A Systematic Review of the Epidemiology of Human Respiratory Viruses in Indonesia

Sankalpa Bhattarai¹, Hsien-Yao Chee¹, Andrew Prasettya², Elvan Wiyarta², and Benjamin Anderson¹

¹Duke Kunshan University ²University of Indonesia

April 16, 2024

Abstract

Viral pathogens greatly contribute to higher respiratory disease burden among individuals living in low-to-middle income countries (LMICs). In Indonesia, influenza-like illness (ILI) and severe acute respiratory infection (SARI) surveillance networks have been established to better understand the epidemiology of viral respiratory disease; however, due to limited resources and operational capacity, data from these systems are sparse. Here, we summarize the results of a literature review conducted to identify published articles related to human respiratory viruses in Indonesia. We identified 66 scientific articles, published between 1998 and 2021. Of these, 21 (31.8%) studied influenza A or B, 17 (25.8%) studied influenza H5N1, 19 (28.8%) studied coronaviruses, 5 (7.6%) studied RSV, and 2 (3.0%) studied enterovirus. Our findings show that large numbers of studies in Indonesia were primarily conducted in response to viral respiratory disease outbreaks, but with limited epidemiological data. We also identified gaps in information regarding the geographical distribution of viral respiratory disease burden, as studies were more highly concentrated in populated cities, such as Jakarta, Java, and Bali. This review highlights the need for more robust surveillance of ILI and SARI cases throughout Indonesia, as well as allocation of more resources for viral respiratory disease etiology and epidemiological studies.

Introduction

Respiratory viruses are a leading cause of morbidity and mortality among children and adults worldwide ^{1, 2}. The burden of respiratory viruses is disproportionately high in low-to-middle income countries (LMICs) ^{3, 4}. Specific respiratory virus infections (RVIs), such as influenza and respiratory syncytial virus (RSV), and more recently SARS-CoV-2, are the major contributors to this high burden of disease ^{3, 4, 5}. In 2018, influenza virus accounted for 870,000 influenza-virus-associated hospital admissions, 15,300 in-hospital deaths, and around 34,800 overall influenza-virus-associated acute lower respiratory infections (ALRI) deaths among children under 5 years of age ⁶. Around 82% of in-hospital deaths due to influenza virus occurred in low-income countries (LICs) and LMICs ⁶. Whereas, it is estimated that RSV accounts for 33 million cases and 118,000 deaths annually in children under five, of which 22 million cases and 103,000 deaths are in LICs and LMICs ⁷. In addition to the annual impact of common respiratory viruses like influenza and RSV, emerging respiratory viruses such as avian influenza A (H5N1) virus, influenza A(H1N1) pdm09 virus, MERS-CoV, avian influenza A(H7N9), and most recently, SARS-CoV-2 represent elevated threats to global health security ^{1, 8}. Collectively these viruses markedly contribute to respiratory disease morbidity and mortality in populous countries like Indonesia^{9, 10, 11}.

Indonesia is a tropical archipelago of islands with high humidity and a population of around 271 million ¹². Indonesia has year-round respiratory virus activity with seasonal peaks ranging between October and April, which corresponds with the wet and dry seasons ¹³. More recent surveillance efforts have shown dominant

seasonal influenza activity occurring December through February with clear patterns of phased infections among the different seasonal influenza virus strains (influenza A/pH1, influenza A/H3, and influenza B) ^{10, 14}. Far less is known about the epidemiology and burden of RSV and other respiratory viral infections in Indonesia as comprehensive surveillance for non-influenza viruses is limited. Indonesia also has a growing population of animal reservoirs for zoonotic infections including poultry, rodents, wild birds, dogs, pigs, and monkeys ¹⁵. Given that Indonesia is an LMIC with a large and diverse population, the risk of viral respiratory disease burden is high. Therefore, this literature review was conducted to better understand the epidemiology of viral respiratory disease in Indonesia.

Methods

Search Strategy and Selection Criteria

Following PRISMA guidelines, a systematic online search of English and Indonesian language databases were conducted. For the English journals, a search of three scientific abstract indexing databases (PubMed, Web of Science, and CAB Abstracts), with no restriction on the year of publication, was performed on 23 February 2021 using the following structured search query ((virus or viruses or viral) AND (respiratory) AND (Indonesia)).

For the Indonesian language journals, a search of the Garuda database, with no restriction on the year of publication, was performed on 03 February 2021. Garuda is a comprehensive database operated by the Indonesian Ministry of Research, Technology and Higher Education, which contains various national publications from all universities in Indonesia. Given that the database lacked the functionality to use a multi-string structured search query, the single term "virus" was instead used. Thereafter, a manual review and selection strategy was performed based on the inclusion and exclusion criteria.

Inclusion and Exclusion Criteria

The inclusion and exclusion criteria for English and Indonesian language journal articles included published scientific journal entries which were also epidemiological investigations or clinical case reports conducted on humans in Indonesia. All reviews, commentaries, perspectives, and personal opinions were excluded, along with any entry that was a diagnostic assay evaluation.

Article Screening and Reconciliation

For the English language journals, articles from the three databases were first screened by two reviewers (SB and HY) to remove all duplicates. Articles were then independently evaluated and sorted by the same two reviewers based on the inclusion and exclusion criteria. Both reviewers then reconciled search results together to determine the final list of entries. For the Indonesia language journals, two reviewers (AP and EW) worked independently to screen the entries according to the inclusion and exclusion criteria. Both reviewers then reconciled search results together to determine the reconciled search results together to determine the final list of entries.

Results

Search Results and Study Selection

For English language journals, a search conducted on February 23, 2021, yielded a total of 732 results, of which 196 publications were from PubMed, 109 from Web of Science, and 427 from CAB Abstracts. After removing 417 duplicates, 315 articles remained of which 226 failed to meet the inclusion criteria leaving 89 articles. A full text review of the remaining 89 articles resulted in 23 articles being removed resulting in a total of 66 remaining articles (Figure 1).

