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Abstract

Incorporating observational data in carbon-cycle models provides a systematic framework for understanding complex ecosystem

carbon dynamics, contributing essential insights for climate change mitigation and land ability to continue acting as a carbon

sink. This study addresses the challenge of accurately quantifying carbon fluxes and pools, focusing on the information content of

remote sensing observations. The research explores the impact of assimilating multiple observational datasets into the CARbon

DAta MOdel fraMework (CARDAMOM). Satellite observations such as solar-induced fluorescence (SIF) and vegetation optical

depth (VOD) are used as proxies for photosynthesis and aboveground biomass, respectively. The study aims to answer key

questions about the reliability of remote sensing data in constraining the ecosystem respiration flux and sizes and dynamics of

carbon pools and the relative usefulness of SIF and VOD across five FLUXNET sites. We conclude that assimilating remote

SIF and VOD instead of site-based net ecosystem exchange did not deteriorate and even improved model predictions for all

metrics except for interannual variability. Notably, the improved results correspond to a consistent shift in values for crucial

model parameters across all five investigated sites.
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Abstract14

Incorporating observational data in carbon-cycle models provides a systematic frame-15

work for understanding complex ecosystem carbon dynamics, contributing essential in-16

sights for climate change mitigation and land ability to continue acting as a carbon sink.17

This study addresses the challenge of accurately quantifying carbon fluxes and pools, fo-18

cusing on the information content of remote sensing observations. The research explores19

the impact of assimilating multiple observational datasets into the CARbon DAta MOdel20

fraMework (CARDAMOM). Satellite observations such as solar-induced fluorescence (SIF)21

and vegetation optical depth (VOD) are used as proxies for photosynthesis and above-22

ground biomass, respectively. The study aims to answer key questions about the reli-23

ability of remote sensing data in constraining the ecosystem respiration flux and sizes24

and dynamics of carbon pools and the relative usefulness of SIF and VOD across five25

FLUXNET sites. We conclude that assimilating remote SIF and VOD instead of site-26

based net ecosystem exchange did not deteriorate and even improved model predictions27

for all metrics except for interannual variability. Notably, the improved results correspond28

to a consistent shift in values for crucial model parameters across all five investigated29

sites.30

Plain Language Summary31

Carbon-cycle models allow us to study how terrestrial ecosystems absorb carbon32

from the atmosphere and release it back and what its afterlife is in plants and soil. Sci-33

entists use observed data to accurately quantify these processes and incorporate them34

into models to constrain model parameters. We study how two satellite-based measure-35

ments, one used to substitute for photosynthesis, which is not measurable directly, and36

one used to substitute for aboveground biomass, which is scarcely available, help to im-37

prove the model’s performance.38

1 Introduction39

Accurately quantifying terrestrial carbon sinks/sources and carbon pools is crit-40

ical for reliable projections of carbon emissions and climate change mitigation, yet large41

uncertainties still exist among the components of the global carbon budget (Arneth et42

al., 2017; Piao et al., 2018; Gasser et al., 2020; Friedlingstein et al., 2022). Carbon is taken43

up by the terrestrial biosphere through photosynthesis and released via autotrophic and44
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heterotrophic respiration as well as disturbances (wildfires, windthrows). Yet, how those45

fluxes and their partitioning will change under elevated CO2 remains a question of de-46

bate (e.g., Xu et al., 2015; Kirschbaum & McMillan, 2018; L. Liu et al., 2020). To tackle47

this challenge, it is necessary to understand the potentially competing processes that af-48

fect carbon uptake under global change, such as plants’ physiological response to elevated49

CO2, higher temperatures, increased aridity, increased extreme events frequency, and other50

climatological shifts associated with climate change on plant-level and ecosystem-level51

scales (Cox et al., 2000; Tharammal et al., 2019; Song et al., 2019; Denissen et al., 2022).52

Nevertheless, large amounts of global and site-level observational data have become avail-53

able and can now be used to constrain many of those processes. Over the last couple of54

decades, our understanding of photosynthesis and our capacity to constrain it at the global55

scale has dramatically increased through the use, first, of vegetation indices, (e.g., Wu56

et al., 2009) and then more recently of Solar Induced Fluorescence or SIF, (e.g., X. Yang57

et al., 2015; Zhang et al., 2014), a proxy for gross primary productivity (GPP). How-58

ever, quantifying global respiration fluxes is currently impossible through direct measure-59

ments, and they can only be indirectly inferred, such as using statistical upscaling from60

local measurements or using process-based models, (e.g., Jian et al., 2018; Jung et al.,61

2019; Nathaniel et al., 2023). In essence, from an observational standpoint, there are no62

global constraints on the respiration part of the land carbon budget, leading to major63

uncertainties in our capacity to understand and predict the terrestrial carbon cycle.64

Process-based models allow us to combine knowledge of physical, chemical, and bi-65

ological processes with the collected data to achieve interpretable carbon cycle analy-66

sis. Process-based models depict ecological processes with models of varying complex-67

ity and different level of abstraction. Yet, while those models are good at capturing some68

aspects of the system, they rely on several structural assumptions, and the model pa-69

rameters should be carefully calibrated to improve the model accuracy (Y.-P. Wang et70

al., 2009). For example, Li et al. (2021) lists model structure and model assumptions un-71

certainties among the main processes contributing to the overall model uncertainties. These72

uncertainties are due to our incomplete understanding of some ecological mechanisms73

(for instance, belowground processes and microbial interactions, (e.g., Hartmann et al.,74

2020)), an abundance of empirical equations with parameters that are not necessarily75

applicable globally, and model-specific simplifications. Model parameters can be calibrated76

via data assimilation (also called ”model-data fusion”) to best match observational data,77
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including data uncertainty to quantify model parametric and prediction uncertainties,78

(e.g., Li et al., 2020). Models can even constrain processes that are not directly observed79

(Talagrand, 1997) because of the internal physical and biological constraints linking ob-80

served to unobserved variables (e.g., mass balance for carbon pools). In other words, since81

these models quantify internal system interconnections and dynamics, constraints intro-82

duced via observational data are propagated through the model and can constrain the83

rest of unobservable fluxes or pools. As such, unobserved fluxes and pools, such as res-84

piration and soil carbon, can potentially be constrained through the assimilation of ob-85

servable variables that are indirectly related to those processes.86

A caveat of the data assimilation approach lies in the tradeoff between model com-87

plexity and the demand for data to be assimilated (e.g., Famiglietti et al., 2021). Indeed,88

the more complex the models are, the more parameters are needed for their description.89

Then, the more parameters the model comprises, the more likely it is that the model out-90

put will match equally well the observations with different combinations of the param-91

eters. This phenomenon is called equifinality (Beven, 1993; Beven & Freer, 2001). Sim-92

ply put, it means that the model can give the right answer (i.e., is optimized and cor-93

responds well with the observational data) but for the wrong reason (i.e., the resulting94

combination of the model parameter is inconsistent with the true system dynamic). Gen-95

erally speaking, equifinality is reduced when more data is assimilated to constrain mul-96

tiple different components of the model. In practice, assimilating multiple datasets can97

be limited by data availability and the technical complexity of the data assimilation pro-98

cess.99

In this work, we study the effects of assimilating multiple observational datasets100

in an ecosystem carbon model to quantify their impact on constraining unobserved res-101

piration flux and carbon pools. The physical models’ equations constrain the relation-102

ship between non-observed variables and observed variables, which are assimilated. The103

model used for this data assimilation framework is the CARbon DAta MOdel fraMework104

model or CARDAMOM for short (A. Bloom & Williams, 2015; A. A. Bloom et al., 2016).105

