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Abstract

Option pricing plays an important role in modern finance. This paper investigates the uncertain option pricing problems

based on uncertainty theory for Liu’s uncertain stock model and Peng’s mean-reverting stock model which are two basic and

representative uncertain stock models in uncertain finance. The pricing formulas of the European and American options are

derived by applying the method to calculate the optimistic value of uncertain returns of options instead of the usual method

of expected value in the sense of the weighted average. In the end, some numerical experiments are given to illustrate the

effectiveness of the obtained results.
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uncertain stock model and Peng’s mean-reverting stock model which are two basic
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1 Introduction

Option pricing is one of the most fundamental yet most important problems in modern

finance. In the past decades, it has received a lot of interest from many researchers.

Options are a type of financial derivatives whose values depend on the value of underlying

assets. It is a contract that gives its holder the right, but not the obligation, to buy or sell

∗Corresponding author. Email: dengliubao@163.com
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a certain amount of underlying asset, at a certain price, at a certain date. Finding the

fair value of options is a core problem in modern finance. In 1973, Black and Scholes [1]

proposed the famous Black-Scholes model based on the assumption that stock price follows

geometric Brownian motion, and gave an option pricing formula. From then on, the prices

of many kinds of options based on the Black-Scholes model have been investigated by many

researchers and many useful results were obtained. Up to now, the study on stochastic

option pricing has made considerable advances both in theory and application.

The Black-Scholes model was established based on probability theory in which the un-

derlying asset price process follows the stochastic differential equation. It is well known

that the basic premise of applying probability theory to describe indeterministic phe-

nomena is that there must be sufficient available sample data to estimate probability

distribution which is close enough to the frequency of indeterminate events occurring.

However, in many cases of the practical financial market, we cannot always obtain ade-

quate statistical data and even sometime there are no samples available owing to various

reasons. For example, bridge strength, oil filed reserves and newly listed securities have

few historical data. In this case, we cannot estimate a probability distribution by means

of statistics and have to invite some domain experts to evaluate their belief degree that

each indeterministic event will occur. Perhaps some people think that personal belief

degree is a subjective probability or fuzzy concept. However, Liu [2] showed that it is

inappropriate because both probability theory and fuzzy set theory may lead to counter-

intuitive results. In order to rationally deal with the indeterminacy, Liu [3] founded an

uncertainty theory in 2007 which is a branch of axiomatic mathematics for modeling the

uncertain behaviors of human beings. In 2008, for describing state evolution of dynamic

systems with indeterministic disturbances over time, an uncertain process and canonical

Liu process were introduced by Liu [4] as counterparts of stochastic process and Wiener

process, respectively. Furthermore, uncertain calculus on the basis of Liu process and a

type of uncertain differential equation driven by canonical Liu process were introduced by

Liu [5]. Nowadays, the uncertain theory has been well developed and successfully applied

to many areas such as uncertain finance [6, 7], uncertain risk analysis [8, 9], uncertain

statistics [10, 11], uncertain programming [12, 13], and uncertain optimal control [14, 15],

etc. For exploring the recent developments of uncertainty theory, the readers may consult

Liu [16].
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Uncertain differential equation was first applied into finance by Liu [5]. In 2009,

Liu proposed an uncertain stock model in which the stock price is assumed to follow a

geometric Liu process and derived European option pricing formula. Afterwards, many

researchers have investigated the option pricing problems based on uncertainty theory. For

example, Chen [7] studied the pricing method of American options for uncertain financial

market and derived some pricing formulae of such options based on Liu’s stock model. In

2015, Sun and Chen [17] discussed the pricing problems of uncertain Asian options and

derived their pricing formulae based on Liu’s stock model. Zhang and Liu [18] investigated

the pricing problem of geometric average Asian option and derived its pricing formula.

Gao et al. [19] studied Lookback option pricing problem of uncertain exponential Ornstein-

Uhlenbeck model. Zhang et al. [20] presented the pricing formulas of Lookback options

of fixed strike. Gao et al. [21] studied uncertain Barrier option pricing problem. Zhang et

al. [22] proposed the power option formulas in uncertain financial market. Zhang et al. [23]

studied the option pricing formulae of the interest rate ceiling. Liu et al. [24] introduced

the uncertain currency model and presented the currency option pricing method. Besides,

Peng and Yao [25] proposed a mean-reverting stock model for uncertain market and

derived European and American option price formulae. Shen and Yao [26] presented

mean-reverting currency model and gave its option pricing formulae. Wang and Ning [27]

further discussed the currency model with floating interest rate and derived its option

pricing formulae. Considering the influence of sudden jump on the stock price, Ji and

Zhou [28] proposed an uncertain stock model with jumps which followed geometric Liu

process and uncertain renewal process and then discussed the European option pricing

formulas for presented model.