For the Indonesian language journals, a search conducted on February 3, 2021 yielded 6,068 publications from Garuda. After removing 5,930 irrelevant articles and 28 duplicates, 110 publications remained. Those articles were irrelevant because they are not related to respiratory viruses. These were screened, and a total of 50 articles that did not meet initial inclusion were excluded, resulting in 60 articles. After full text screening, of 60 articles, 58 articles were excluded resulting in only 2 human-focused articles. These two

articles were also included in the English language search results. Therefore, the final number of articles from both databases remains at 66 (Figure 2).

Study Location

In this review we found 29 (43.9 %) of the 66 studies were conducted exclusively in Jakarta. Similarly, 47 (71.2%) studies were performed on Java Island (West, Central and East) and 12 (18.2 %) studies were conducted in Bali. Yogyakarta was included in 14 (21.2 %) of the 66 studies and 9 (13.6 %) other studies were performed on West Nusa Tenggara. East Nusa Tenggara Timor was represented in 1 (1.5 %) of 66 studies, while only 3 (4.5 %) studies were conducted on the Island of Papua. In addition, 7 (10.6 %) of the 66 studies were part of larger global, regional or multinational studies and 17 (25.8 %) studies were conducted at multiple locations across Indonesia. An additional 5 (7.6%) studies were performed using secondary data from Indonesian-wide databases which included the Ministry of Health Avian Influenza H5N1 case database and archival samples from the National Institute of Health Research and Development (NIHRD) (Figure 3).

Study Characteristics

Articles included in this review were published between 1998 and 2021. Only 1 of the 66 (1.5 %) articles were published between 1998 and 2000, while 15 of the 66 (22.7%) articles were published between 2001-2010 with the remaining 50 (75.8%) articles being published between 2011- 2021 (Figure 3).

Of the 66 articles, 38 (57.6%) articles studied influenza viruses, of which 21 (55.3%) were focused on influenza A or B, and 17 (44.7%) were conducted on avian influenza H5N1. In addition, 19 (28.8%) of the 66 total articles were conducted on coronaviruses. Of the 19 coronavirus papers, 17 (89.5%) articles studied the SARS-CoV-2 virus while 2 (10.5%) studies were conducted on Middle East Respiratory Syndrome (MERS). Furthermore, 5 (7.6%) of the 66 articles studied RSV and 2 (3.0%) of the 66 articles studied enterovirus. Of the 2 enterovirus studies, 1 (50.0%) was on human rhinovirus, and 1 (50.0%) studied on coxsackievirus virus. Finally, 1 (1.5%) out of the 66 total articles examined torque teno virus and 1 (1.5%) study was conducted on cytomegalovirus.

Study Population

Among the 66 articles included in this review, 64 (96.9%) articles specified their study populations. Out of these 64 articles, 52 (81.2%) articles included children and adults aged from <1 year to 71 year as study participants. The majority of articles included both males and females as study participants. Out of 64 articles, 10 (6.4%) articles examined patients with SARI and 10 (6.4%) articles examined patients with ILI. Among 64 articles, 3 (4.6%) articles studied workers in live animals markets or swine and poultry farms. There were 7 (10.6%) articles that focused solely on rural populations as study participants, while 6 (9.0%) articles included both rural and urban populations as study participants.

Sample Size

Twenty-four (36.4%) of the 66 studies had a sample size greater than or equal to 500, 22 (33.3%) studies had a sample size less than 500, and 7 (10.6%) studies were part of larger global, regional, or a multinational studies. In addition, 12 (18.2%) of the 66 articles in our review were case reports which included SARS-CoV-2 infected individuals or patients as study participants.

Discussion

In this literature review, articles were searched and summarized to better understand the epidemiology of respiratory virus infections in Indonesia. After reviewing the final 66 articles, we found that most of the studies focused predominately on influenza A and B, RSV, avian influenza H5N1, and SARS-CoV-2. Fewer studies were conducted on enterovirus, torque teno virus, and cytomegalovirus.

The first study reporting on the epidemiology of influenza A or B in Indonesia was conducted in Papua in 1998¹⁶. Subsequent studies that have been published have prioritized Jakarta^{17, 18, 19, 20, 21, 22, 23} and Bali^{13, 18, 24, 25} as the main study locations. Only after the 2009 influenza H1N1 pandemic did studies on

seasonal influenza increase. These studies were primarily conducted via hospital-based surveillance, with children and elderly as the main study population¹⁰. Data from these studies show that peak prevalence tended to coincide with the rainy seasons ^{17, 22}, and males were more likely to experience ILI than females²⁶. Meanwhile, in rural areas, there was also increasing patterns of influenza infections in households with young children and poultry ²⁷. Although, seasonal influenza has been identified as an important contributor to acute respiratory disease in Indonesia ^{13, 21}, and 20% of total cases of respiratory disease are attributed to influenza A and B in all regions of the world ²⁸. A 2011 study showed that influenza virus only contributed to 6% of 333 SARI cases in Indonesia²⁰. A lack of reliable surveillance data was acknowledged as a primary reason for this discrepancy with regional and global averages ^{20, 28}

The studies on influenza H5N1 were primarily conducted in Jakarta and Bali ^{21, 22, 29, 30, 31} at the time of a national outbreak that occurred in 2006. Influenza H5N1 studies published after the outbreak included some new epidemiological studies, but also retrospective studies that used primary data from the outbreak^{21, 22, 32, 33}. Data from the outbreak reports show that sporadic family clusters had a higher proportion of case fatality^{29, 34} with mild-moderate variations in symptoms^{13, 29, 30, 35}, which especially occurred in patients under 18 years of age ^{22, 30} and among poultry workers³⁶ who had direct or indirect contact with infected poultry^{30, 37}. Although, there was no strong evidence of human-to-human transmission ³¹, antiviral regimens were given as early as two days following the onset of non-specific symptoms ^{38, 39}. The mortality rate of influenza H5N1 infections among humans was still very high ³², increasing from 73% in 2005 to 100% in 2012 ³³.