This model is actively used by the scientific community to model the terrestrial carbon106

cycle for process understanding and has been proven to successfully capture spatial pat-107

terns and temporal trends, as well as inter-annual variability of the various variables of108

interest (A. A. Bloom et al., 2018; López-Blanco et al., 2019; Quetin et al., 2019; Y. Yang109

et al., 2019; Yin et al., 2020; A. Norton et al., 2021), including in a benchmarking effort110
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across more than 200 eddy-covariance sites (Y. Yang et al., 2022). The model has been111

previously applied to study global and local mechanisms for diverse ecosystems, from Arc-112

tic (López-Blanco et al., 2019) to tropics (Yin et al., 2020). CARDAMOM was created113

as a relatively simple model so that the low number of the model parameters could be114

better constrained by observational data and thus reduce the risk of equifinality. Model115

complexity and equifinality in the context of CARDAMOM’s predictive skill were pre-116

viously examined by Famiglietti et al. (2021) and concluded that the model skill depends117

on properly constraining the model parameters. Building on that, we look into the model118

skill when the parameters and variables of interest are constrained by indirect observa-119

tions. In particular, we use SIF as a proxy for GPP, and vegetation optical depth (VOD)120

as a proxy for above-ground biomass and use physical constraints to build additional con-121

straints on belowground carbon pools and ecosystem respiration. VOD is a variable de-122

rived from remote sensing observations as an attenuation of the surface reflectance by123

the wet biomass and can serve as a measure of total biomass and water-related vegeta-124

tion stress (Konings et al., 2017).125

When investigating the effects of assimilating additional datasets in CARDAMOM,126

we employ a multi-objective approach and examine the impact of different model for-127

mulations, varying data quality (including information content and data uncertainty),128

and implicit and explicit constraints introduced in the model. We investigate the follow-129

ing research questions: 1) Given the error-prone nature of NBE at the global scale (e.g.,130

Deng & Chen, 2011; Chevallier et al., 2019; Cui et al., 2022), how well can remote sens-131

ing data such as SIF and VOD help constrain the carbon cycle instead? 2) Which of the132

SIF and VOD data is more useful in this task, and how does it depend on local condi-133

tions? 3) Can respiration flux and carbon pools be reliably inferred from data assimi-134

lation, given indirect observational constraints? 4) What is the role of data availability135

and assumed uncertainty on the assimilation results? The analysis is conducted for five136

FLUXNET sites across different biomes.137

2 Methods138

The CARDAMOM framework consists of two major parts: the carbon cycle model139

and the data assimilation infrastructure. Carbon cycle models have different “flavors”140

and are called DALEC (Data Assimilation Linked Ecosystem Carbon model) versions141

that vary depending on the physical processes and parameters included (e.g., with/without142
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fires, with/without water cycle, etc. A. Bloom and Williams (2015); Quetin et al. (2020)).143

The general model structure is relatively simple and, in most of the DALECs, includes144

six carbon pools: foliar, labile, wood, fine roots, litter, and soil organic matter (SOM).145

An additional advantage of the CARDAMOM framework is the inclusion of a series of146

ecological and dynamic constraints (EDC) on model parameters and initial conditions147

(A. Bloom & Williams, 2015). These ”common sense” constraints drive ecosystem vari-148

ables towards more consistent and realistic solutions, thus further helping to reduce equi-149

finality. The optimized model parameters and initial conditions are time-invariant and150

site-specific. They are inferred using a Metropolis–Hastings Markov chain Monte Carlo151

(MCMC) approach (Haario et al., 2001). The model is run at monthly resolution.152

To test whether we can better constrain respiration fluxes and carbon pools by as-153

similating SIF and VOD, we first take a medium-complexity version of the DALEC model154

(for a detailed description of the model, refer to A. Bloom and Williams (2015) and Famiglietti155

et al. (2021)). In this configuration, 33 model parameters and initial conditions are be-156

ing optimized via data assimilation. Site-specific meteorological data (air temperature,157

shortwave radiation, atmospheric CO2 concentration, vapor pressure deficit, precipita-158

tion, and wind speed) drive the model dynamics, while observational data further con-159

strain model parameters. In particular, eddy covariance net ecosystem exchange (NEE)160

measurements from FLUXNET (Pastorello et al., 2020), leaf area index (LAI) estimates161

from the Copernicus Global Land Service (Fuster et al., 2020), and in situ biomass sur-162

veys are used for assimilation into the model. The same or similar combination of data163

for data assimilation has previously been used in CARDAMOM (López-Blanco et al.,164

2019; Quetin et al., 2020; Famiglietti et al., 2021). In the previously reported configu-165

rations, NEE had the highest impact on the model performance (Famiglietti et al., 2021).166

In CARDAMOM studies that have a regional or global focus, beyond FLUXNET sites,167

atmospheric inversion of net biosphere exchange (NBE) is used in the assimilation with168

the caveat that it can have large uncertainties (e.g., H. Wang et al., 2019; Cui et al., 2022).169

Hence, we investigate how excluding it and including SIF and VOD datasets for data170

assimilation, as well as other modeling choices and assumptions, affect the model per-171

formance.172

The analysis is run over several eddy-covariance sites, including Harvard Forest EMS173

Tower, USA (US-Ha1), Puechabon, France (Fr-Pue), Le Bray, France (Fr-LBr), Hyytiala,174

Finland (Fi-Hyy), and Howard Springs, Australia (AU-How), see Table 1.175
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Table 1. Summary of eddy-covariance sites, showing their location, FLUXNET code, obser-

vational time period, mean climate information, and ecosystem type. Ecosystem type is denoted

using the International Geosphere-Biosphere Programme (IGBP) classification. DBF: deciduous

broadleaf forest; EBF: evergreen broadleaf forest; ENF: evergreen needleleaf forest; WSA: woody

savanna. Simple aridity index is calculated as De Martonne aridity index (De Martonne, 1923)

AI = P
Ta+10

.

Site
code

Lat Lon Elevation,
m

IGBP Data
record

Mean
annual
temp,
C

Mean
annual
precip-
itation,
mm/year

Simple
aridity
index

Reference

AU-How -12.49 131.15 42 WSA 2001-
2014

27 1449 Moderate
humid

(Beringer et
al., 2007)

FI-Hyy 61.85 24.29 181 ENF 1999-
2014

3.8 709 Very
humid

(Suni et al.,
2003)

FR-LBr 44.72 -0.77 61 ENF 1998-
2008

13.6 900 Moderate
humid

(Berbigier et
al., 2001)

FR-Pue 43.74 3.59 270 EBF 2000-
2014

13.5 883 Moderate
humid

(Rambal et
al., 2004)

US-Ha1 42.54 -72.17 340 DBF 1998-
2012

6.2 1071 Excessive
humid

(Munger &
Wofsy, 2014)

2.1 Including new observational datasets176

To include a new observational dataset in CARDAMOM, the following steps need177

to be performed: 1) define a functional form that represents the data as a function of178

existing and new model variables and parameters; 2) add data likelihood to the full model179

likelihood; 3) define a prior for any new model parameters. We discuss the assimilation180

of SIF and VOD in the following sections.181

2.1.1 SIF model182

SIF is assumed to be a linear function of GPP (Wood et al., 2017); hence, in the183

model, it is included as follows.184

SIF = psifFGPP (1)185

where FGPP is the GPP flux and psif is a proportionality coefficient [m2s−2µm−1sr−1].186

