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An efficient block Gauss-Seidel overrelaxation
iteration method for the space fractional coupled
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Abstract. A linearly implicit difference scheme for the space fractional coupled nonlinear
Schrödinger (CNLS) equation is proposed. The resulting coefficient matrix of the discretized
linear system consists of the sum of a complex scaled identity and a symmetric positive def-
inite, diagonal-plus-Toeplitz, matrix. An efficient block Gauss-Seidel overrelaxation method
(BGSOR) method has been established to solve the discretized linear system. It is worth
noting that the proposed method solves the linear equations without the need to any system
solution, which is beneficial for reducing computational cost and memory requirements. The-
oretical analysis implies that the BGSOR method is convergent under a suitable condition.
Moreover, an appropriate approach to compute the optimal parameter in the BGSOR method
is exploited. Finally, the theoretical analysis is validated by some numerical experiments.
Keywords: The space fractional Schrödinger equations, Toeplitz matrix, Block Gauss-Seidel
overrelaxation method, Convergence analysis.
AMS Subject Classification: 65F10, 81Q05, 81V99.

1 Introduction

The Schrödinger equation is one of the most important equation in the science of submicro-
scopic phenomena, known as quantum mechanics. It can be arisen from the path integral
over Brownian paths. In [6], the path integral method to the Lévy-α process is generalized
and the space fractional equations are derived.

∗Corresponding author
Emails: hamedaslani525@gmail.com (H. Aslani), khojasteh@guilan.ac.ir (D.K. Salkuyeh),
mtp20222@yahoo.com (M. Taghipour)
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Consider the space fractional coupled nonlinear Schrödinger equations
ıut + γ(−∆)

α
2 u + ρ

(
|u|2 + β|v|2

)
u = 0,

ıvt + γ(−∆)
α
2 v + ρ

(
|v|2 + β|u|2

)
v = 0,

a ≤ x ≤ b, 0 < t ≤ T, (1)

with the initial boundary value conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), a ≤ x ≤ b,

u(a, t) = u(b, t) = 0, v(a, t) = v(b, t) = 0, 0 ≤ t ≤ T,

where ı is the imaginary unit, 1 < α < 2 and the parameters γ > 0, ρ > 0, β ≥ 0 are some
constants. In [5], the fractional Laplacian were characterized as

(−∆)
α
2 u(x, t) = F−1 (|ξ|αF(u(x, t))) ,

in which F is the Fourier transform acting on the spatial variable x. Assuming that

−∞Dα
x u(x, t) = 1

Γ(n − α)
∂n

∂xn

∫ x

−∞
(x − τ)n−1−αu(τ, t)dτ,

xDα
+∞u(x, t) = 1

Γ(n − α)
∂n

∂xn

∫ +∞

x
(τ − x)n−1−αu(τ, t)dτ,

are the left and right Riemann-Liouville fractional derivatives, respectively, the Riesz frac-
tional derivative can be considered as

∂α

∂|x|α
u(x, t) = −(−∆)

α
2 u(x, t) = − 1

2 cos πα
2

[
−∞Dα

x u(x, t) + xDα
+∞u(x, t)

]
.

In general, analyzing and understanding the behavior of the exact solutions of the space
fractional coupled nonlinear Schrödinger equations is so challenging. During recent years,
some numerical methods have been proposed to solve the CNLS equations. The difference
method [11–13], the Crank-Nickelson scheme [1], and the collocation method [2] have been
presented to solve the CNLS equations.

The discretization of the CNLS equations leads to the solution of the complex symmetric
linear systems. The coefficient matrix is equal to the sum of the complex identity scaled
matrix and the symmetric positive definite, diagonal-plus-Toeplitz, matrix. Recently, Dai
et al. [4] constructed a proper two-by-two linear system and employed the block Gauss-
Seidel (BGS) iteration method to solve the obtained linear systems. Then they analyzed
the convergence of the BGS method for the corresponding two-by-two linear system. In
this work, we establish an efficient block Gauss-Seidel overrelaxation (BGSOR) method for
solving the two-by-two linear system that arises from the discretization of CNLS equations.
Notably, the new method allows the corresponding systems to be solved without the need to
compute the inverse of the coefficient matrices. Moreover, it should be pointed out that the
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block Gauss-Seidel method can be regarded as a special case of the new method when the
relaxation parameter is set to be one.