The above option pricing methods are based on expected value which is a traditional

way of calculating uncertain returns of options and has been widely used in the study of

option pricing problems. However, this method is obviously only suitable for the cases of

underlying asset volatility being relatively stable. When the price of underlying asset of

options fluctuates greatly, the expected value in the sense of the weighted average may not

be considered only. In this case, critical value (optimistic value or pessimistic value) of

calculating uncertain returns of options may be a good alternative. In 2019, Lu et al. [29]

discussed critical value-based Asian European option pricing model based on a mean-

reverting stock price model with uncertain fractional differential equation for uncertain
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financial market. In this paper, we will investigate the problem of European and American

option pricing by applying the method of optimistic value for Liu’s uncertain stock model

and Peng’s mean-reverting stock model which are two basic and representative uncertain

stock models in uncertain finance. To our knowledge, no research has been done on the

option pricing problems based on optimistic value for the two stock models.

The rest of the paper is organized as follows. Next section is preliminary in which we

introduce some useful concepts and theorems of uncertainty theory as needed. In Section

3, the uncertain option pricing models under optimistic value criterion based on Liu’s

uncertain stock model and Peng’s mean-reverting stock model are investigated and the

option pricing formulaes are derived. In Section 4, some numerical examples are given to

illustrate the results obtained. Finally, a brief conclusion is given in Section 5.

2 Preliminary

In this section, we will review some basic concepts and theorems in uncertainty theory [3].

Let Γ be a nonempty set, and L a σ-algebra over Γ. Each element Λ ∈ L is called an event.

A set function M defined on the σ-algebra L over Γ is called an uncertain measure if it

satisfies M{Γ} = 1, M{Λ} + M{Λc} = 1 for any Λ ∈ L, and M{
∞⋃
i=1

Λi} ≤
∞∑
i=1

M{Λi} for

every countable sequence of events {Λi}. The triplet (Γ, L,M) is said to be an uncertainty

space. An uncertain variable is a function ξ from an uncertainty space (Γ, L,M) to the

set of real numbers such that for any Borel set of real numbers, the set {ξ ∈ B} = {γ ∈
Γ| ξ(γ) ∈ B} is an event. An uncertain variable ξ may be described by its uncertainty

distribution Φ: < → [0, 1] which is defined by Φ(x) = M{ξ ≤ x}. The expected value

of ξ is defined by E[ξ] =
∫ +∞

0
M{ξ ≥ r}dr−

∫ 0

−∞M{ξ ≤ r}dr provided that at least one

of the two integrals is finite. The variance of ξ is V [ξ] = E[(ξ − E[ξ])2]. The uncertain

variables ξ1, ξ2, ..., ξm are said to be independent if M{
m⋂
i=1

{ξi ∈ Bi}} = min
1≤i≤m

M{ξi ∈ Bi},

for any Borel set B1, B2, · · · , Bm of real numbers.

Theorem 2.1 . (Liu [16], Extreme Value Theorem) Let Xt be a sample-continuous in-

dependent increment process with with regular uncertainty distribution Φt(x) at each time

t. Then the supremum

sup
0≤t≤T

Xt
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has an uncertainty distribution

Ψt(x) = inf
0≤t≤T

Φt(x).

Moreover, if f is a continuous and strictly increasing function, then the supremum

sup
0≤t≤T

f(Xt)

has an uncertainty distribution

Pt(x) = inf
0≤t≤T

Φt(f
−1(x)),

and if f is a continuous and strictly decreasing function, then the uncertainty distribution

is

Qt(x) = 1− sup
0≤t≤T

Φt(f
−1(x)).

Definition 2.1 . (Liu [4]) A canonical Liu process Ct is an uncertain process if and only

if

(i) C0 = 0 and almost all sample paths are Lipschitz continuous,

(ii) Ct has stationary and independent increments,

(iii) every increment Cs+t −Cs is a normally distributed uncertain variable with expected

value 0 and variance t2, whose uncertainty distribution is

Φ(x) =

(
1 + exp

(
−πx√

3t

))−1

, x ∈ <.

Theorem 2.2 . (Liu [16]) The normal uncertain process Xt ∼ N(et, σt) has an uncer-

tainty distribution,

Φt(x) =

(
1 + exp

(
π(et− x)√

3σt

))−1

and its inverse uncertainty distribution is

Φ−1
t (α) = et+

σt
√

3

π
ln

α

1− α
.
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Theorem 2.3 . (Liu [16]) Let f(t) be an integrable function with respect to t. Then the

Liu integral ∫ s

0

f(t)dCt

is a normal uncertain variable at each time s, and∫ s

0

f(t)dCt ∼ N

(
0,

∫ s

0

|f(t)|dt
)
.