Synthetic and observational SIF data are considered, with the synthetic SIF de-187

fined directly from FLUXNET GPP data for the corresponding FLUXNET site. This188
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allows assessing the effect of data quality (signal vs. noise) on the model performance.189

Indeed, by construction, the synthetic SIF data contains the signal from the site-measured190

GPP with no additional noise related to observational uncertainties, sensor uncertain-191

ties, SIF retrieval model uncertainties, as well as the scale mismatch between the site level192

data and the grid level remote sensing data. The observational SIF, on the other hand,193

contains the GPP-related signal along with the noise, with the unknown ratio of the two.194

To which degree that affects the model performance defines the model sensitivity to the195

data uncertainty.196

An average between daytime- GPPFLUX
DT and nighttime- GPPFLUX

NT derived GPP197

is considered the site GPP.198

SIFsynth = psif

(
GPPFLUX

DT +GPPFLUX
NT

2

)
(2)199

The slope coefficient psif is individually fit to the FLUX site GPP data such that200

the final synthetic SIF data is in the same range as the observational SIF data. GOME-201

2 SIF data (Joiner et al., 2023) is used as SIF observational data. From GOME-2, both202

SIF and normalized SIF (normalized by photosynthetically active radiation – PAR) data203

are used. A similar amplitude of the synthetic and observational data is necessary to as-204

sess the effect of the data quality (noisiness) on the model performance and isolate it from205

other effects. An example data time series is shown in Fig. S5.206

The SIF likelihood function is constructed similarly to the likelihood function for207

other assimilated data in CARDAMOM with the observation (O) probability given a208

set of model parameters x is209

P (O|x) = e
−0.5

∑n
i=1

(MSIF
i −OSIF

i )
2

σ2
i (3)

where OSIF
i is the ith SIF observation, MSIF

i is the corresponding model SIF, and210

σi is the ith error variance for each observation with no error covariance between obser-211

vation errors assumed (A. Bloom & Williams, 2015).212
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2.1.2 VOD model213

Vegetation optical depth (VOD), based on microwave remote sensing, provides a214

constraint on aboveground biomass. Unlike SIF, VOD representation in the model is not215

as straightforward. VOD is measured as the attenuation of electromagnetic waves, which216

is proportional to the mass of water in the vegetation (Jackson & Schmugge, 1991; Wigneron217

et al., 2017; Konings et al., 2017). Hence, VOD reflects vegetation water content that218

can be representative of both variability in total biomass and plant relative water con-219

tent that depends on meteorological conditions. There is no clear separation of these two220

components even at larger-than-daily time scales (Konings, Holtzman, et al., 2021). Con-221

sidering the overall simplification of the given DALEC and aiming at keeping the num-222

ber of new parameters minimal to reduce equifinality, we assume VOD at the monthly223

resolution to be a function of above-ground biomass only. That is, we assume that vari-224

ations in relative water content are small, which is a reasonable assumption. Relative225

water content representation is missing in the carbon model, which is not uncommon for226

a model of such simplicity but more complex models are starting to include plant hy-227

draulics (e.g., Kennedy et al., 2019) that could resolve water content. For simplicity, we228

additionally assume that VOD is a linear combination of leaf and wood biomass, with229

different learnable regression parameters of each biomass type, at each site:230

V OD = pfolCfol + pwooCwoo (4)231

where Cfol is the foliar carbon pool, Cwoo is the wood carbon pool [gCm−2] and232

pfol and pwoo are the corresponding coefficients [gC−1m2], since VOD is dimensionless.233

In addition to simplifying the relationship between VOD and biomass, this repre-234

sentation poses a numerical issue. Indeed, for forests, in units of carbon mass, Cwoo can235

be several orders of magnitude larger than Cfol. For example, wood biomass averages236

13,000 gCm−2 while foliar biomass reaches the maximum of 300 gCm−2 based on a CAR-237

DAMOM prediction for Harvard Forest. At the same time, the VOD dynamic is primar-238

ily due to Cfol variability because Cfol is much more variable than Cwoo and because239

VOD is more sensitive to upper canopy layers than to lower canopy layers (Konings, Saatchi,240

et al., 2021). In CARDAMOM, both the coefficients pwoo and pfol and carbon pool sizes241

are inferred, so the contradicting forces of pools’ dynamic and pool’ sizes may result in242

equifinality and a wide range of predicted pools sizes. This, in turn, would lead to no243
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or minimal additional information introduced by VOD in comparison to LAI (since LAI244

is defined in CARDAMOM as LAI = plaiCfol). There are several ways to tackle this245

issue, from changing VOD representation in the model to introducing new ecological and246

dynamic constraints (EDC). Here, we define narrow, not overlapping priors for pwoo and247

pfol ranges that ensure the relationship between the sizes of the pools is preserved.248

Similar to the SIF module, synthetic and observational VOD data are considered249

to assess the effect of data quality (signal vs. noise) on the model performance. Since250

the true foliar and wood carbon pool dynamic is unknown, we used the following pro-251

cedure to construct the synthetic VOD data. First, we run CARDAMOM assimilating252

NBE, LAI, and ABGB and take model output median foliar and wood pools as true pools253

for that site. With these pools, we fit pfol and pwoo coefficients such that the constructed254

VOD matches the observational data. Two observational datasets are considered – VODCA255

(Moesinger et al., 2020) C-band VOD and GLAB-VOD (Skulovich et al., 2024) L-band256

VOD (extracted for the grid cell closest to each site). VOD likelihood function is con-257

structed in the same way as Eq.3.258

2.2 Experimental setup259

We compare the base case with no data assimilated (‘none’ case) to the previously260

reported combination that includes NBE, LAI, and ABGB (‘NBE LAI ABGB’) and then261

remove NBE and instead add either SIF, VOD, or both SIF and VOD synthetic and ob-262

servational data (see Table 2). We examine to what extent remote sensing SIF and VOD263

can replace NBE and lead to similar or better results.264

2.3 Information content of observations265

When assimilating observational data, the question of the information content of266

the available data is often reduced to the question of data uncertainty (e.g., Raupach et267

al., 2005) or data autocorrelation, as an indicator for data redundancy (e.g. Moore et268

al., 2011; Williams et al., 2009). Due to the overall data scarcity, it is often assumed that269

assimilating more data will improve model performance. In this series of experiments,270

aligned with the research question ”What is the role of data availability and assumed271

uncertainty on the assimilation results?” we test this hypothesis by assimilating only a272
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Table 2. Data assimilation cases