Our review found a large number of SARS-CoV-2 papers that were published in response to the global pandemic that began in January of 2020. We also found that the majority of SARS-CoV-2 studies were conducted in densely populated areas of economic and national significance such as Jakarta ^{40, 41, 42, 43, 44, 45} Yogyakarta^{46, 47}, and the islands of Java (West Central and East) and Bali ^{48, 49, 50, 51}. Our review did not include any SARS-CoV-2 studies examining lesser populated provinces like North Kalimantan, Maluku, and West Papua which could indicate a gap in funding and infrastructure required to conduct epidemiological investigations away from populous urban centers. In terms of study populations, the majority of studies were case reports of SARS-CoV-2 patients. Studies like Baskara et al. 2021 ⁴⁶ found that treating SARS-CoV-2 patients in low-resource settings was challenging due to a lack of ventilation support and intensive care facilities. In these settings, there are additional difficulties in distinguishing the clinical characteristics of SARS-CoV-2 from other respiratory diseases like tuberculosis. Other case reports highlight the radiological findings and benefits of using chest X-ray's in screening for SARS-CoV-2 among patients ⁴⁷ while others describe the potential for misleading diagnoses when using unconventional methods like chest CT scans to detect SARS-CoV-2 ⁴².

Most SARS-CoV-2 studies were conducted on younger and middle-aged adults below the age of 65. These included Widysanto et al.⁵², Putra et al.⁴³ and Kadriyan et al.⁵³. As for older population groups (>65 years old), Tenda et al.⁴⁵ included an individual that was 71 years old, while Rozaliyani et al.⁴⁴ examined individuals from all age groups and found that older age, dyspnea, pneumonia and pre-existing hypertension were associated with death from SARS-CoV-2. The study also described how the number of deaths decreased in the weeks after the implementation of large-scale social restrictions thus supporting the efficacy of such interventions. Gunadi et al.⁵⁴ found that 39 of 60 (65%) SARS-CoV-2 samples from Indonesia had the D614G mutation which was recently discovered to be more transmissible than previous variants, which is the only report included in our review that evaluated SARS-CoV-2 variants ⁵⁵. Anggraini et al.⁴⁸ and Somasetia et al. ⁵⁰ focused specifically on high-risk population groups where they observed that a low neutrophil-to-lymphocyte ratio decreases the risk of SARS-CoV-2 in pregnant women, and reported a case of a 6-year old child being co-infected with SARS-CoV-2 and dengue. Our review did not find any studies that evaluated the transmissibility or case fatality rate of SARS-CoV-2. It may be that this type of epidemiological data is not publicly accessible.

Studies included in our review indicated there is a significant burden of a lower respiratory tract illness (LRI) caused by RSV among the children in Indonesia ^{56, 57, 58}. Provinces with high population densities

such as West Nusa Tenggara, and West Java were represented in most of the RSV studies ^{56, 57, 58, 59, 60}. Our review indicated that the incidence of RSV related to LRI in Lombok island and Bandung city is lower in children less than 6 months of age compared to the older children ^{56, 57, 59}. In addition, Simoes et al. ⁵⁷ reported a higher RSV incidence among children in rural areas compared to urban areas. Studies from Djelantik et al. ⁵⁹, Wertheim et al.⁶¹, and Widhidewi et al. ²⁴ reported that the peak of RSV cases occurred during the rainy season (March to July). However, there were no consistent conclusions regarding the association between seasonality and the occurrence of RSV disease in Indonesia. A study from Omer et al. ⁵⁸ reported an association of rain with a 64% higher incidence of RSV disease (incidence rate ratio 1.64, 95% confidence interval 1.13-2.38), whereas, Simoes et al. ⁵⁷, and Djelantik et al.⁵⁹ reported no association of RSV outbreaks with humidity, temperature, or rainfall. Therefore, further investigations are required to determine the seasonality of RSV in Indonesia.

Few studies included in this review evaluated the epidemiology of enterovirus $^{62, 63}$, torque teno virus 64 , and cytomegalovirus virus 42 . Most of these studies were conducted among children less than 5 years of age who were hospitalized with ILI or SARI in Jakarta and Java^{42, 62, 64}, but information regarding seasonality and transmission dynamics for these viral groups is not available. Enteroviruses, including EV68, EV71, coxsackieviruses, rhinoviruses, echoviruses, and polioviruses, are the important viral group that may have the potential for zoonotic transmission between animals and humans^{65, 66}.

Indonesia, like most countries in the world, has developed ILI and SARI surveillance networks under the WHO's Global Influenza Surveillance and Response Systems (GISRS)¹³. This network was designed to improve influenza disease control by providing support on epidemiology, research, influenza vaccine recommendations, laboratory diagnostic tools, antiviral, and public health risk assessment. However, due to challenges such as cost-effectiveness, complex computer networking and technical expertise requirements, and limited diagnostic capacities of clinical laboratories, the ability of this network to provide robust data on emerging and endemic respiratory viruses in Indonesia has been limited. Furthermore, most of the surveillance activity in Indonesia is conducted using hospital based surveillance as a response to frequent outbreaks of influenza subtypes and sporadic cases of RSV from July to November ⁶¹. As a result, there is more concentrated information on influenza viruses and RSV viruses, but sporadic or missing data for other common respiratory viruses. Additionally, limited information is available regarding the environmental persistence of influenza, RSV, and other respiratory viruses outside hospital settings. As a result, there remain large gaps of information regarding the epidemiology of respiratory viruses in Indonesia.