The organization of this work is as follows. In Section 2, we will study the model problem
and bring a linearly implicit difference scheme. Application, convergence theory, and finding
the optimal parameter for the BGSOR method are proposed in Section 3. Section 4 is devoted
to giving some numerical experiments. Finally, we made some conclusions in Section 5.

2 Model problem and a linearly implicit difference scheme
The domain Ω = (a, b) × (0, T ) is divided into a uniform grid of mesh points (xj , tk), where

xj = jh, h = b − a

M + 1
, 0 ≤ j ≤ M + 1,

and
tk = kτ, τ = T

N
, 0 ≤ k ≤ N.

At grid points, the values of functions u(x, t), v(x, t) are respectively denoted by uk
j =

u(xj , tk), vk
j = v(xj , tk), and Uk

j , V k
j are the approximate solutions of (1).

The following equation gives a discrete approximation to the ∂α

∂|x|α u(x, t) [10]:

∂α

∂|x|α
u(xj , tk) = −Ψα

hα

[ ∞∑
l=0

w̃
(α)
k u(xj−l+1, tk) +

∞∑
l=0

w̃
(α)
k u(xj+l−1, tk)

]
+ O(h2), (2)

where Ψα = 1
2 cos( πα

2 ) and {w̃α
k } is defined as follows:

w̃
(α)
0 = α

2
g

(α)
0 , w̃

(α)
l = α

2
g

(α)
l +

(
1 − α

2

)
g

(α)
l−1, l ≥ 1,

g
(α)
0 = 1, g

(α)
l =

(
1 − α + 1

l

)
g

(α)
l−1, l = 1, 2, . . . .

Ortigueira [7] proposed the following fractional central difference operator:

∆α
hu(x) =

∞∑
l=−∞

ĝ
(α)
l u(x − lh),

where
ĝ

(α)
l = (−1)kΓ(α + 1)

Γ(α
2 − l + 1)Γ(α

2 + l + 1)
.

As stated in [7], the coefficient {ĝ
(α)
l } satisfies∣∣∣∣2 sin
(

x

2

)∣∣∣∣2 =
∞∑

l=−∞
ĝ

(α)
l eılx, x ∈ R.
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When α > −1, the recursive relations for {ĝ
(α)
l } are as follows:

ĝ
(α)
0 = Γ(α + 1)

Γ2(α/2 + 1)
, ĝ

(α)
l =

(
1 − α + 1

α/2 + l

)
ĝ

(α)
l−1, l ≥ 1;

ĝ
(α)
−l = ĝ

(α)
l , l ≥ 1.

Lemma 1. [10] Assume that u(x) ∈ C5(R) and its all derivatives of order up to 5 belong to
L1(R). Then, it holds

− ∆α
hu(x)
hα

= ∂αu(x)
∂|x|α

+ O(h2). (3)

From Lemma 1, it follows that

(−∆)
α
2 u(xj , tk) = ∆α

hu(x)
hα

+ O(h2) = 1
hα

M∑
l=1

ĝ
(α)
j−lu(xj , tk) + O(h2).

Now, we consider the following numerical scheme for solving (1) [11]:

ı
Uk+1

j − Uk−1
j

2τ
+ γ

hα

M∑
l=1

ĝ
(α)
j−l

(
Uk+1

l + Uk−1
l

2

)
+ ρ

(
|Uk

j |2 + β|V k
j |2
)

+
Uk+1

l + Uk−1
l

2
= 0,

ı
V k+1

j − V k−1
j

2τ
+ γ

hα

M∑
l=1

ĝ
(α)
j−l

(
V k+1

l + V k−1
l

2

)
+ ρ

(
|V k

j |2 + β|Uk
j |2
)

+
V k+1

l + V k−1
l

2
= 0,

(4)

where 1 ≤ j ≤ M, 1 ≤ k ≤ N − 1. Another scheme should be provided for the numerical
solution at k = 1. We consider the following scheme for this purpose (see [3])