Experiment Case name Assimilated data

1 ‘none’ -

2 ‘ABGB LAI NBE’ ABGB, LAI, NBE

3 ‘LAI ABGB’ ABGB, LAI

4 ‘+SIF+synth’ ABGB, LAI, synthetic SIF

5 ‘+SIF+data’ ABGB, LAI, GOME2 SIF

6 ‘+SIF+data n’ ABGB, LAI, GOME2 SIF normalized

7 ‘+VOD synth’ ABGB, LAI, synthetic VOD

8 ‘+VOD data C’ ABGB, LAI, VODCA VOD

9 ‘+VOD data L’ ABGB, LAI, GLAB-VOD VOD

10 ‘+SIF+VOD’ ABGB, LAI, synthetic SIF, GLAB-VOD

portion of the available data and compare the results with assimilating data with reduced273

or increased uncertainty.274

In particular, we consider the following cases:275

• Comparing assimilating all available LAI, ABGB, SIF, and VOD observations with276

assimilating just a part of all available observations, namely 20, 40, 60, and 80%277

of the data points. In each run, the corresponding number of indices are selected278

at random, each run is repeated 25 times so that each time it is a different 20%279

of the data that is used in assimilation (for the 20% case, the principle is the same280

for all percentage values).281

• Assimilating 100% of the available LAI, ABGB, SIF, and VOD, and increasing282

or reducing the data uncertainty for SIF and VOD. We consider doubling, qua-283

drupling, and reducing the uncertainty in half.284
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Note that 100% of the available data do not necessarily cover 100% of the time steps285

defined by the forcing meteorological data. For the sites and time period of this study,286

NBE and LAI data have more coverage than SIF and VOD data (see Table 3).287

Table 3. Number of data points and percentage of the available forcing data for each of the

assimilated variables per site

US-Ha1 FR-Pue FR-LBr AU-How FI-Hyy

Forcing

time series
180 (100%) 180 (100%) 132 (100%) 168(100%) 192(100%)

LAI 151 (84%) 180 (100%) 120 (91%) 150 (89%) 150 (78%)

NBE 156 (87%) 170 (94%) 108 (82%) 134 (80%) 182 (95%)

ABGB 15 (8%) 13 (7%) 8 (6%) 3 (2%) 6 (3%)

VOD (data) 113 (63%) 44 (24%) 41 (31%) 150 (89%) 105 (55%)

SIF (data) 68 (38%) 93 (52%) 22 (17%) 95 (57%) 58 (30%)

When considering the information content coming from the observations, we can288

hypothesize the following relationships:289

• More data is better than less data. However, to what degree additional data im-290

proves the model results depends on the local conditions. For instance, some sites291

can exhibit minimal stress and can be almost fully described by the drivers only,292

so additional observational data might not improve the results as much as for sites293

with more complex vegetation feedback.294

• Sometimes, the true uncertainty of the observations is unknown. In that case, there295

should exist an optimal uncertainty that can be used as an empirical parameter296

in the model. Indeed, if the uncertainty is too high, the observations do not add297

much information, and if the uncertainty is too low, the model tries to match noise298

along with the actual signal from observations.299

We examine how these hypotheses hold for assimilating satellite observations in CAR-300

DAMOM.301
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2.4 Performance metrics302

For every assessed combination of CARDAMOM inputs, model formulations, and303

parameters, the model runs at least ten times. Within these runs, the convergence is as-304

sessed using Gelman-Rubin diagnostics. Next, the model output is compared to FLUXNET305

eddy-covariance site data, and different model outputs are compared to each other.306

• Flux comparison: R2, RMSE, HI. The flux comparison is conducted for GPP307

and respiration based on eddy-covariance partitioning. Median model output is308

compared with FLUXNET GPP and RECO derived using friction velocity thresh-309

old (VUT, Barr et al. (2013)) method and daytime and nighttime partitioning sep-310

arately. To estimate uncertainties, the FLUXNET data spread is based on the 25th311

and 75th percentile of the corresponding parameter. The model and site data are312

compared using the coefficient of determination R2 and root mean square error313

(RMSE).314

These metrics allow us to assess the model accuracy; however, in the Bayesian frame-315

work, distribution comparison is more meaningful. To achieve this, a histogram316

intersection (HI, Famiglietti et al. (2021)) is used as an additional skill metric. HI317

measures the similarity of two (discretized) distributions, with larger HI correspond-318

ing to more similar distributions. HI is calculated for GPP and RECO.319

• Interannual variability. Through the data assimilation framework, CARDAMOM320

can capture interannual variability in the fluxes. However, the tightness of the fit321

to the interannual peaks might not necessarily be clear from metrics like R2, RMSE,322

or HI. To assess how different combinations of model parameters affect the inter-323

annual variability, we calculate the following metric (IAM - interannual anomaly324

metric):325

IAM =

n∑
i=1

(Vi − V seas
i )2 (5)326

where Vi is the ith observation or model output of a parameter V (for example,327

GPP), V seas
i is the ith value of the seasonal cycle calculated for this parameter,328

and i can vary from 1 to n, where n is the total number of observations or model329

outputs. The seasonal cycle in this approach is identical from year to year. It is330

calculated by matching a periodic signal, a sine wave with a period of 365.25 days,331

to the observations, with other parameters of the sine wave fitted using curve fit()332
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function in Python. Comparison to a sine-wave for a signal with a strong seasonal333

component is defined to emphasize year-to-year anomalies. For a signal with a weaker334

seasonality, the fitted sine wave will have a small amplitude and be close to the335

long-term average. We calculate this metric for the observational data and then336

compare the value to the metric calculated for different model configurations. With337

similar R2 and RMSE, IAM helps to assess another aspect of the model perfor-338

mance. For consistent comparison, we take the ratio IAMmodel output/IAMdata.339

If this value is close to 1, the model and the data have very similar interannual340

variability, and if the value is close to 0, the model significantly underestimates341

interannual variability present in the data.342

• Pool constraints: relative change and biomass-VOD relationship. Biomass343

data is mainly constrained through indirect proxies (LAI, VOD, NDVI, etc.) apart344

from temporarily and spatially sparse surveys. For example, for the sites discussed345

in this study, ABGB measurements are available only for 2-8% of the total length346

of the meteorological observations (See Table 3). In addition, ABGB comprises347

the sum of labile, foliar, root, and wood carbon pools in CARDAMOM without348

any partitioning information. Hence, we assume the comparison of the model pool349

dynamic to the ABGB observational data is insufficient. Instead, we compare the350

relative model performance for different combinations of the assimilated data, an-351

swering the question, ”Can carbon pools be reliably inferred from data assimila-352

tion, given indirect observational constraints?” comparing the output carbon pools’353

mean and distribution.354

Additionally, the modeled biomass is compared to empirical above-ground biomass355

for a given VOD using the relationship from Y. Y. Liu et al. (2015) (Supplemen-356

tary Eq. 2 and Supplementary Figure 4 of the original article). The authors used357

reliable VOD observations and benchmark biomass maps to obtain the VOD-biomass358

relationship. While this relationship does not necessarily represent the ground truth359

biomass for a given VOD and depends on the choice of a reference for VOD in the360

original paper (since VOD derived from different frequency bands can be mutu-361

ally biased), the closeness of the model output to the paper-derived limits shows362

us the ability of CARDAMOM model in a particular configuration to constrain363

carbon pools.364
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3 Results365

Overall, more than 300 different scenarios were considered, and more than 5 000366

CARDAMOM runs were performed (with 10 to 25 repetitions per scenario). Gelman-367

Rubin metric indicates convergence of most of the runs and most of the scenarios, with368

the exception of stochastic information content-related runs. In some cases, for exam-369

ple, for the FR-LBr site, when SIF (both synthetic and observational data) was assim-370

ilated, it resulted in divergence in some model parameters (e.g., Decomposition rate, Frac-371

tion of GPP respired, Leaf Lifespan, Canopy efficiency), however, when both SIF and372