Our review identified only two papers from the Garuda database that evaluated the epidemiology of human respiratory viruses in Indonesia. This suggests that language is not the primary reason that data on this topic is not largely available in research journals. Additionally, our review indicated a concentration of studies conducted mostly in populated and economically developed areas, such as Jakarta, Bali, Java, (West, Central, and East), Yogyakarta, and West Nusa Tenggara. Limited research has been reported on populations living in less developed areas. In evaluating the studies, a clear publication trend was observed, where there would be a surge in published papers after a viral outbreak has occurred in Indonesia. This trend can be observed with the outbreaks of SARS in 2002-2004, avian influenza in 2005-2006, influenza A H1N1 in 2009, and most recently with SARS-CoV-2. A large proportion of the studies in our review are based on outbreak based passive surveillance, retrospective studies, hospital level ILI, and SARI surveillance systems. Fewer studies use active surveillance approaches.

Overall, our review showed a surprisingly low number of published papers assessing the epidemiology of viral respiratory pathogens in Indonesia. Of the studies included, the majority were conducted in urban centers of high population density and economic significance. Our findings also indicated a clear publication trend where papers have been published only after a large viral respiratory disease outbreak has occurred. Fewer papers have been published assessing the seasonal burden of viral respiratory disease. These observations indicate a great need to further enhance surveillance capacity for viral respiratory diseases in Indonesia to better track and characterize this important disease burden.

Data availability statement

No datasets were generated or analyzed during the current study.

Funding Statement

This project was supported by Prof. Anderson's startup funds (Duke Kunshan University).

Conflict of Interest Disclosure

The authors report no conflicts of interest.

Acknowledgements

This project was supported by Prof. Anderson's startup funds (Duke Kunshan University).

References

1. Shi T, Arnott A, Semogas I, Falsey AR, Openshaw P, Wedzicha JA, Campbell H, Nair H, 2020. The etiological role of common respiratory viruses in acute respiratory infections in older adults: a systematic review and meta-analysis. The Journal of infectious diseases 222: S563-S569.

2. Shi T, McLean K, Campbell H, Nair H, 2015. Aetiological role of common respiratory viruses in acute lower respiratory infections in children under five years: A systematic review and meta-analysis. J Glob Health 5: 010408.

3. Coleman BL, Fadel SA, Fitzpatrick T, Thomas S-M, 2018. Risk factors for serious outcomes associated with influenza illness in high- versus low- and middle-income countries: Systematic literature review and meta-analysis. Influenza and Other Respiratory Viruses 12: 22-29.

4. Gonik B, 2019. The Burden of Respiratory Syncytial Virus Infection in Adults and Reproductive-Aged Women. Global health, science and practice 7: 515-520.

5. Jahan Y, Rahman A, 2020. COVID-19: Challenges and viewpoints from low-and-middle-income Asian countries perspectives. Journal of Safety Science and Resilience 1: 70-72.

6. Wang X, Li Y, O'Brien KL, Madhi SA, Widdowson M-A, Byass P, Omer SB, Abbas Q, Ali A, Amu A, 2020. Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: a systematic review and modelling study. The Lancet Global Health 8: e497-e510.

7. Shi T, Denouel A, Tietjen AK, Campbell I, Moran E, Li X, Campbell H, Demont C, Nyawanda BO, Chu HY, 2020. Global disease burden estimates of respiratory syncytial virus–associated acute respiratory infection in older adults in 2015: a systematic review and meta-analysis. The Journal of infectious diseases 222: S577-S583.

8. Lee P-I, Hsueh P-R, 2020. Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. Journal of Microbiology, Immunology and Infection 53: 365-367.

9. Morens DM, Folkers GK, Fauci AS, 2004. The challenge of emerging and re-emerging infectious diseases. Nature 430: 242-249.

10. Susilarini NK, Haryanto E, Praptiningsih CY, Mangiri A, Kipuw N, Tarya I, Rusli R, Sumardi G, Widuri E, Sembiring MM, Noviyanti W, Widaningrum C, Lafond KE, Samaan G, Setiawaty V, 2018. Estimated incidence of influenza-associated severe acute respiratory infections in Indonesia, 2013-2016. Influenza Other Respir Viruses 12: 81-87.

11. Surendra H, Elyazar IRF, Djaafara BA, Ekawati LL, Saraswati K, Adrian V, Widyastuti, Oktavia D, Salama N, Lina RN, Andrianto A, Lestari KD, Burhan E, Shankar AH, Thwaites G, Baird JK, Hamers RL, 2021. Clinical characteristics and mortality associated with COVID-19 in Jakarta, Indonesia: A hospital-based retrospective cohort study. The Lancet Regional Health – Western Pacific 9.

12. Group WB, 2020. The World Bank Data Indonesia.

13. Kosasih H, Roselinda, Nurhayati, Klimov A, Xiyan X, Lindstrom S, Mahoney F, Beckett C, Burgess TH, Blair PJ, Uyeki TM, Sedyaningsih ER, 2013. Surveillance of influenza in Indonesia, 2003-2007. Influenza Other Respir Viruses 7: 312-20.

14. Lafond KE, Praptiningsih CY, Mangiri A, Syarif M, Triada R, Mulyadi E, Septiawati C, Setiawaty V, Samaan G, Storms AD, Uyeki TM, Iuliano AD, 2019. Seasonal Influenza and Avian Influenza A(H5N1) Virus Surveillance among Inpatients and Outpatients, East Jakarta, Indonesia, 2011-2014. Emerg Infect Dis 25: 2031-2039.

15. de Jong W, Rusli M, Bhoelan S, Rohde S, Rantam FA, Noeryoto PA, Hadi U, Gorp ECv, Goeijenbier M, 2018. Endemic and emerging acute virus infections in Indonesia: an overview of the past decade and implications for the future. Critical reviews in microbiology 44: 487-503.