Theorem 2.4 . (Liu [16]) Let Xt be an uncertain process with regular uncertainty dis-

tribution Φt(x), and let a and b be real numbers. Show that (i) if a > 0, then aXt + b has

an inverse uncertainty distribution,

Ψ−1
t (α) = aΦ−1

t (α) + b;

and (ii) if a < 0, then aXt + b has an inverse uncertainty distribution,

Ψ−1
t (α) = aΦ−1

t (1− α) + b.

Definition 2.2 . (Liu [3]) Let ξ be an uncertain variable, and α ∈ (0, 1]. Then ξsup(α) =

sup{r|M{ξ ≥ r} ≥ α} is called the α-optimistic value to ξ; and ξinf(α) = inf{r|M{ξ ≤
r} ≥ α} is called the α-pessimistic value to ξ.

Let Ct be a canonical Liu process, and ξ = ∆Ct = Ct+∆t − Ct. Then for any 0 < α < 1,

α-optimistic and α-pessimistic values of ξ are

ξsup(α) = −
√

3∆t

π
ln

α

1− α
, (2.1)

ξinf(α) =

√
3∆t

π
ln

α

1− α
, (2.2)

respectively.

Theorem 2.5 . (Liu [3, 16]) Let ξ and η be are independent uncertain variables and

α ∈ (0, 1]. Then we have

(i) if c ≥ 0, then (cξ)sup(α) = cξsup(α) and (cξ)inf(α) = cξinf(α);

(ii) if c < 0, then (cξ)sup(α) = cξinf(α) and (cξ)inf(α) = cξsup(α);

(iii) (ξ + η)sup(α) = ξsup(α) + ηsup(α), (ξ + η)inf(α) = ξinf(α) + ηinf(α).
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Theorem 2.6 . (Liu [16]) Let ξ be are uncertain variable, whose uncertainty distribution

is Φ(x). Then for any 0 < α < 1, α-optimistic and α-pessimistic values of ξ are

ξsup(α) = Φ−1(1− α),

ξinf(α) = Φ−1(α),

respectively.

3 Uncertain option pricing model under optimistic

value criterion

In this section, we will investigate the option pricing problems for Liu’s uncertain stock

model and Peng’s mean-reverting stock model under optimistic value criterion.

In 2009, Liu [5] first presented an uncertain stock model in which the bond price Xt

and the stock price Yt are determined by{
dXt = rXtdt

dYt = eYtdt+ σYtdCt.
(3.1)

where r is the riskless interest rate, e is the log-drift, σ is the log-diffusion, and Ct is a

canonical Liu process.

Liu’s stock model (3.1) describes stock prices in short-run properly. It can not describe

stock prices in long-run. When the stock prices fluctuate around some average price

in long-run, as a counterpart of Black-Karasinski’s model [30], another uncertain stock

model for financial markets was proposed by Peng and Yao [25] in which the stock price

is assumed following mean-reversion uncertain differential equations. In Peng-Yao’s stock

model, the bond price Xt and the stock price Yt are determined by{
dXt = rXtdt

dYt = (a− bYt)dt+ σdCt.
(3.2)

where a, b are given positive constants and meaning of r, σ, Ct are the same as in (3.1).

Peng and Yao [25] also gave European formula and American option formula for this

stock model based on expected value criterion.
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3.1 European option pricing

This section will price European call and put options for the financial market determined

by the uncertain stock models (3.1) and (3.2).

3.1.1 European call option pricing

An European call option is a contract between a buyer and a seller, which ensures that

the buyer has the right but not the obligation to buy a quantity of a financial instrument

from the seller at a certain time (expiration date) in a certain price (strike price). In this

section, we will provide the formulas to calculate the prices of the European call option

based on the uncertain stock models (3.1) and (3.2), respectively.

Assume an European call option ensures the buyer to buy a stock whose price follows

the uncertain differential equation in stock model (3.1) with a strike price K and an

expiration date T . Then the profit of such an European call option is

(YT −K)+ = max(YT −K, 0).

Considering the time value of money resulted from the bond, the present value of this

payoff is

exp(−rT )(YT −K)+.