VOD data were assimilated, all runs converged.373

3.1 Can SIF and VOD observations substitute NBE?374

0.80

0.82

0.84

0.86

0.88

R
2

-0.58

US-Ha1

2.5

3.0

3.5

4.0

4.5

RM
SE

, g
C/

m
2 d

34.7

US-Ha1

0.8

0.6

0.4

0.2

0.0

0.2

-3.55

FR-Pue

2.0

2.5

3.0

3.5

4.0

11.19

FR-Pue

DT partitioning

0.4

0.2

0.0

0.2

0.4

-2.12

FLUXNET vs. model GPP R2 
FR-LBr

DT partitioning

5

6

7

8

9

10

11

12

13
27.91

FLUXNET vs. model GPP RMSE 
FR-LBr

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

-0.43

FI-Hyy

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 15.47

FI-Hyy

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

-4.31

AU-How
Assimilated data

ABGB_LAI_NBE
LAI_ABGB
+SIF_synth
+VOD_synth
+SIF+VOD
None

3

4

5

6

7

8

9

10 30.61

AU-How
Assimilated data

ABGB_LAI_NBE
LAI_ABGB
+SIF_synth
+VOD_synth
+SIF+VOD
None

Figure 1. Effect of assimilating different data combinations on determination coefficient R2

and RMSE between median CARDAMOM results and FLUXNET GPP data. The ‘none’ case

(no data assimilated) is denoted as a red line not in scale with the corresponding value of the

parameter denoted.

We start by comparing the model performance in matching FLUXNET daytime375

GPP for all five sites. Figure 1 illustrates the base case ‘ABGB LAI NBE’ in compar-376
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ison to the case without NBE data directly assimilated (‘LAI ABGB’) and with SIF, VOD,377

and both SIF and VOD consequently added to the set of the assimilated observations.378

Comparing the first two cases, we notice that NBE data is only crucial for FR-LBr and379

AU-How sites. For the rest of the sites, without NBE, CARDAMOM can converge to380

the same or even better solution. When SIF and VOD are added, it further improves381

the results for FR-Pue, FR-LBr, and AU-How sites. For US-Ha1, the ‘+SIF+VOD’ case382

results are worse than the ‘ABGB LAI NBE’ case, however, the fit is still tight - R2 =383

0.86 in comparison to the initial R2 = 0.89. For FI-Hyy site, there was no apparent ef-384

fect related to the SIF and VOD inclusion, which is likely due to this Finnish evergreen385

needle-leaved forest site with cool summer and no dry season experiencing little to no386

water stress. In all cases, significant improvements in the model performance are observed387

with any data assimilated in comparison to no data assimilated (the ‘none’ case). In all388

cases except for the US-Ha1 site, adding SIF and VOD, especially together, can success-389

fully substitute NBE data.390
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Figure 2. Effect of assimilating different combinations of data on determination coefficient

R2 and RMSE between median CARDAMOM results and FLUXNET RECO data. The ‘none’

case (no data assimilated) is denoted as a red line not in scale with the corresponding value of

the parameter denoted.
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Next, we compare the model performance in the same setup to match the FLUXNET391

estimated ecosystem respiration. Figure 2 illustrates the change in R2 and RMSE for392

ecosystem respiration when assimilating different combinations of observational datasets393

for all five sites. Here, NBE was improving the model results only for US-Ha1 and FR-394

LBr sites. From Table 3, we notice that there are less available data points for SIF and395

VOD observational data in comparison to NBE and LAI. However, even with that, as-396

similating SIF and VOD results in higher R2 and lower RMSE than for ‘ABGB LAI NBE’397

and/or ‘LAI ABGB’ cases for all sites except for FI-Hyy. For example, for respiration398

at US-Ha1, R2 increases from 0.25 for ‘ABGB LAI NBE’ and 0.16 for ‘LAI ABGB’ to399

0.42 with inclusion of SIF and VOD. Correspondingly, respiration RMSE reduces from400

3.6 and 4.2 to 2.8 gC/m2d. For the FR-Pue site, assimilating LAI and NBE results in401

the worst performance among all cases, whereas the ‘+SIF+VOD’ shows the best and402

most consistent results with the narrowest interquartile interval for both R2 and RMSE,403

indicating model convergence across optimized parameters. This evergreen oak forest is404

located in a Mediterranean climate with long dry summers and has large interannual vari-405

ation (Rambal et al., 2004), which can explain why additional observational data can406

improve the model results. For FR-LBr, ‘+SIF+VOD’ cannot achieve the results obtained407

for the ‘ABGB LAI NBE’ case, however, the SIF and VOD addition significantly improves408

the results in comparison to the ‘LAI ABGB’ case. In other words, SIF and VOD can-409

not fully substitute NBE for this site but still bring improvement in contrast to the case410

without either. The Finish site again does not show any improvements with respect to411

different combinations of data assimilated. Finally, the AU-How results show that the412

assimilation of SIF and VOD improves the results compared to the ‘ABGB LAI NBE’413

case but not the ‘LAI ABGB’ case. That might be due to the peculiarities of this site414

and LAI and VOD formulations in the model that will be discussed separately in Sec-415

tion 3.1.1. Peculiar case of Australian site.416

For all sites, SIF and VOD data can either substitute or improve the results ob-417

tained with NBE, however, the degree of improvement and the effect of a particular com-418

bination of the assimilated data varies from site to site, depending on the local condi-419

tions and, potentially, data availability and quality.420

Overall, the results measured with R2 and RMSE are similar to the result based421

on histogram intersection (Fig. 3) and interannual anomaly metric ratio (Fig. 4). For422

the histogram intersection, the ‘+SIF+VOD’ case improves the results in comparison423
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to the ‘ABGB LAI NBE’ case for US-Ha1 both respiration and GPP, FR-Pue and AU-424

How respiration, and for the rest of the cases, improves the results in comparison to ‘LAI ABGB’.425

The only exception is the FI-Hyy site, where the addition of SIF and VOD degrades the426

respiration histogram intersection. The fact that SIF and VOD assimilation can improve427

both the metrics related to the model’s median output (like R2 and RMSE) and the model’s428

distribution output is an important result. Improving on just the median metrics can429

indicate overfitting of the model, whereas improvement on histogram intersection alone430

can signal about the model underfitting. The improvement on the two types of metrics431

indicates the model indeed matched the observational distributions better. However, the432

‘+SIF+VOD’ case never reached the interannual variability, measured as the IAM ra-433

tio, achieved for the ‘ABGB LAI NBE’ case except for Harvard Forest respiration and434

FI-Hyy site. At the same time, assimilating SIF and VOD consistently improves the in-435

terannual variability compared to the ‘LAI ABGB’. In other words, while SIF and VOD436

cannot fully substitute the degree of variability introduced by NBE, they still improve437

the results in comparison to the case when NBE is simply not used.438

3.1.1 Peculiar case of Australian site439

Another reason why VOD was less effective for the Australian (AU-How) site might440

lie in the peculiarity of the VOD and LAI dynamic for this site. As shown in Fig. S7,441

in this particular case, the synthetic and observational VOD data seem decoupled. That442

is because we defined synthetic VOD as being proportional to aboveground biomass (Eq.443

4). Considering that LAI is also linearly proportional to the leaf mass, by definition, VOD444

and LAI will always be coupled in the model. Yet, Tian et al. (2018) showed that VOD445

and LAI can be decoupled for some regions. In particular, this pattern was found for African446

tropical woodlands (centered at 11.5°S, 18.5°E). While the Australian site is classified447

as a woody savanna, it is located at the same latitude as the African study region and448

may exhibit similar dynamics. In addition, grass and trees in woody savannas have dif-449

ferent seasonal dynamics, with LAI dynamics driven mainly by the strong seasonal cy-450

cle of grass, whereas the dynamics of VOD are driven by trees. Due to the way LAI and451