16. Corwin AL, Simanjuntak CH, Ingkokusumo G, Sukri N, Larasati RP, Subianto B, Muslim HZ, Burni E, Laras K, Putri RP, Hayes C, Cox N, 1998. Impact of epidemic influenza A-like acute respiratory illness in a remote jungle highland population in Irian Jaya, Indonesia. Clinical Infectious Diseases 26: 880-888.

17. Beckett CG, Kosasih H, Ma'roef C, Listiyaningsih E, Elyazar IRF, Wuryadi S, Yuwono D, McArdle JL, Corwin AL, Porter KR, 2004. Influenza surveillance in Indonesia: 1999-2003. Clinical Infectious Diseases 39: 443-449.

18. Dilantika C, Sedyaningsih ER, Kasper MR, Agtini M, Listiyaningsih E, Uyeki TM, Burgess TH, Blair PJ, Putnam SD, 2010. Influenza virus infection among pediatric patients reporting diarrhea and influenza-like illness. BMC Infect Dis 10: 3.

19. Ramadhany R, Setiawaty V, Wibowo HA, Lokida D, 2010. Proportion of influenza cases in severe acute respiratory illness in Indonesia during 2008-2009. Medical Journal of Indonesia 19: 264-7.

20. Pangesti KN, Susilarini NK, Pawestri HA, Setiawaty V, 2014. Influenza cases from surveillance acute respiratory infection in Indonesia, 2011. Health Science Journal of Indonesia 5: 7-11.

21. Storms AD, Kusriastuti R, Misriyah S, Praptiningsih CY, Amalya M, Lafond KE, Samaan G, Triada R, Iuliano AD, Ester M, Sidjabat R, Chittenden K, Vogel R, Widdowson MA, Mahoney F, Uyeki TM, 2015. The East Jakarta Project: surveillance for highly pathogenic avian influenza A(H5N1) and seasonal influenza viruses in patients seeking care for respiratory disease, Jakarta, Indonesia, October 2011-September 2012. Epidemiol Infect 143: 3394-404.

22. Lafond KE, Praptiningsih CY, Mangiri A, Syarif M, Triada R, Mulyadi E, Septiawati C, Setiawaty V, Samaan G, Storms AD, Uyeki TM, Iuliano AD, 2019. Seasonal influenza and avian influenza A(H5N1) virus surveillance among inpatients and outpatients, East Jakarta, Indonesia, 2011-2014. Emerging Infectious Diseases 25: 2031-2039.

23. Setianingsih TY, Wiyatno A, Hartono TS, Hindawati E, Rosamarlina, Dewantari AK, Myint KS, Lisdawati V, Safari D, 2019. Detection of multiple viral sequences in the respiratory tract samples of suspected Middle East respiratory syndrome coronavirus patients in Jakarta, Indonesia 2015-2016. Int J Infect Dis 86: 102-107.

24. Widhidewi NW, Wiyatno A, Dewantari AK, Paramasatiari L, Aryastuti SA, Artika IN, Setiawan WD, Soebandrio A, Aye Myint KS, safari D, 2020. Identification of viral etiology of acute respiratory tract infections in children and adults in Tabanan, Bali, Indonesia. Access Microbiology: acmi000120.

25. Aman A, Wibawa T, Kosasih H, Asdie RH, Safitri I, Intansari US, Mawarti Y, Sudarmono P, Arif M, Puspitasari D, Alisjahbana B, Parwati KTM, Gasem MH, Lokida D, Lukman N, Hartono TS, Mardian Y, Liang CJ, Siddiqui S, Karyana M, Lau CY, 2021. Etiologies of severe acute respiratory infection (SARI) and misdiagnosis of influenza in Indonesia, 2013-2016. Influenza and Other Respiratory Viruses 15: 34-44.

26. Ikawati HD, Setiawaty R, 2014. Epidemiology of Influenza-like Illness (ILI) in Java Island, Indonesia in 2011. Public Health Res 4: 111-116.

27. Root ED, Agustian D, Kartasasmita C, Uyeki TM, Simoes EAF, 2017. Demographic and ecological risk factors for human influenza A virus infections in rural Indonesia. Influenza Other Respir Viruses 11: 425-433.

28. Caini S, Andrade W, Badur S, Balmaseda A, Barakat A, Bella A, Bimohuen A, Brammer L, Bresee J, Bruno A, Castillo L, Ciblak MA, Clara AW, Cohen C, Cutter J, Daouda C, de Lozano C, De Mora D, Dorji K, Emukule GO, Fasce RA, Feng L, Ferreira de Almeida WA, Guiomar R, Heraud JM, Holubka O, Huang QS, Kadjo HA, Kiyanbekova L, Kosasih H, Kusznierz G, Lara J, Li M, Lopez L, Mai Hoang PV, Pessanha Henriques CM, Matute ML, Mironenko A, Moreno B, Mott JA, Njouom R, Nurhayati, Ospanova A, Owen R, Pebody R, Pennington K, Puzelli S, Quynh Le MT, Razanajatovo NH, Rodrigues A, Rudi JM, Tzer Pin Lin R, Venter M, Vernet MA, Wangchuk S, Yang J, Yu H, Zambon M, Schellevis F, Paget J, 2016. Temporal Patterns of Influenza A and B in Tropical and Temperate Countries: What Are the Lessons for Influenza Vaccination? PLoS One 11: e0152310.

29. Kandun IN, Wibisono H, Sedyaningsih ER, Hadisoedarsuno W, Purba W, Santoso H, Septiawati C, Tresnaningsih E, Heriyanto B, Yuwono D, 2006. Three Indonesian clusters of H5N1 virus infection in 2005. New England Journal of Medicine 355: 2186-2194.