Definition 3.1 . Assume an European call option has a strike price K and an expiration

time T . Then for given confidence level α ∈ (0, 1], the price of the call option under

optimistic value criterion is

fc = exp(−rT )
[
(YT −K)+

]
sup

(α). (3.3)

Theorem 3.1 Assume an European call option for the uncertain stock model (3.1) has

a strike price K and an expiration time T . Then for given α ∈ (0, 1], the European call

option price is

fc = exp(−rT )

[
Y0 exp

(
eT − σT

√
3

π
ln

α

1− α

)
−K

]+

. (3.4)
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Proof. It follows from the uncertain stock model (3.1) that the bond price is

Xt = X0 exp(rt), (3.5)

and the stock price is

Yt = Y0 exp(et+ σCt), (3.6)

whose inverse uncertainty distribution is

Φ−1
t (α) = Y0 exp

(
et+

σt
√

3

π
ln

α

1− α

)
. (3.7)

By Theorem 2.4, we know that (YT −K)+ has an inverse uncertainty distribution

Ψ−1
T (α) =

[
Y0 exp

(
eT +

σT
√

3

π
ln

α

1− α

)
−K

]+

. (3.8)

According to Theorem 2.6, we have

[
(YT −K)+

]
sup

(α) = Ψ−1
T (1− α) =

[
Y0 exp

(
eT +

σT
√

3

π
ln

1− α
α

)
−K

]+

. (3.9)

Substituting (3.9) into (3.3), the pricing formula (3.4) is derived. The theorem is proved.

Following, we will provide a formula to calculate the price of the European call option

based on the uncertain stock model (3.2).

Theorem 3.2 Assume an European call option for the uncertain stock model (3.2) has

a strike price K and an expiration time T . Then for given α ∈ (0, 1], the European call

option price is

fc = exp(−rT )

[
a

b
+ exp(−bT )

(
Y0 −

a

b
+

(1− exp(bT ))σ
√

3

bπ
ln

α

1− α

)
−K

]+

.

(3.10)

Proof. It follows from the chain rule and the uncertain stock model (3.2) that

d [exp(bt)Yt] = b exp(bt)Ytdt+ exp(bt)dYt = a exp(bt)dt+ σ exp(bt)dCt.

Integration on both sides of above equation yields

Yt =
a

b
+ exp(−bt)

(
Y0 −

a

b

)
+ σ exp(−bt)

∫ t

0

exp(bs)dCs. (3.11)
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Theorem 2.3 implies that
∫ t

0
exp(bs)dCs ∼ N

(
0,
∫ t

0
exp(bs)ds

)
.

Noting that ∫ t

0

exp(bs)ds =
exp(bt)− 1

b
.

Thus Theorem 2.2 indicates that
∫ t

0
exp(bs)dCs has an inverse uncertainty distribution

Φ−1
t (α) =

(exp(bt)− 1)
√

3

bπ
ln

α

1− α
. (3.12)

According to Theorem 2.4, we know that (YT−K)+ has an inverse uncertainty distribution

Ψ−1
T (α) =

[
a

b
+ exp(−bT )

(
Y0 −

a

b
+

(exp(bT )− 1)σ
√

3

bπ
ln

α

1− α

)
−K

]+

. (3.13)

By applying Theorem 2.6, we get

[
(YT −K)+

]
sup

(α) =

[
a

b
+ exp(−bT )

(
Y0 −

a

b
+

(1− exp(bT ))σ
√

3

bπ
ln

α

1− α

)
−K

]+

.

(3.14)

By (3.14) and (3.3), we can obtain (3.10). The proof of theorem is finished.

3.1.2 European put option pricing

An European put option is a contract between a seller and a buyer, which ensures that

the seller has the right but not the obligation to sell a quantity of a financial instrument

to the buyer at a certain time (expiration date) in a certain price (strike price). In this

section, we will provide the formulas to calculate the prices of the European put option

with the uncertain stock models (3.1) and (3.2), respectively.

Assume an European put option ensures the seller to sell a stock whose price follows

the uncertain differential equation in the uncertain stock model (3.1) with a strike price

K and an expiration date T . Then the payoff of such an European put option is

(K − YT )+ = max(K − YT , 0).

Taking into account the time value of money resulted from the bond, the present value

of this payoff is

exp(−rT )(K − YT )+.
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Definition 3.2 . Assume an European put option has a strike price K and an expiration

time T . Then for given α ∈ (0, 1], the price of the put option is

fp = exp(−rT )
[
(K − YT )+

]
sup

(α). (3.15)

Theorem 3.3 Assume an European put option for the uncertain stock model (3.1) has

a strike price K and an expiration time T . Then for given α ∈ (0, 1], the European put

option price is

fp = exp(−rT )

[
K − Y0 exp

(
eT +

σT
√

3

π
ln

α

1− α

)]+

. (3.16)

Proof. From the uncertain stock model (3.1), we know that the stock price YT has an

inverse uncertainty distribution

Φ−1
T (α) = Y0 exp

(
eT +

σT
√

3

π
ln

α

1− α

)
.