VOD are represented in the model, CARDAMOM is unable to reproduce such a decou-452

pling pattern. The tradeoff between model complexity (and, correspondingly, its abil-453

ity to replicate a wide variety of natural phenomena and, here, multiple plant functional454
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types within a single pixel) and model fidelity should be considered when carbon mod-455

els like CARDAMOM are used.456

3.2 Which of the SIF and VOD is more useful in this task?457

Further, different configurations of the assimilated data can help answer the research458

question: Which of the SIF and VOD is more useful in this task, and how does it de-459

pend on the local conditions? Supplementary figures S1–S4 illustrate the same metric460

as discussed above for assimilating either synthetic or observational SIF and VOD. For461

all sites, including SIF in data assimilation immediately improves the model results for462

GPP and respiration. For US-Ha1, FR-LBr, and FI-Hyy, the best results were achieved463

with the assimilation of synthetic SIF data, which were outperformed by the observa-464

tional SIF only for FR-Pue and AU-How. Note that from Table 3, these are the two sites465

with the most SIF data available, suggesting that more data can help further improve466

the model skill in constraining respiration. The difference between the two versions of467

the observational SIF data (GOME SIF and normalized GOME SIF) is minimal and was468

only evident for the FR-LBr site. Synthetic and observational VOD performed surpris-469

ingly similarly when assessed by respiration R2 and RMSE, except FR-Pue and AU-How470

sites that had slightly better performance with the synthetic VOD. GLAB-VOD data471

and VODCA VOD data are very different in the mean and the amplitude of year-to-year472

variation (for illustration, see Fig. S5 and S7). Despite that, there is an apparent sim-473

ilarity of assimilating either of the VOD datasets on the model performance. We can as-474

sume some level of flexibility in this model configuration, and note that the effect of as-475

similating VOD should be more pronounced when looking at the simulated pools, rather476

than fluxes (like GPP and respiration). At the same time, assimilating both SIF and VOD477

together leads to improved results across sites and on an aggregate basis across metrics.478

3.3 Can respiration flux and carbon pools be reliably inferred from data479

assimilation, given indirect observational constraints?480

Figure 5 illustrates the effect of assimilating LAI, ABGB, SIF, and VOD (‘+SIF+VOD’481

case) in comparison to ‘NBE LAI ABGB’ case and FLUXNET data on GPP and res-482

piration. For all time series, the uncertainty is presented. The median output for GPP483

in the ‘+SIF+VOD’ case slightly underestimates the summer peak. Still, the model out-484

put has a more prominent uncertainty range than the ‘NBE LAI ABGB’ case that in-485
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Figure 3. Effect of assimilating different combinations of data on Histogram intersection be-

tween CARDAMOM results distribution and FLUXNET RECO and GPP data. The ‘none’ case

(no data assimilated) is denoted as a red line not in scale with the corresponding value of the

parameter denoted.

cludes the observational data. In turn, the FLUXNET respiration time series are bet-486

ter matched with the SIF and VOD assimilation. Figure 6 sheds some light on the po-487

tential reasons behind the shift from the ‘NBE LAI ABGB’ case to the ‘+SIF+VOD’488

case. It shows the posterior distribution for 10 sample model parameters, reflecting the489

changes in model dynamics (parameters Fraction of GPP respired - ”Frac GPP resp”;490

temperature sensitivity Q10 - ”q10”; canopy efficiency - ”Canopy eff”; leaf mass carbon491

per area, gC/m2 - ”LMCA,” moisture factor) and initial values for five carbon pools (”C492

labile” to ”C SOM,” gC/m2). Most parameters converge equally well for both ‘NBE LAI ABGB’493

and ‘+SIF+VOD’ cases with the posterior distributions clearly defined. While the frac-494

tion of GPP respired varies across a wider interval for the ‘+SIF+VOD’ case, it takes495

more realistic values around 50% (Van Oijen et al., 2010), than less than 25% obtained496

in ‘NBE LAI ABGB’ case. At the same time, the posterior distributions for Q10 and497
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canopy efficiency (that is used to calculate GPP using aggregated canopy model (ACM))498

have broader ranges for the ‘+SIF+VOD’ case, which is expected since NBE is removed499

from the assimilated data, and hence, GPP-related parameters are less constrained. There500

is also a shift in LMCA. For deciduous forests (e.g., at US-Ha1), the typical value of leaf501

mass per area is 75 g/m2 (Poorter et al., 2009), which translates into a mean leaf car-502

bon mass per area 37.5 gC/m2, that corresponds better with the ‘+SIF+VOD’ case re-503

sults. A slight shift in moisture factor – a parameter used in CARDAMOM to scale de-504

composition rate based on water availability – in the ‘+SIF+VOD’ case shows that pre-505

cipitation influences the decomposition rate more than in the ‘NBE LAI ABGB’ case.506

Another apparent shift is in initial carbon pool partitioning – the initial leaf carbon pool507

is smaller, with the initial value for the wood carbon pool being larger for the ‘+SIF+VOD’508

case in comparison to the previous case. At the same time, the ‘+SIF+VOD’ case sug-509
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gests very low initial values for the root carbon pool, which might be infeasible. Fig. S6510

shows the same 10 parameters for the remaining four sites. For all sites, there is a sig-511

nificant difference in distribution for at least some of the parameters, especially for the512

fraction of GPP respired, Q10, canopy efficiency, and wood carbon pool. This suggests513

that assimilating SIF and VOD positively affects the model and, indeed, favors better514

constraining respiration and carbon pools.515

Overall, assimilating SIF and VOD instead of NBE does not deteriorate the model516

results and even seems to improve them at some sites, leading to a reduction in respi-517

ration RMSE for US-Ha1, FR-Pue, and AU-How. Furthermore, the changes in the model518

results are likely due to improvement of the model parameters, which shift towards more519

realistic values. Note that good metrics and a decent fit for the ‘NBE LAI ABGB’ case520

were achieved with a very different combination of CARDAMOM parameters than in521

the ‘+SIF+VOD’ case as shown in Fig. 6.522
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Figure 5. GPP and Respiration time series comparing FLUXNET data and median model

outputs for ‘NBE LAI ABGB’ and ‘+SIF+VOD’ cases with inter-quantile range for all variables

3.4 Constraining carbon pools523

Assimilating SIF and VOD allows for constraining the carbon pools. Fig. 7 rep-524

resents the temporal dynamics of the Harvard Forest carbon pools for the ‘NBE LAI ABGB’525

and ‘+SIF+VOD’ cases. The median and the interquantile range correspond to the full526
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Figure 6. The effect of assimilating SIF and VOD in comparison to the ‘NBE LAI ABGB’

case on a selection of CARDAMOM parameters for the Harvard Forest site. All parameters are
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model outputs from all runs for a given scenario combined. Essentially, the difference527

in the carbon pool partitioning represents the effect of substituting NBE with SIF and528

