “Hitting the memory wall,” ACM
SIGARCH Computer Architecture News, vol. 23, no. 1, pp. 20–24, 1995.

[5] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
Nanotechnology, vol. 15, no. 7, pp. 529–544, 2020. doi:10.1038/s41565-
020-0655-z

[6] Chua, L. Memristor-The missing circuit element. IEEE Transactions On
Circuit Theory. 18, 507-519 (1971)

[7] Strukov, D., Snider, G., Stewart, D. & Williams, R. The missing mem-
ristor found. Nature. 453, 80-83 (2008)

[8] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “VTEAM:
A General Model for Voltage-Controlled Memristors,” Circuits and Sys-
tems II: Express Briefs, IEEE Transactions on, vol. 62, pp. 786–790, Aug.
2015.

[9] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “TEAM:
ThrEshold Adaptive Memristor Model,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 60, no. 1, pp. 211–221, Jan. 2013.

[10] N. Papandreou et al., ‘Programming algorithms for multilevel phase-
change memory’, in 2011 IEEE International Symposium of Circuits and
Systems (ISCAS), 2011, pp. 329–332.

[11] M. Hu et al., ‘Dot-Product Engine for Neuromorphic Computing: Pro-
gramming 1T1M Crossbar to Accelerate Matrix-Vector Multiplication’, in
Proceedings of the 53rd Annual Design Automation Conference, Austin,
Texas, 2016.

[12] A. Sebastian et al., “Tutorial: Brain-inspired computing using phase-
change memory devices,” Journal of Applied Physics, vol. 124, no. 11,
p. 111101, 2018. doi:10.1063/1.5042413

[13] N. Papandreou et al., ‘Estimation of amorphous fraction in multilevel
phase-change memory cells’, Solid-State Electronics, vol. 54, no. 9, pp.
991–996, 2010.

[14] A. Chen, “A comprehensive crossbar array model with solutions
for line resistance and nonlinear device characteristics,” IEEE Trans-
actions on Electron Devices, vol. 60, no. 4, pp. 1318–1326, 2013.
doi:10.1109/ted.2013.2246791

[15] G. C. Adam, A. Khiat, and T. Prodromakis, “Challenges hindering
memristive neuromorphic hardware from going mainstream,” Nature
Communications, vol. 9, no. 1, 2018. doi:10.1038/s41467-018-07565-4

[16] W.-Q. Pan et al., “Strategies to improve the accuracy of memristor-based
Convolutional Neural Networks,” IEEE Transactions on Electron Devices,
vol. 67, no. 3, pp. 895–901, 2020. doi:10.1109/ted.2019.2963323

[17] X. Liu and Z. Zeng, ‘Memristor crossbar architectures for implementing
deep neural networks’, Complex & Intelligent Systems, vol. 8, no. 2, pp.
787–802, Apr. 2022.

[18] Z. Sun et al., “Solving matrix equations in one step with cross-point
resistive arrays,” Proceedings of the National Academy of Sciences, vol.
116, no. 10, pp. 4123–4128, 2019. doi:10.1073/pnas.1815682116

[19] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, ”Learning internal
representations by error propagation.” , Parallel Distributed Processing.
Vol 1: Foundations. MIT Press, Cambridge, MA, 1986.

[20] S. R. Nandakumar, M. Le Gallo, C. Piveteau, V. Joshi, G. Mariani, I.
Boybat, G. Karunaratne, R. Khaddam-Aljameh, U. Egger, A. Petropoulos,
T. Antonakopoulos, B. Rajendran, A. Sebastian, and E. Eleftheriou,
“Mixed-precision deep learning based on Computational Memory,” Fron-
tiers in Neuroscience, vol. 14, 2020.

[21] E. Eleftheriou et al., ‘Deep learning acceleration based on in-memory
computing’, IBM Journal of Research and Development, vol. 63, no. 6,
p. 7:1-7:16, 2019.

[22] P. Lin et al., “Three-dimensional memristor circuits as complex neu-
ral networks,” Nature Electronics, vol. 3, no. 4, pp. 225–232, 2020.
doi:10.1038/s41928-020-0397-9

[23] Y. Li et al., “Intrinsic memristance mechanism of crystalline stoi-
chiometric ge2sb2te5,” Applied Physics Letters, vol. 103, no. 4, 2013.
doi:10.1063/1.4816283