Thus it follows from Theorem 2.4 that (K − YT )+ has an inverse uncertainty distribution

Ψ−1
T (α) =

[
K − Y0 exp

(
eT +

σT
√

3

π
ln

1− α
α

)]+

(3.17)

By applying Theorem 2.6, we have

[
(K − YT )+

]
sup

(α) = Ψ−1
T (1− α) =

[
K − Y0 exp

(
eT +

σT
√

3

π
ln

α

1− α

)]+

. (3.18)

Substituting (3.18) into (3.15) yields (3.16). The proof of the theorem is completed.

Next, we will present a formula to calculate the price of the European put option in

the uncertain stock model (3.2).

Theorem 3.4 Assume an European put option for the uncertain stock model (3.2) has

a strike price K and an expiration time T . Then for given α ∈ (0, 1], the European put

option price is

fp = exp(−rT )

[
K − a

b
− exp(−bT )

(
Y0 −

a

b
+

(exp(bT )− 1)σ
√

3

bπ
ln

α

1− α

)]+

.

(3.19)
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Proof. It follows from Eq.(3.11), Eq.(3.12) and Theorem 2.4 that Yt has an inverse

uncertainty distribution

Ψ−1
t (α) =

a

b
+ exp(−bt)

(
Y0 −

a

b
+

(exp(bt)− 1)σ
√

3

bπ
ln

α

1− α

)
.

Thus by Theorem 2.4 that (K − YT )+ has an inverse uncertainty distribution

Υ−1
T (α) =

[
K − a

b
− exp(−bT )

(
Y0 −

a

b
+

(1− exp(bT ))σ
√

3

bπ
ln

α

1− α

)]+

. (3.20)

It follows from Theorem 2.6 that

[
(K − YT )+

]
sup

(α) =

[
K − a

b
− exp(−bT )

(
Y0 −

a

b
+

(exp(bT )− 1)σ
√

3

bπ
ln

α

1− α

)]+

.

(3.21)

Substitute (3.21) into (3.15) yields (3.19). The theorem is verified.

3.2 American option pricing

In this section, we will considering the pricing problems of American call and put options

for the financial market determined by the uncertain stock model (3.1) and (3.2).

3.2.1 American call option pricing

An American option gives one the right, but not the obligation, to buy or sell a stock

before a specified time for a specified price. Assume that an American call option has a

strike price K and an expiration time T . If Yt is the price of the underlying stock at some

time t, then the payoff from buying an American call option is

sup
0≤t≤T

(Yt −K)+.

Thinking about the time value of money resulted from the bond, the present value of this

payoff is

sup
0≤t≤T

exp(−rt)(Yt −K)+.

12



Definition 3.3 . Assume an American call option has a strike price K and an expiration

time T . Then for given α ∈ (0, 1], this option has price

fc =

[
sup

0≤t≤T
exp(−rt)(Yt −K)+

]
sup

(α). (3.22)

Theorem 3.5 Assume an American call option for the uncertain stock model (3.1) has

a strike price K and an expiration time T . Then for given α ∈ (0, 1], the American call

option price is

fc = sup
γ>0

{
γ| sup

0≤t≤T

(
1 + exp

(
−π (et+ lnY0 − ln(K + γ exp(rt)))√

3σt

))−1

≥ α

}
. (3.23)

Proof. By Definition 2.1, Ct has an uncertainty distribution

Θt(x) =

(
1 + exp

(
−πx√

3t

))−1

. (3.24)

Then it follows from (3.6) that the stock price Yt has an uncertainty distribution

Φt(x) =M{Yt ≤ x} = M {Y0 exp(et+ σCt) ≤ x} = M

{
Ct ≤

lnx− lnY0 − et
σ

}
= Θt

(
lnx− lnY0 − et

σ

)
=

(
1 + exp

(
π (et+ lnY0 − lnx)√

3σt

))−1

. (3.25)

Since exp(−rt)(Yt −K)+ is an increasing function of Yt, by Theorem 2.1, we know that

sup
0≤t≤T

exp(−rt)(Yt −K)+

has an uncertainty distribution

Ψt(x) = inf
0≤t≤T

(
1 + exp

(
π (et+ lnY0 − ln(K + x exp(rt)))√

3σt

))−1

. (3.26)

Noting that sup
0≤t≤T

exp(−rt)(Yt −K)+ ≥ 0, according to Definition 2.2 and (3.26), (3.22),

we have

fc = sup
γ>0

{
γ|M

{
sup

0≤t≤T
exp(−rt)(Yt −K)+ ≥ γ

}
≥ α

}
= sup

γ>0

{
γ|1−M

{
sup

0≤t≤T
exp(−rt)(Yt −K)+ ≤ γ

}
≥ α

}
= sup

γ>0
{γ|1−Ψt(γ) ≥ α}

= sup
γ>0

{
γ| sup

0≤t≤T

(
1 + exp

(
−π (et+ lnY0 − ln(K + γ exp(rt)))√

3σt

))−1

≥ α

}
.