VOD in data assimilation. This shift corresponds to the shift in the initial values of car-529

bon pools discussed above. In addition to it, the ‘+SIF+VOD’ case modifies the dynam-530

ics of all pools, effectively propagating the constraints through the model. The same ef-531

fect persists for all sites examined in this study (See Supplementary Fig. S8 - S11). For532

the Harvard Forest site, SIF and VOD reduced the size of all pools except for the wood533

pool compared to the ‘NBE LAI ABGB’ case. For example, in the ‘NBE LAI ABGB’534

case, the mean values for the root carbon pool are close to 500 gC/m2, while in the ‘+SIF+VOD’535

case, the mean value is reduced to 150 gC/m2. Additionally, for this pool, the seasonal536

amplitude is reduced from 260 gC/m2 to 60 gC/m2. Another interesting note is related537

to the change in the wood carbon pool dynamics. In the ‘NBE LAI ABGB’ case, it has538

a significant trend growing from 11,900 gC/m2 on average in 1998 to 13,100 gC/m2 by539

the end of 2012, whereas, for the ‘+SIF+VOD’ case, the overall growth over these years540

is about 300 gC/m2. The more stable size of the wood biomass and moderate variabil-541

ity of the root biomass are expected for a stable ecosystem of the US-Ha1 site (Finzi et542

al., 2020).543
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Another interesting result is revealed when above-ground biomass (ABG, calcu-544

lated as the sum of foliar and wood biomass) is compared to VOD and the empirical range545

defined in Y. Y. Liu et al. (2015) as shown in Fig. 8. While the estimated biomass in546

the ‘+SIF+VOD’ case still mainly lies outside the range defined in Y. Y. Liu et al. (2015),547

the VOD-AGB relationship is closer to the empirically determined bounds than the one548

obtained from the ‘NBE LAI ABGB’ case. By definition, in-model VOD is linear with549

respect to above-ground biomass and hence, will not follow the empirical relationship550

exactly. Yet, the shift in carbon pools distribution and size brings the system towards551

a different equilibrium than the ‘NBE LAI ABGB’ case. This new state is more aligned552

with the Y. Y. Liu et al. (2015) findings. Hence, substituting NBE with SIF and VOD553

allows constraining carbon pools more effectively.554

Figure 7. Carbon pools’ temporal dynamic for ‘NBE LAI ABGB’ and ‘+SIF+VOD’ cases

for Harvard Forest. Median and interquantile range over the full output of all runs for a given

scenario.

3.5 Information content555

The real-world observational data can be sparse and uncertain. We noted this ef-556

fect already when examining the VOD data availability for different sites. We further557

explore the effect of assimilating more or less data and data uncertainty more system-558

atically here.559

Fig. 9 shows how varying the number of assimilated data points and data uncer-560

tainty affect ecosystem respiration estimates in terms of R2 and RMSE for our five FLUXNET561

sites. The behavior at the Harvard Forest site follows our expectations when reducing562
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Figure 8. VOD vs. biomass relationship for ‘NBE LAI ABGB’ and ‘+SIF+VOD’ cases in

comparison to the empirical range defined in (Y. Y. Liu et al., 2015)

the amount of assimilated data deteriorated the model performance. Reducing the data563

to 40 and 20% of the initially available data is equivalent to doubling and quadrupling564

data uncertainty. Interestingly, reducing the data uncertainty for US-Ha1 improves the565

results for both metrics (R2 0.52 vs. 0.42, RMSE 2.29 vs 2.82 gC/m2d for the initial un-566

certainty), suggesting that the used uncertainty is not optimal and the model can ex-567

tract more signal information from the assimilated data. For the FR-Pue site, the re-568

sults changing the data amount follow a similar pattern; however, reducing and increas-569

ing data uncertainty deteriorates the results. Based on that, we can conclude that the570

initially used data uncertainty for this site is close to the optimal values. For the sec-571

ond French site, FR-LBr, the pattern of the results changes – using 80 and 60% of the572

initially available data improves the respiration metrics (followed by further deteriora-573

tion of the results for even smaller amount of the used data that is also equivalent to qua-574

drupling the data uncertainty). Given the overall scarcity of SIF and VOD data for this575

site and an apparent improvement of the results with the reduced data uncertainty (R2
576

0.25 vs 0.18, RMSE 2.93 vs. 3.19 gC/m2d for the initial uncertainty), we can assume that577

the model struggles to fully differentiate between the signal and the noise in the initial578
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configuration. Based on the results for the Finnish site, the model might be overfitted579

when all available data is used. Here, the best results (yet with quite a large uncertainty)580

are achieved for the smallest portion of the data – 20%. For this site, it was already noted581

that assimilating SIF and VOD does not improve the model results. Here, it is further582

confirmed – an attempt to impose more constraints for this evergreen needle-leaved for-583

est site with little year-to-year variability deteriorates CARDAMOM predictions. Inter-584

estingly, the results for the AU-How site do not follow any pattern, most likely due to585

the previously mentioned issue of LAI and VOD varying in anti-phase. Since the data586

points for the assimilation are selected at random (Section 2.3 Information content587

of observations), this subset can either improve or deteriorate the model output de-588

pending on the selected points.589
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Figure 9. The effect of information content on CARDAMOM results: respiration R2 and

RMSE for all five sites

4 Conclusions590

Process-based carbon cycle models like CARDAMOM can effectively model the car-591

bon cycle and reconstruct carbon fluxes so that they match well with observations. The592

quality of the skill of the model in adequately simulating carbon pools and predicting593
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meaningful system behavior in contrafactual scenarios is based on the model structure594

and how well it can reproduce natural phenomena with model equations – and model595

parameters that are tuned through assimilation to observational data. Given the absence596

of direct observations for respiration, photosynthesis, and net primary productivity and597

the scarcity of biomass data on the global scale, this study investigates CARDAMOM’s598

ability to effectively utilize physical model constraints and indirect observations connected599

to those processes, namely Solar-Induced Fluorescence (SIF) (as a proxy for photosyn-600

thesis) and Vegetation optical Depth (VOD) (used as a proxy for biomass). The results601

indicate that these indirect observations can lead to improvements in the estimates of602

carbon pools and respiration flux, often better than the ones obtained using net ecosys-603

tem exchange observations. This effect is even more witnessable when we consider the604

scales of the observations since these results were achieved when comparing and assim-605

ilating FLUXNET site level net ecosystem exchange with a 25 km grid cell remote sensing-606

based SIF and VOD. The discrepancy between the site-level and remote sensing level607

scales as a potential source of inconsistencies between CARDAMOM results and data608

was also previously noted by A. J. Norton et al. (2023).609

Moreover, the better performance achieved when assimilating net ecosystem ex-610

change (e.g., higher R2 for US-Ha1 GPP) can be due to overfitting the model to follow611

net ecosystem exchange variability. Bacour et al. (2023) used a different carbon cycle612

model with a different combination of observational data assimilated, yet came to sim-613

ilar conclusions. Assimilation of more data, in our case, VOD, and SIF, leads to more614

consistent results. Yet, similarly to Bacour et al. (2023), observational errors of multi-615

ple observations should be addressed to ensure an adequate signal-to-noise ratio and avoid616

under- and overfitting.617

The effect to which SIF and VOD observations improve the model estimates of car-618

bon pools and respiration flux depends on various factors. Among them are data avail-619

ability, data uncertainty and local conditions (interannual variability, stresses). Infor-620

mational content analysis reveals that for the locations that experience seasonal stresses,621

more data helps better constrain the model. However, even for the sites with more sta-622

ble climate conditions, assimilating any data was beneficial compared to not assimilat-623

ing any SIF and VOD. The potential of SIF for carbon cycle modeling was noted ear-624

lier (MacBean et al., 2018; Bacour et al., 2019; MacBean et al., 2022; A. J. Norton et625

al., 2023). Indeed, for FR-LBr, FI-Hyy, and AU-How, SIF not only successfully substi-626
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tuted but outperformed NBE (the performance measures as R2 and RMSE for GPP).627