30. Giriputro S, Agus R, Sulastri S, Murniati D, Darwis F, Wiweka IS, Rusli A, Sirait S, Marhaningtyas S, Hendrawardati T, 2008. Clinical and epidemiological features of patients with confirmed avian influenza presenting to Sulianti Saroso Infectious Diseases Hospital, Indonesia, 2005-2007. ANNALS-ACADEMY OF MEDICINE SINGAPORE 37: 454.

31. Santhia K, Ramy A, Jayaningsih P, Samaan G, Putra AAG, Dibia N, Sulaimin C, Joni G, Leung CYH, Peiris JSM, Wandra T, Kandun N, 2009. Avian influenza A H5N1 infections in Bali province, Indonesia: a behavioral, virological and seroepidemiological study. Influenza and other Respiratory Viruses 3: 81-89.

32. Haji RM, Babakir-Mina M, Gubari MIM, 2017. Epidemiological parameter changes of global avian influenza H5N1 over two decades, from 1997 to 2017. Kurdistan Journal of Applied Research 2: 128-136.

33. Pawestri HA, Eggink D, Isfandari S, Thanh TT, Rogier van Doorn H, Setiawaty V, de Jong MD, 2019. Viral Factors Associated With the High Mortality Related to Human Infections With Clade 2.1 Influenza A/H5N1 Virus in Indonesia. Clin Infect Dis.

34. Sedyaningsih ER, Isfandari S, Setiawaty V, Rifati L, Harun S, Purba W, Imari S, Giriputra S, Blair PJ, Putnam SD, Uyeki TM, Soendoro T, 2007. Epidemiology of cases of H5N1 virus infection in Indonesia, July 2005-June 2006. J Infect Dis 196: 522-7.

35. Zaman M, Gasimov V, Oner AF, Dogan N, Adisasmito W, Coker R, Bamgboye EL, Chan PKS, Hanshaoworakul W, Lee N, Phommasack B, Touch S, Tsang O, Swenson A, Toovey S, Dreyer NA, 2014. Recognizing true H5N1 infections in humans during confirmed outbreaks. Journal of Infection in Developing Countries 8: 202-207.

36. Vivi S, Endang RS, Tjahyani MS, Mirna Robert DRvBH, Krisna NAP, Fera I, 2010. Antibody anti-H5N1 detection in poultry farmers and workers in poultry collection facilities in Indonesia, 2007. Medical Journal of Indonesia 19.

37. Yupiana Y, de Vlas SJ, Adnan NM, Richardus JH, 2010. Risk factors of poultry outbreaks and human cases of H5N1 avian influenza virus infection in West Java Province, Indonesia. International Journal of Infectious Diseases 14: e800-e805.

38. Kandun IN, Tresnaningsih E, Purba WH, Lee V, Samaan G, Harun S, Soni E, Septiawati C, Setiawati T, Sariwati E, 2008. Factors associated with case fatality of human H5N1 virus infections in Indonesia: a case series. The Lancet 372: 744-749.

39. Adisasmito W, 2010. Epidemiology of human avian influenza in Indonesia, 2005-2009: a descriptive analysis. Medical Journal of Indonesia 19: 64-70.

40. Asyary A, Veruswati M, 2020. Sunlight exposure increased Covid-19 recovery rates: a study in the central pandemic area of Indonesia. Science of the Total Environment 729.

41. Hafiz M, Icksan AG, Harlivasari AD, Aulia R, Susanti F, Eldinia L, 2020. Clinical, Radiological Features and Outcome of COVID-19 patients in a Secondary Hospital in Jakarta, Indonesia. J Infect Dev Ctries 14: 750-757.

42. Pitoyo CW, Wijaya I, Wulani V, Wiraputri AK, Romulo MA, 2020. Misleading Diagnosis of Radiological Imaging of COVID-19 Pneumonia During Pandemic Era: Risk on the Existence of CMV Infection. Acta Med Indones 52: 375-382.

43. Putra BE, Adiarto S, Dewayanti SR, Juzar DA, 2020. Viral exanthem with "Spins and needles sensation" on extremities of a COVID-19 patient: a self-reported case from an Indonesian medical frontliner. International Journal of Infectious Diseases 96: 355-358.

44. Rozaliyani A, Savitri AI, Setianingrum F, Shelly TN, Ratnasari V, Kuswindarti R, Salama N, Oktavia D, Widyastuti W, Handayani D, 2020. Factors Associated with Death in COVID-19 Patients in Jakarta, Indonesia: An Epidemiological Study. Acta Med Indones 52: 246-254.

45. Tenda ED, Yulianti M, Asaf MM, Yunus RE, Septiyanti W, Wulani V, Pitoyo CW, Rumende CM, Setiati S, 2020. The Importance of Chest CT Scan in COVID-19. Acta Med Indones 52: 68-73.

46. Baskara MA, Makrufardi F, Dinisari A, 2021. COVID-19 and active primary tuberculosis in a low-resource setting: A case report. Ann Med Surg (Lond) 62: 80-83.

47. Riawati T, Indrarto W, Fauzi AR, Widitjiarso W, Gunadi, 2021. Various radiological findings in patients with COVID-19: A case series. Ann Med Surg (Lond) 62: 269-273.

48. Anggraini NWP, Sulistyowati S, 2020. Low neutrophil-to-Imphocyte ratio decreases risk of coronavirus disease in pregnant women. Universa Medicina 39: 88-96.

49. Soedarsono S, 2020. A Family Cluster of Coronavirus Disease (COVID-19) Infection with Different Clinical Manifestations. Acta Med Indones 52: 155-162.

50. Somasetia DH, Malahayati TT, Andriyani FM, Setiabudi D, Nataprawira HM, 2020. A fatal course of multiple inflammatory syndrome in children coinfection with dengue. A case report from Indonesia. IDCases 22: e01002.