13



Thus the American call option pricing formula for the uncertain stock model (3.1) is

derived.

Theorem 3.6 Assume an American call option for the uncertain stock model (3.2) has

a strike price K and an expiration time T . Then for given α ∈ (0, 1], the American call

option price is

fc = sup
γ>0

γ| sup
0≤t≤T

1 + exp

bπ
(
K − a

b
− exp(−bt)

(
Y0 −

a

b

)
+ γ exp(rt)

)
√

3σ(1− exp(−bt))

−1

≥ α

 .(3.27)

Proof. It follows from (3.12) that
∫ t

0
exp(bs)dCs has a normal uncertainty distribution

Φt(x) =

(
1 + exp

(
bπx√

3 (1− exp(bt))

))−1

. (3.28)

In accordance with (3.11), (3.28) and Theorem 2.1, we know that

sup
0≤t≤T

exp(−rt)(Yt −K)+

has an uncertainty distribution

Ψt(x) = inf
0≤t≤T

1 + exp

bπ
(
K − a

b
− exp(−bt)

(
Y0 −

a

b

)
+ x exp(rt)

)
√

3σ(exp(−bt)− 1)

−1

. (3.29)

By using (3.22), (3.29) and Definition 2.2, we get

fc = sup
γ>0

{
γ|M

{
sup

0≤t≤T
exp(−rt)(Yt −K)+ ≥ γ

}
≥ α

}
= sup

γ>0

{
γ|1−M

{
sup

0≤t≤T
exp(−rt)(Yt −K)+ ≤ γ

}
≥ α

}
= sup

γ>0
{γ|1−Ψt(γ) ≥ α}

= sup
γ>0

γ| sup
0≤t≤T

1 + exp

bπ
(
K − a

b
− exp(−bt)

(
Y0 −

a

b

)
+ γ exp(rt)

)
√

3σ(1− exp(−bt))

−1

≥ α

 .

Thus theorem 3.6 is verified.
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3.2.2 American put option pricing

Assume that an American put option has a strike price K and an expiration time T . If

Yt is the price of the underlying stock at some time t, then the payoff from selling an

American put option is

sup
0≤t≤T

(K − Yt)+. (3.30)

In consideration of the time value of money resulted from the bond, the present value of

this payoff is

sup
0≤t≤T

exp(−rt)(K − Yt)+. (3.31)

Definition 3.4 . Assume an American put option has a strike price K and an expiration

time T . Then for given α ∈ (0, 1], this option has price

fp =

[
sup

0≤t≤T
exp(−rt)(K − Yt)+

]
sup

(α). (3.32)

Theorem 3.7 Assume an American put option for the uncertain stock model (3.1) has

a strike price K and an expiration time T . Then for given α ∈ (0, 1], the American put

option price is

fp = sup
γ>0

{
γ| sup

0≤t≤T

(
1 + exp

(
π (et+ lnY0 − ln(K − γ exp(rt)))√

3σt

))−1

≥ α

}
. (3.33)

Proof. Since exp(−rt)(K − Yt)+ is a decreasing function of Yt, by (3.25) and Theorem

2.1, we know that

sup
0≤t≤T

exp(−rt)(K − Yt)+

has an uncertainty distribution

Ψt(x) = 1− sup
0≤t≤T

(
1 + exp

(
π (et+ lnY0 − ln(K − x exp(rt)))√

3σt

))−1

. (3.34)
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Since sup
0≤t≤T

exp(−rt)(K − Yt)+ ≥ 0, It follows from (3.32), (3.34) and Definition 2.2 that

fp = sup
γ>0

{
γ|M

{
sup

0≤t≤T
exp(−rt)(K − Yt)+ ≥ γ

}
≥ α

}
= sup

γ>0

{
γ|1−M

{
sup

0≤t≤T
exp(−rt)(K − Yt)+ ≤ γ

}
≥ α

}
= sup

γ>0
{γ|1−Ψt(γ) ≥ α}

= sup
γ>0

{
γ| sup

0≤t≤T

(
1 + exp

(
π (et+ lnY0 − ln(K − γ exp(rt)))√

3σt

))−1

≥ α

}
.

Thus the proof is finished.