ı
U1

j − U0
j

τ
+ γ

hα

M∑
l=1

ĝ
(α)
j−lU

(1)
l + ρ

(
|U0

j |2 + β|V 0
j |2
)
U1

j = 0,

ı
V 1

j − V 0
j

τ
+ γ

hα

M∑
l=1

ĝ
(α)
j−lV

1
l + ρ

(
|V 0

j |2 + β|U0
j |2
)
V

(1)
j = 0,

ı
U1

j − U0
j

τ
+ γ

hα

M∑
l=1

ĝ
(α)
j−l

(
U1

l + U0
l

2

)
+ ρ

(
3
2

|U1
j |2 − 1

2
|U0

j |2 + β

(
3
2

|V (1)
j |2 − 1

2
|V 0

j |2
))

U1
j + U0

j

2
= 0,

ı
V 1

j − V 0
j

τ
+ γ

hα

M∑
l=1

ĝ
(α)
j−l

(
V 1

l + V 0
l

2

)
+ ρ

(
3
2

|V 1
j |2 − 1

2
|V 0

j |2 + β

(
3
2

|U1
j |2 − 1

2
|U0

j |2
))

V 1
j + V 0

j

2
= 0.

The first and the second difference equations in (4) have the same structure. Set

Uk+1 = [Uk+1
1 , . . . , Uk+1

M ]T , bk+1 = [bk+1
1 , . . . , bk+1

M ]T ,

µ = γτ

hα
, dk+1

j = ρτ
(
|Uk

j |2 + β|V k
j |2
)
, Dk+1 = diag(dk+1

1 , . . . , dk+1
M ).
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So, at each time step, we need to solve the following systems of linear equations:

Ak+1Uk+1 = bk+1, 1 ≤ k ≤ N − 1,

Bk+1V k+1 = ck+1, 1 ≤ k ≤ N − 1,
(5)

where Ak+1 = ıI + Dk+1 + T and bk+1 is as follows:

bk+1 =



ıUk−1
1 − µ

M∑
l=1

ĝ
(α)
1−lU

k−1
l − dk+1

1 Uk−1
1

ıUk−1
2 − µ

M∑
l=1

ĝ
(α)
2−lU

k−1
l − dk+1

2 Uk−1
2

...

ıUk−1
M−1 − µ

M∑
l=1

ĝ
(α)
M−1−lU

k−1
l − dk+1

M−1Uk−1
M−1

ıUk−1
M − µ

M∑
l=1

ĝ
(α)
M−lU

k−1
l − dk+1

M Uk−1
M



.

T is the Toeplitz matrix, which has the following structure:

T = µ



ĝ
(α)
0 ĝ

(α)
−1 · · · ĝ

(α)
2−M ĝ

(α)
1−M

ĝ
(α)
1 ĝ

(α)
0 · · · ĝ

(α)
3−M ĝ

(α)
2−M

...
... . . . ...

...
ĝ

(α)
M−2 ĝ

(α)
M−3 · · · ĝ

(α)
0 ĝ

(α)
−1

ĝ
(α)
M−1 ĝ

(α)
M−2 · · · ĝ

(α)
1 ĝ

(α)
0

 . (6)

Also, it should be noted that Bk+1 and ck+1 can be obtained by changing the roles of U and
V in Ak+1 and bk+1.

3 The BGSOR iteration method
To establish the BGSOR iteration method, we need to give some preliminaries. Let us first
consider the iterative solution of the linear equation

AU = b, A ∈ CM×M nonsingular, and U, b ∈ CM , (7)

in which A is a complex symmetric matrix as follows

A = ıI + T + D,

where D = diag(d1, d2, . . . , dM ) with di ≥ 0, i = 1, 2, . . . , M, is the diagonal matrix and T is
the SPD and Toeplitz matrix designated in (6). Let U = x + ıy and b = f + ıg be comlex
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vectors, where y, z, p, q ∈ RM . So, the system can be rewritten as a particular form, namely,