51. Yasmin Kusumawardhani N, Huang I, Martanto E, Sihite TA, Nugraha ES, Prodjosoewojo S, Hamijoyo L, Hartantri Y, 2020. Lethal Arrhythmia (Torsade de Pointes) in COVID-19: An Event Synergistically Induced by Viral Associated Cardiac Injury, Hyperinflammatory Response, and Treatment Drug? Clin Med Insights Case Rep 13: 1179547620972397.

52. Widysanto A, Wahyuni TD, Simanjuntak LH, Sunarso S, Siahaan SS, Haryanto H, Pandrya CO, Aritonang RCA, Sudirman T, Christina NM, Adhiwidjaja B, Gunawan C, Angela A, 2020. Happy hypoxia in critical COVID-19 patient: A case report in Tangerang, Indonesia. Physiol Rep 8: e14619.

53. Kadriyan H, Dirja BT, Suryani D, Yudhanto D, 2021. COVID-19 infection in the palatine tonsil tissue and detritus: the detection of the virus compartment with RT-PCR. BMJ Case Rep 14.

54. Gunadi, Hendra W, Mohamad Saifudin H, Daniwijaya EW, Ludhang Pradipta R, Endah S, Nugrahaningsih DAA, Afiahayati, Siswanto, Kristy I, Nungki A, Alvin Santoso K, Dyah Ayu P, Kemala A, Eggi A, Titik N, Tri W, 2020. Full-length genome characterization and phylogenetic analysis of SARS-CoV-2 virus strains from Yogyakarta and Central Java, Indonesia. PeerJ 8.

55. Zhang L, Jackson CB, Mou H, Ojha A, Rangarajan ES, Izard T, Farzan M, Choe H, 2020. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. BioRxiv.

56. Robertson SE, Roca A, Alonso P, Simoes E, Kartasasmita CB, Olaleye DO, Odaibo GN, Collinson M, Venter M, Zhu YW, Wright PF, 2004. Respiratory syncytial virus infection: denominator-based studies in Indonesia, Mozambique, Nigeria and South Africa. Bulletin of the World Health Organization 82: 914-922.

57. Simoes EA, Mutyara K, Soh S, Agustian D, Hibberd ML, Kartasasmita CB, 2011. The epidemiology of respiratory syncytial virus lower respiratory tract infections in children less than 5 years of age in Indonesia. Pediatr Infect Dis J 30: 778-84.

58. Omer SB, Sutanto A, Sarwo H, Linehan M, Djelantik IG, Mercer D, Moniaga V, Moulton LH, Widjaya A, Muljati P, Gessner BD, Steinhoff MC, 2008. Climatic, temporal, and geographic characteristics of respiratory syncytial virus disease in a tropical island population. Epidemiol Infect 136: 1319-27.

59. Djelantik IGG, Gessner BD, Sutanto A, Steinhoff M, Linehan M, Moulton LH, Arjoso S, 2003. Case fatality proportions and predictive factors for mortality among children hospitalized with severe pneumonia in a rural developing country setting. Journal of Tropical Pediatrics 49: 327-332.

60. Djelantik IGG, Gessner BD, Soewignjo S, Steinhoff M, Sutanto A, Widjaya A, Linehan M, Moniaga V, Ingerani, 2003. Incidence and clinical features of hospitalization because of respiratory syncytial virus lower respiratory illness among children less than two years of age in a rural Asian setting. Pediatric Infectious Disease Journal 22: 150-156.

61. Wertheim HFL, Nadjm B, Thomas S, Agustiningsih, Malik S, Diep Ngoc Thi N, Dung Viet Tien V, Kinh Van N, Chau Vinh Van N, Liem Thanh N, Sinh Thi T, Thuy Bich Thi P, Trung Vu N, Tran Tinh H, Uyen Hanh N, Taylor W, Khanh Huu T, Tuan Manh H, Chokephaibulkit K, Farrar J, Wolbers M, Jong MDd, Doorn HRv, Puthavathana P, 2015. Viral and atypical bacterial aetiologies of infection in hospitalised patients admitted with clinical suspicion of influenza in Thailand, Vietnam and Indonesia. Influenza and other Respiratory Viruses 9: 315-322.

62. Wiyatno A, Febrianti ESZ, Dewantari AK, Myint KS, Safari D, Idris NS, 2018. Characterization of rhinovirus C from a 4-year-old boy with acute onset dilated cardiomyopathy in Jakarta, Indonesia. JMM Case Rep 5: e005139.

63. Wiyatno A, Antonjaya U, Ma'roef CN, Riswari SF, Djauhari H, Artika IM, Monagin C, Schneider BS, Myint KS, Alisjahbana B, 2016. Detection and identification of coxsackievirus B3 from sera of an Indonesian patient with undifferentiated febrile illness. The Journal of Infection in Developing Countries 10: 880-883.

64. Prasetyo AA, Desyardi MN, Tanamas J, Suradi, Reviono, Harsini, Kageyama S, Chikumi H, Shimizu E, 2015. Respiratory viruses and torque teno virus in adults with acute respiratory infections. Intervirology 58: 57-68.

65. Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P, 2017. Host and viral traits predict zoonotic spillover from mammals. Nature 546: 646-650.

66. Oberste MS, Feeroz MM, Maher K, Nix WA, Engel GA, Hasan KM, Begum S, Oh G, Chowdhury AH, Pallansch MA, 2013. Characterizing the picornavirus landscape among synanthropic nonhuman primates in Bangladesh, 2007 to 2008. Journal of virology 87: 558-571.

67. Aditama TY, Samaan G, Kusriastuti R, Purba WH, Santoso H, Bratasena A, Maruf A, Sariwati E, Setiawaty V, Cook AR, 2011. Risk factors for cluster outbreaks of avian influenza A H5N1 infection, Indonesia. Clinical infectious diseases 53: 1237-1244.