Theorem 3.8 Assume an American put option for the uncertain stock model (3.2) has

a strike price K and an expiration time T . Then for given α ∈ (0, 1], the American put

option price is

fp = sup
γ>0

γ| sup
0≤t≤T

1 + exp

bπ
(a
b

+ exp(−bt)
(
Y0 −

a

b

)
−K + γ exp(rt)

)
√

3σ(1− exp(−bt))

−1

≥ α

 .(3.35)

Proof. Noting that exp(−rt)(K − Yt)
+ is a decreasing function of Yt, it follows from

(3.11), (3.28) and Theorem 2.1 that

sup
0≤t≤T

exp(−rt)(K − Yt)+

has an uncertainty distribution

Ψt(x) = 1− sup
0≤t≤T

1 + exp

bπ
(a
b

+ exp(−bt)
(
Y0 −

a

b

)
−K + x exp(rt)

)
√

3σ(1− exp(−bt))

−1

.(3.36)

In the light of (3.32), (3.36) and Definition 2.2, we have

fp = sup
γ>0

{
γ|M

{
sup

0≤t≤T
exp(−rt)(K − Yt)+ ≥ γ

}
≥ α

}
= sup

γ>0

{
γ|1−M

{
sup

0≤t≤T
exp(−rt)(K − Yt)+ ≤ γ

}
≥ α

}
= sup

γ>0
{γ|1−Ψt(γ) ≥ α}

= sup
γ>0

γ| sup
0≤t≤T

1 + exp

bπ
(a
b

+ exp(−bt)
(
Y0 −

a

b

)
−K + γ exp(rt)

)
√

3σ(1− exp(−bt))

−1

≥ α

 .
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The theorem 3.8 is proved.

4 Numerical experiments

Finally, we give some numerical examples to illustrate the effectiveness of the obtained

results. Suppose that the stock price follows uncertain stock model (3.1). The riskless

interest rate r = 0.02. The initial stock price is Y0 = 6, the strike price K = 7 and the

expiration time T = 0.25. For European call option with the parameters e = 0.9, σ = 0.2

and put option with the parameters e = 0.1, σ = 0.4, American call option with the

parameters e = 0.9, σ = 0.1 and put option with the parameters e = 0.1, σ = 0.2, we can

calculate the price of European call and put option by employing the pricing formulas

(3.4), (3.16) and the price of American call and put option by employing the pricing

formulas(3.23) and (3.33), respectively. The results is shown in table 1.

Table 1 The price of the option with different confidence level α

parameters α European option American option

call put call put

α = 0.1 0.9782 1.5422 0.7413 1.2036

α = 0.2 0.8026 1.2943 0.6556 1.0734

α = 0.3 0.6881 1.1232 0.5992 0.9852

α = 0.4 0.5954 0.9792 0.5533 0.9119

α = 0.5 0.5114 0.8439 0.5114 0.8439

α = 0.6 0.4283 0.7055 0.4697 0.7751

α = 0.7 0.3388 0.5511 0.4246 0.6992

α = 0.8 0.2310 0.3577 0.3699 0.6054

α = 0.9 0.0720 0.0556 0.2883 0.4617

Suppose that the stock price follows uncertain stock model (3.2). The values of r, Y0, K

and T are the same as those in model (3.1) above. For European call option with the

parameters a = 5, b = 0.01, σ = 0.6 and put option with the parameters a = 1, b =

0.2, σ = 0.7, American call option with the parameters a = 6, b = 0.08, σ = 0.7 and

put option with the parameters a = 0.8, b = 0.1, σ = 0.8, we can calculate the price of

European call and put option by employing the pricing formulas (3.10) and (3.19), and

17



the price of American call and put option by employing the pricing formulas (3.27) and

(3.35), respectively. The results is shown in table 2.

Table 2 The price of the option with different confidence level α

parameters α European option American option

call put call put

α = 0.1 0.4129 1.2493 0.5733 1.1840

α = 0.2 0.3462 1.1734 0.4962 1.0961

α = 0.3 0.3019 1.1229 0.4450 1.0377

α = 0.4 0.2656 1.0815 0.4030 0.9898

α = 0.5 0.2323 1.0435 0.3645 0.9459

α = 0.6 0.1990 1.0056 0.3259 0.9019

α = 0.7 0.1627 0.9642 0.2839 0.8541

α = 0.8 0.1184 0.9137 0.2327 0.7957

α = 0.9 0.0517 0.8378 0.1556 0.7078

From Table 1 and Table 2, we know that the prices of European and American options

decrease as the confidence levels α(α ∈ (0, 1]) increase. That’s because as the confidence

level increases, investors believe that the return of the option will decrease, so they is

willing to pay less to buy or sell the underlying asset for exercising the option.

5 Conclusion

This paper explored the option pricing problems under the framework of uncertainty

theory. The pricing formulas of the European and American options are obtained by

applying the method to calculate the optimistic value of uncertain returns of options. In

order to illustrate the effectiveness of the obtained results, several numerical examples are

discussed. In future work, we will further study the optimistic value pricing problems of

some exotic options.