Ax ≡
(

−I W
W I

)(
y
x

)
=
(

f
g

)
≡ P, (8)

where W = D + T. We are now in a position to design a new method for solving (8).
To introduce the BGSOR iteration method, we consider the following decomposition for

the coefficient matrix (8)

A = (ωD − E) − (ET − (1 − ω)D) =: M − N , (9)

where

D =
(

−I 0
0 I

)
, and E =

(
0 0

−W 0

)
,

and ω is a positive parameter, which is known as the relaxation parameter. Using the
decomposition (9), the BGSOR iteration method is stated as

Mz(k+1) = N z(k) + P, k = 0, 1, 2, · · · ,

where M and N are defined as (9), and z(k) = (y(k); x(k)). Notice that y(k) and x(k) are two
M -vectors that stand for the iterations. Also, z(0) is an arbitrary initial guess. Thereupon,
the iterations take the following procedure:

y(k+1) = 1
ω

(
(ω − 1)y(k) + Wx(k) − f

)
,

x(k+1) = 1
ω

(
(ω − 1)x(k) + g − Wy(k+1)

)
.

(10)

As can be seen there is not any system solution in each iteration and only two matrix-vector
multiplication are needed. This can be very important because the new scheme requires
insignificant computational efforts, just contains the matrix-vector multiplications. Further-
more, if ω = 1, the iteration scheme (10) reduces to{

y(k+1) = Wx(k) − f,

x(k+1) = g − Wy(k+1).
(11)

which is presented in [4] and is known as the BGS iteration method. Therefore, BGS iteration
method is a special case of the BGSOR iteration method.

Next, we investigate the convergence of the BGSOR method for solving (8), and then we
obtain the optimal value of the relaxation parameter ω. In the following, we recall a result
that will be useful later.

Lemma 2. [14] Consider the quadratic equation x2 − bx + c = 0, where b and c are real
numbers. Both roots of the equation are less than one in modulus if and only if |c| < 1 and
|b| < 1 + c.
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Theorem 1. Suppose that A = ıI + D + T ∈ RM×M is a matrix where D and T are
diagonal and Toeplitz SPD matrices, respectively. The necessary and sufficient condition for
convergence of the BGSOR iteration method to the solution of (8) for any initial guess, is

ω >
1 + µmax(W )

2
,

where µmax(W ) is the largest eigenvalue of W.

Proof. Assume that λ is an eigenvalue of the iteration matrix G = M−1N , and x = [u; v] is
the corresponding eigenvector. Without loss of generality, let λ ̸= 0. So,

(D − ωE)−1(ET − (1 − αD))x = λx,

equivalently,

(1 − ω)u − Wv = −λωu, (12)
(ω − 1)v = λ(Wu + ωv). (13)

From Eq. (12) and in view of positive definiteness of W, we can deduce that

v = ((λ − 1)ω + 1)W −1u. (14)

Substituting (14) into (13), gives

− λW 2u = ((λ − 1)ω + 1)2u. (15)

this shows that if µ is an eigenvalue of W, then

λµ2 = − ((λ − 1) ω + 1)2 (16)
= − (λ2ω2 + 2ω(1 − ω)λ + (ω − 1)2). (17)

From Eq. (17) we get

λ2 −
(

2ω2 − 2ω − µ2

ω2

)
λ + (ω − 1

ω
)2 = 0. (18)

Now it follows from Lemma 2 that |λ| < 1 if and only if{
|ω − 1| < ω,

|2ω2 − 2ω − µ2| < 2ω2 − 2ω + 1,

It is straightforward to see that |ω−1| < ω is equivalent to ω > 1
2 . By some easy manipulations

we can observe, whenever
(2ω − 1)2 > µ2, (19)
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the second inequality of (19) holds. The inequality (19) is ensured, if

|2ω − 1| > µ or |2ω − 1| < −µ

equivalently,
ω <

1 − µ

2
or ω >

1 + µ

2
(20)

Evidently, the first inequality of (20) can not be true. On the other hand, holding the second
inequality of (20) ensures ω > 1

2 , and then it completes the proof.