VOD, on the other hand, while was proposed for data assimilation in carbon cycle mod-628

els (Scholze et al., 2017), and was assimilated in other instances (Kaminski et al., 2018;629

Smith et al., 2020), was not previously used in models like CARDAMOM. We show that630

assimilating VOD improves model performance in matching respiration flux and constrain-631

ing carbon pools. Indeed, respiration and carbon pool sizes are related (Ma et al., 2022),632

and connected through the model parameters like respiration rate and canopy efficiency,633

that were better constrained with the new assimilated data.634

Additionally, we show that SIF and VOD assimilation improves metrics like R2 and635

RMSE, without deteriorating metrics like histogram intersection – a metric that assesses636

the output distribution. Nevertheless, SIF and VOD could not achieve the same level637

of interannual variability in the results that were previously achieved with net ecosys-638

tem exchange. This is expected since the site-level net ecosystem exchange comprises639

more signal than averaged over the grid cell observational SIF and VOD. However, given640

less reliable global net ecosystem exchange assessments (e.g., Peylin et al., 2013; Cui et641

al., 2022), this finding can be wavered on a global scale. Satellite-based observational642

SIF and VOD may be expected to further outperform the globally available version of643

net ecosystem exchange obtained from CO2 inversion.644

Future work should focus on extending the study’s geographical area to include other645

climate zones. Observational data can have varying quality depending on the ecosystem646

specifics (e.g., dense or sparse vegetation, frozen ground, and complex topography can647

pose technical challenges for space-born sensors) or even human activity (e.g., radio-frequency648

interference contaminating the signal). Further, model parameters’ sensitivity to the as-649

similated data and its uncertainty can be spatially variable (Ma et al., 2022). As we have650

already shown here, for the sites not subjected to stresses, the model can be overfitted651

to data so that assimilating less data leads to better model performance. Finding more652

regions prone to this behavior is essential to properly utilizing carbon cycle model-data653

assimilation on the global scale. In addition to this, more attention should be dedicated654

to the process representation in the model. As it was shown for LAI in A. J. Norton et655

al. (2023), process representation plays a crucial role in the model’s ability to effectively656

extract information from the assimilated data to constrain model parameters. In this657

study,we chose a simple VOD representation with minimal new parameters introduced658

into the model. Even in this configuration, VOD successfully constrained carbon pools,659
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including aboveground biomass, and improved model performance in comparison to as-660

similating just SIF. Future work should include VOD and SIF within a broad range of661

datastreams to best constrain the different carbon fluxes and pools.662
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Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes839

and consequences of variation in leaf mass per area (lma): a meta-analysis.840

New phytologist , 182 (3), 565–588.841

Quetin, G. R., Bloom, A. A., Bowman, K. W., Diffenbaugh, N. S., Liu, J., & Kon-842

ings, A. G. (2019). Attribution of historical terrestrial carbon uptake due to843

climate change. In Agu fall meeting abstracts (Vol. 2019, pp. B11B–03).844

Quetin, G. R., Bloom, A. A., Bowman, K. W., & Konings, A. G. (2020). Carbon845

flux variability from a relatively simple ecosystem model with assimilated data846

is consistent with terrestrial biosphere model estimates. Journal of Advances in847

Modeling Earth Systems, 12 (3), e2019MS001889.848

Rambal, S., Joffre, R., Ourcival, J., Cavender-Bares, J., & Rocheteau, A. (2004).849

The growth respiration component in eddy co2 flux from a quercus ilex850

mediterranean forest. Global Change Biology , 10 (9), 1460–1469.851

Raupach, M. R., Rayner, P. J., Barrett, D. J., DeFries, R. S., Heimann, M., Ojima,852

D. S., . . . Schmullius, C. C. (2005). Model–data synthesis in terrestrial carbon853

observation: methods, data requirements and data uncertainty specifications.854

–34–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Global Change Biology , 11 (3), 378–397.855

Scholze, M., Buchwitz, M., Dorigo, W., Guanter, L., & Quegan, S. (2017). Reviews856

and syntheses: Systematic earth observations for use in terrestrial carbon cycle857

data assimilation systems. Biogeosciences, 14 (14), 3401–3429.858

Skulovich, O., Li, X., Wigneron, J.-P., & Gentine, P. (2024). GLAB-VOD:859

Global L-band AI-BasedVegetation Optical Depth dataset based on machine860

learning and remote sensing. Scientific Data (submitted). Retrieved from861

https://zenodo.org/doi/10.5281/zenodo.10306094862

Smith, W. K., Fox, A. M., MacBean, N., Moore, D. J., & Parazoo, N. C. (2020).863

Constraining estimates of terrestrial carbon uptake: New opportunities us-864

ing long-term satellite observations and data assimilation. New Phytologist ,865

225 (1), 105–112.866

Song, J., Wan, S., Piao, S., Knapp, A. K., Classen, A. T., Vicca, S., . . . others867

(2019). A meta-analysis of 1,119 manipulative experiments on terrestrial868

carbon-cycling responses to global change. Nature ecology & evolution, 3 (9),869

1309–1320.870

Suni, T., Rinne, J., Reissell, A., Altimir, N., Keronen, P., Rannik, U., . . . Vesala, T.871

(2003). Long-term measurements of surface fluxes above a scots pine forest872

in hyytiala, southern finland, 1996-2001. Boreal Environment Research, 8 (4),873

287–302.874

Talagrand, O. (1997). Assimilation of observations, an introduction (gtspecial is-875

sueltdata assimilation in meteology and oceanography: Theory and practice).876

Journal of the Meteorological Society of Japan. Ser. II , 75 (1B), 191–209.877

Tharammal, T., Bala, G., Narayanappa, D., & Nemani, R. (2019). Potential roles878

of co 2 fertilization, nitrogen deposition, climate change, and land use and land879

cover change on the global terrestrial carbon uptake in the twenty-first century.880

Climate Dynamics, 52 , 4393–4406.881

Tian, F., Wigneron, J.-P., Ciais, P., Chave, J., Ogée, J., Peñuelas, J., . . . others882
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Figure S1. Effect of assimilating different data combinations on determination coefficient R2

and RMSE between median CARDAMOM results and FLUXNET GPP data. The ‘none’ case

(no data assimilated) is denoted as a red line not in scale with the corresponding value of the

parameter denoted.
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case (no data assimilated) is denoted as a red line not in scale with the corresponding value of

the parameter denoted.
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Figure S8. Carbon pools temporal dynamic for ‘NBE LAI ABGB’ and ‘+SIF+VOD’ cases

for the FR-Pue site. Median and interquantile range over the full output of all runs for a given

scenario.
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Figure S9. Carbon pools temporal dynamic for ‘NBE LAI ABGB’ and ‘+SIF+VOD’ cases

for the FR-LBr site. Median and interquantile range over the full output of all runs for a given

scenario.

Figure S10. Carbon pools temporal dynamic for ‘NBE LAI ABGB’ and ‘+SIF+VOD’ cases

for the FI-Hyy site. Median and interquantile range over the full output of all runs for a given

scenario.

Figure S11. Carbon pools temporal dynamic for ‘NBE LAI ABGB’ and ‘+SIF+VOD’ cases

for the AU-How site. Median and interquantile range over the full output of all runs for a given

scenario.
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