18



Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work is supported by the Science Research Project of Guangzhou College of Tech-

nology and Business (Grant No: KAZX2021003, KA202018 and KA202129).

References

[1] Black F, Scholes M. The pricing of option and corporate liabilities. J Polit Econ 1973;81:637-

654.

[2] Liu B. Why is there a need for uncertainty theory? Journal of Uncertain Systems

2012;6(1):3-10.

[3] Liu B. Uncertainty Theory. second ed.. Berlin: Springer-Verlag; 2007.

[4] Liu B. Fuzzy process, hybrid process and uncertain process. Journal of Uncertain Systems

2008;2:3-16.

[5] Liu B. Some research problems in uncertainty theory. Journal of Uncertain Systems

2009;1:3-10.

[6] Li B, Zhu Y, Sun Y, Grace A, Teo K. Multi-period portfolio selection problem under

uncertain environment with bankruptcy constraint. Appl. Math. Model 2018;56:539-550.

[7] Chen X. American option pricing formula for uncertain financial market. Int. J. Oper. Res

2011;8(2):32-37.

[8] Liu B. Uncertain risk analysis and uncertain reliability analysis. Journal of Uncertain Sys-

tems 2010;4(3):163-170.

[9] Yao K, Zhou J. Ruin time of uncertain insurance risk process. IEEE Trans. Fuzzy Syst

2018;26(1):399-424.

[10] Wang X, Gao Z, Guo H. Uncertain hypothesis testing for two experts’ empirical data.

Math. Comput. Model 2012;55(3-4):1478-1482.

19



[11] Zou Z, Jiang B, Li J, Lio W. Uncertain Weibull regression model with imprecise observa-

tions. Soft Computing 2021;25(4):2767-2775.

[12] Liu B. Theory and Practice of Uncertain Programming. 2nd ed., Springer-Verlag, Berlin;

2009.

[13] Wang Z, Guo J, Zheng M, Wang Y. Uncertain multiobjective traveling salesman problem.

European Journal of Operational Research 2015;241:478-489.

[14] Zhu Y. Uncertain optimal control with application to a portfolio selection model. Cybernet.

Syst 2010;41(7):535-547.

[15] Deng L, Chen Y. Optimal control of uncertain systems with jump under optimistic value

criterion. European Journal of Control 2017;38:7-15.

[16] Liu B. Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty.

Berlin: Springer-Verlag; 2010.

[17] Sun J, Chen X. Asian option pricing formula for uncertain financial market. J. Uncertain.

Anal. Appl 2015;3(11):1-11.

[18] Zhang Z, Liu W. Geometric average Asian option pricing for uncertain financial market. J

Uncertain Syst 2014;8(4):317-320.

[19] Gao Y, Yang X, Fu Z. Lookback option pricing problem of uncertain exponential Ornstein-

Uhlenbeck model. Soft Comput 2018;22(17):5647-5654.

[20] Zhang Z, Ke H, Liu W. Lookback options pricing for uncertain financial market. Soft

Computing 2019;23:5537-5546.

[21] Gao R, Liu K, Li Z. American barrier option pricing formulas for stock model in uncertain

environment. IEEE Access 2019;7:97846-97856.

[22] Zhang Z, Liu W, Sheng Y. Valuation of power option for uncertain financial market. Appl

Math Comput 2016;286:257-264.

[23] Zhang Z, Ralescu D, Liu W. Valuation of interest rate ceiling and floor in uncertain financial

market. Fuzzy Optimization and Decision Making 2016;15(2):139-154.

[24] Liu Y, Chen X, Ralescu D. Uncertain currency model and currency option pricing. Inter-

national Journal of Intelligent Systems 2015;30(1):40-51.

[25] Peng J, Yao K. A new option pricing model for stocks in uncertainty markets. International

Journal of Operations Research 2011;8(2):18-26.

[26] Shen Y, Yao K. A mean-reverting currency model in an uncertain environment. Soft Com-

puting 2016;20(10):4131-4138.

20



[27] Wang X, Ning Y. An uncertain currency model with floating interest rates. Soft Computing

2017;21:6739-6754.

[28] Ji X, Zhou J. Option pricing for an uncertain stock model with jumps. Soft Comput

2015;19(11):3323-3329.

[29] Lu Z, Zhu Y, Li B. Critical value-based Asian option pricing model for uncertain financial

markets. Physica A: Statistical Mechanics and its Applications 2019;525:694-703.

[30] Black F, Karasinski P. Bond and option pricing when short-term rates are lognormal.

Financial Analysts Journal 1991;47(4):52-59.

21