In the following, we would like to find the optimal value of the relaxation parameter ω,
denoted by ω∗. To do so, ω∗ should be computed to minimize the spectral radius of the
iteration matrix of the BGSOR method, i.e.,

ρ (Gω∗) = arg min
ω>

1+µmax(W )
2

ρ (Gω) .

To compute the optimal value of w we state and prove the next theorem.

Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied. Then the optimal
value of the relaxation parameter and the corresponding optimal convergence factor in the
BGSOR iteration method are as follows

ω∗ = 1
2

(
1 +

√
1 + ρ2(W )

)
, (21)

and

ρ (Gω∗) = 1 − 1
ω∗ =

(
ρ(W )

1 +
√

1 + ρ2(W )

)2
.

Proof. From Eq. (16), it can be observed that if λ is an eigenvalue of the iteration matrix
Gω, then λ < 0 or λ ∈ C \ R. Besides, there exists an eigenvalue µ of W such that Eq. (18)
holds true. The discriminant of this quadratic equation is

∆ =
(

2ω2 − 2ω − µ2

ω2

)2

− 4
(

ω − 1
ω

)2
,

and the roots of (17) are as following

λ1,2(ω) = −2ω2 + 2ω + µ2

2ω2 ±
√

∆
2

.

From Eq. (15) we get
(λ − 1)ω + 1 = ±µ

√
−λ. (22)
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Set

fω(λ) = (λ − 1)ω + 1 = ωλ + 1 − ω,

g(λ) = ±µ
√

−λ.

Clearly, the function fω passes through the point (1, 1), i.e., fω(1) = 1 and the slope of
fω(λ) is ω. Fig. 1 displays the points of intersections of the functions fω(λ) and g(λ) for an
arbitrary value of ω. This figure shows that by increasing ω, the absolute values of abscissae
of the points of intersection of the functions fω(λ) and g(λ), i.e., λ1 and λ2, increase, while
fω(λ) gets tangent to g(λ). In the tangent case, we have λ1 = λ2 and it indicates that ∆ = 0
From ∆ = 0, it is straightforward to verify that µ = 0 or 4ω2 − 4ω − µ2 = 0. The case
µ = 0 is impossible, because of the positive definiteness of W. Thus, 4ω2 − 4ω − µ2 = 0. This
quadratic equation has two roots, as follows:

ω± = 1
2

(
1 ±

√
1 + µ2

)
.

Due to the condition ω > 1+µmax(W )
2 , ω− is not acceptable. So, we consider

ω+ = 1
2

(
1 +

√
1 + µ2

)
,

and in this case we have
λ1 = λ2 = λ+ = 1 − 1

ω+
.

Now suppose that ω > ω+. In this case, the roots of the quadratic equation (17) are complex
and conjugate, which are as follows

λ1,2(ω) = (2ω2 − 2ω − µ2)
2ω2 ± ı

√
∆′

2
,

where

∆′ = 4
(

ω − 1
ω

)2
−
(

2ω2 − 2ω − µ2

ω2

)2

.

Then
|λ1,2| = 1 − 1

ω
.

By recalling that ω > ω+ and having in mind that w+ > 1, we have

1 − 1
ω+

< 1 − 1
ω

,

and this shows that ω+ is the best choice for ω. On the other hand, the curve g(λ) =
±ρ(W )

√
−λ serves an upper bound for each curve as ±µ

√
−λ, where 0 ≤ λ ≤ ρ(W ). Sum-

marizing the above results, we see that

ρ (Gω∗) = min
ω

max
ω> 1+µmax

2

|1 − 1
ω

| = 1 − 1
ω∗ =

(
ρ(W )

1 +
√

1 + ρ2(W )

)2
,

which ω∗ was considered in (21).
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λ

(1, 1)

λ1
••

λ2

g
fω

Figure 1: The graph of the functions fω(λ) and g(λ).

Remark 1. In Theorem 2, for computing ω∗ we need to compute ρ(W ). One may use a few
iterations of the power method to compute λmax(W ). On the other hand, because of positive
definiteness of W , we have

ρ(W ) = λmax(W ) = ∥W∥2.

So, we can compute ∥W∥2 instead of ρ(W ). In practice the normest command of Matlab
can be used to compute an estimation of ∥W∥2.

4 Numerical experiments
This section is devoted to give some numerical experiments to test the effectiveness of the
BGSOR iteration method when it is employed to solve linear systems (8). Numerical results
of the proposed method are compared with those of the GMRES [8,9] and the BGS methods.
In all the test problems, we use the restart version of GMRES with a restarting number 10.
The initial guess is taken to be a random vector and the iterations are stopped as soon as

Res = ∥rk∥2
∥r0∥2

≤ 10−9,

where rk = P − Az(k) is the residual at the k-th iteration or if the maximum number of
iterations maxit = 1000 is exceeded. In the tables, “IT” and “CPU” refer to the total
number of iterations and elapsed CPU time in second for the convergence. We comment
that five runs were performed for each test and then the average of CPU-times and iterations
are reported (The average of the iteration numbers were rounded). For the BGSOR method
the optimal parameter is computed according to the rule (21). The numerical results were
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Table 1: The optimal parameters ω∗ for BGSOR method with α = 1.3 and N = 4M at t = 2 for
Example 1.

M 800 1600 3200 6400
ω∗ 1.002 1.004 1.006 1.009

Table 2: Numerical results with α = 1.3 and N = 4M at t = 2 for Example 1.

Method M 800 1600 3200 6400

BGSOR IT 5 5 5 5
CPU 0.016 0.051 0.171 0.955

BGS IT 5 6 6 7
CPU 0.018 0.072 0.228 1.705

GMRES(10) IT 6 7 7 7
CPU 0.080 0.112 0.352 3.610

carried out under Matlab-R2017 on a Laptop with an intel (R) Core(TM) i5-8265U CPU
@ 1.60 GHz 8 GB and the windows 10 operating system.

Example 1. Let β = 0. Then the system (1) is decoupled and becomes

ıut + (−∆)
α
2 u + 2|u|2u = 0,

subject to the initial value
u(x, 0) = sech(x) · exp(2ıx).

In this example, we truncate the original problem in [−20, 20] and set u(−20, t) = u(20, t) = 0.
For this problem, we choose the parameters γ = 1.3 and ρ = 1.2.

We set M = 800, 1600, 3200, 6400 and examine two values of α, α = 1.3, 1.6. When
α = 1.3, we set N = 4M , otherwise we choose N = 6M . The optimal values of the relaxation
parameter in the BGSOR method for α = 1.3 are given in Table 1 and the ones for α = 1.6
are given in Table 3.

In Tables 2 and 4, we have listed the numerical results at t = 2. From these tables, we
observe that the BGSOR method is superior to the examined methods in terms of both the
iterations and the elapsed CPU times.

Example 2. For the coupled system with β ̸= 0,
ıut + (−∆)

α
2 u + 2

(
|u|2 + |v|2

)
u = 0,

ıvt + (−∆)
α
2 v + 2

(
|v|2 + |u|2

)
v = 0,

− 20 ≤ x ≤ 20, 0 < t ≤ 2, (23)

we take the initial conditions{
u(x, 0) = sech(x + D0) · exp(ıV0x), v(x, 0) = sech(x − D0) · exp(−ıV0x),
u(−20, 0) = u(20, 0) = 0, v(−20, 0) = v(20, 0) = 0.

(24)
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Table 3: The optimal parameters ω∗ for the BGSOR method with α = 1.6 and N = 6M at t = 2 for
Example 1.

M 800 1600 3200 6400
ω∗ 1.010 1.022 1.050 1.108

Table 4: Numerical results with α = 1.6 and N = 6M at t = 2 for Example 1.

Method M 800 1600 3200 6400

BGSOR IT 6 7 8 10
CPU 0.018 0.068 0.311 2.015

BGS IT 7 9 14 28
CPU 0.022 0.093 0.571 4.462

GMRES(10) IT 8 9 10 13
CPU 0.112 0.185 0.235 6.941

Table 5: The optimal parameters ω∗ of A and B for the BGSOR method with α = 1.3 and N = 4M
at t = 2 for Example 2.

M 800 1600 3200 6400
ω∗(A) 1.002 1.004 1.006 1.008
ω∗(B) 1.002 1.004 1.006 1.008

Table 6: Numerical results with α = 1.3 and N = 4M at t = 2 for Example 2.

Method M 800 1600 3200 6400
A B A B A B A B

BGSOR IT 5 5 5 5 5 5 5 5
CPU 0.013 0.010 0.052 0.023 0.173 0.145 0.938 0.841

BGS IT 5 5 6 6 6 6 7 7
CPU 0.020 0.014 0.069 0.064 0.213 0.228 1.641 1.145

GMRES(10) IT 6 6 7 7 7 7 8 8
CPU 0.064 0.017 0.093 0.049 0.155 0.139 2.812 1.377

In this case, we choose the parameters D0 = 1, V0 = 2, γ = 1.4, and ρ = 1.2.

The discretization of the coupled system of (23), leads to the solution of the linear systems
of equations of the form (5). We assume that these coefficient matrices are A and B. These
matrices have the same structure. Tables 5 and 7 show the optimal values of the relaxation
parameter of A and B in the BGSOR method for different values of α and M.

In Tables 6 and 8, we report the results for the BGSOR, BGS, and GMRES(10) iterative
methods at t = 2. These results clearly show that the BGSOR method leads to a faster
overall convergence time than the other examined methods. Besides, the BGSOR method
gets less iteration numbers.
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Table 7: The optimal parameters ω∗ of A and B for the BGSOR method with α = 1.6 and N = 6M
at t = 2 for Example 2.

M 800 1600 3200 6400
ω∗(A) 1.010 1.022 1.050 1.122
ω∗(B) 1.010 1.022 1.050 1.122

Table 8: Numerical results with α = 1.6 and N = 6M at t = 2 for Example 2.

Method M 800 1600 3200 6400
A B A B A B A B

BGSOR IT 6 6 7 7 9 9 10 10
CPU 0.021 0.017 0.071 0.069 0.346 0.248 1.941 2.003

BGS IT 7 7 10 10 15 15 35 35
CPU 0.025 0.020 0.106 0.112 0.607 0.592 6.832 5.483

GMRES(10) IT 8 8 9 9 11 11 13 13
CPU 0.088 0.061 0.093 0.082 0.448 0.412 3.376 3.251

5 Conclusion
In this paper, we have presented the block Gauss-Seidel overrelaxation scheme for solving
the complex symmetric linear systems arising from the discretization of the space fractional
coupled nonlinear Schrödinger equation. We have proposed the convergence theory of the
method and we have shown that the method is convergent under a suitable condition. The
optimal value of the relaxation parameter and the rate of convergence factor for the BGSOR
method were also provided. Our results have verified that the BGSOR method performs
better than some existing methods.
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(2000) 298–305.

[7] M.D. Ortigueira, Riesz potential operators and inverses via fractional centred derivatives,
Int. J. Math. Math. Sci. (2006) 1–12.

[8] Y. Saad, Iterative methods for sparse linear systems, Second edition PWS, New York,
1995.

[9] Y. Saad, M.H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems, SIAM J. Sci. and Stat. Comput. 7 (1986) 856–869.

[10] Z.Z. Sun, G.h. Gao, Fractional differential equations, De Gruyter, 2020.

[11] D. Wang, A. Xiao, W. Yang, A linearly implicit conservative difference scheme for the
space fractional coupled nonlinear Schrödinger equations, J. Comput. Phys. 272 (2014)
644–655.

[12] D. Wang, A. Xiao, W. Yang, Maximum-norm error analysis of a difference scheme for
the space fractional CNLS, Appl. Math. Comput. 257 (2015) 241–251.

[13] D. Wang, A. Xiao, W. Yang, Crank-Nicolson difference scheme for the coupled nonlinear
Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys. 242
(2013) 670–681.

[14] D.M. Young, Iterative Solution or Large Linear Systems, Academic Press, New York,
1971.


	1 Introduction
	2 Model problem and a linearly implicit difference scheme
	3 The BGSOR iteration method
	4 Numerical experiments
	5 Conclusion