68. Yamaoka M, Palilingan JF, Wibisono J, Yudhawati R, Nidom RV, Alamudi MY, Ginting TE, Makino A, Nidom CA, Shinya K, 2011. Virological surveillance of human influenza in Indonesia, October 2008-March 2010. Microbiology and immunology 55: 514-517.

69. Aditama TY, Samaan G, Kusriastuti R, Sampurno OD, Purba W, Santoso H, Bratasena A, Maruf A, Sariwati E, Setiawaty V, 2012. Avian influenza H5N1 transmission in households, Indonesia. PloS one 7: e29971.

70. Agustiningsih, Herman R, Ramadhany R, Pratiwi E, Puspa KD, Setiawaty V, 2012. Viral and bacterial infection among hospitalized-suspected influenza A/H5N1 patients in Indonesia, 2008-2009. Medical Journal of Indonesia 21: 77-82.

71. Prawira Y, Murniati D, Rusli A, Giriputro S, Setiawaty V, Oswari H, Said M, 2012. CLINICAL, LAB-ORATORY, AND RADIOLOGIC CHARACTERISTICS OF CONFIRMED AVIAN INFLUENZA (H5N1). Southeast Asian Journal of Tropical Medicine and Public Health 43: 877-889.

72. (WHO) WHO, 2014. Human cases of influenza at the human-animal interface, 2013. Weekly Epidemiological Record 89: 309-320.

73. Caini S, Huang QS, Ciblak MA, Kusznierz G, Owen R, Wangchuk S, Henriques CM, Njouom R, Fasce RA, Yu H, Feng L, Zambon M, Clara AW, Kosasih H, Puzelli S, Kadjo HA, Emukule G, Heraud JM, Ang LW, Venter M, Mironenko A, Brammer L, Mai le TQ, Schellevis F, Plotkin S, Paget J, 2015. Epidemiological and virological characteristics of influenza B: results of the Global Influenza B Study. Influenza Other Respir Viruses 9 Suppl 1: 3-12.

74. Farida H, Gasem MH, Suryanto A, Keuter M, Zulkarnain N, Satoto B, van der Eijk AA, Djokomoeljanto R, Wahyono H, Verbrugh HA, Severin JA, van den Broek PJ, 2015. Viruses and Gram-negative bacilli dominate the etiology of community-acquired pneumonia in Indonesia, a cohort study. International Journal of Infectious Diseases 38: 101-107.

75. Adam K, Pangesti KN, Setiawaty V, 2017. Multiple Viral Infection Detected from Influenza-Like Illness Cases in Indonesia. Biomed Res Int 2017: 9541619.

76. Amin M, Bakhtiar A, Subarjo M, Aksono EB, Widiyanti P, Shimizu K, Mori Y, 2018. Screening for Middle East respiratory syndrome coronavirus among febrile Indonesian Hajj pilgrims: a study on 28,197 returning pilgrims. Journal of Infection Prevention 19: 236-239.

77. Pawestri HA, Nugraha AA, Hariastuti NI, Setiawaty V, 2018. Detection of neuraminidase inhibitorresistant influenza A (H1N1)pdm09 viruses obtained from influenza surveillance in Indonesia. SAGE Open Med 6: 2050312118818293.

78. Wignjadiputro I, Susilarini NK, Praptiningsih CY, Sariwati E, Setiawaty V, Samaan G, 2018. Surveillance for severe acute respiratory infection as one approach to enhance global health security in Indonesia. Health Science Journal of Indonesia 9: 8-13.

79. Burhan E, Prasenohadi P, Rogayah R, Isbaniyah F, Reisa T, Dharmawan I, 2020. Clinical Progression of COVID-19 Patient with Extended Incubation Period, Delayed RT-PCR Time-to-positivity, and Potential Role of Chest CT-scan. Acta Med Indones 52: 80-83.

80. Gasem MH, Kosasih H, Tjitra E, Alisjahbana B, Karyana M, Lokida D, Neal A, Liang CJ, Aman AT, Arif M, Sudarmono P, Suharto, Merati TP, Lisdawati V, Siswanto, Siddiqui S, Lane HC, 2020. An observational prospective cohort study of the epidemiology of hospitalized patients with acute febrile illness in Indonesia. PLoS Neglected Tropical Diseases 14.

81. Ravindran B, Hogarth F, Williamson K, Wright R, Kirk M, Dalton C, 2020. High COVID-19 attack rate among attendees of wedding events in Bali, Indonesia, March 2020. Communicable Diseases Intelligence 44.

82. Wirawan IMA, Januraga PP, 2020. Forecasting COVID-19 transmission and healthcare capacity in Bali, Indonesia. Journal of Preventive Medicine and Public Health 53: 158-163.

Table 1. Summary of articles included in the review.

Author and Reference	Study Location	Sample Size	Specimen Sources/ Sample	Targeted pathogens	Virus Identified	Study Popula- tion	Type of study	Findin
			Type					

Corwin et al. 1998 ¹⁶	Irian Jaya	NA	NA	influenza virus	influenza A	Young adults between 15–44 years of age	Outbreak reporting, Case and control study	Young adults a 15–44 y account for the largest percent of influe virus outbrea related
Djelantik et al. 2003 ⁶⁰	Lombok Island	2677	Nasopharyng washes	æ đ .SV	RSV	Children between 0-2 years of age with severe lower respira- tory illness	Hospital based passive surveil- lance study	deaths For children 0-1 and 0-2 years of age, the esti- mated inci- dence o severe RSV LRI hospi- taliza- tion wa 25 per 1000 child- years and 14 per 100 child- years
Djelantik et al. 2003 ⁵⁹	Lombok Island	4351	NA	NA	RSV	Children 0-2 years of age admitted for pneumonia	Population based ret- rospective cohort study	respecti Among children hospital ized for pneumo age < 4 months hypoxia were identifie as highe risk fac for deat

Beckett et al. 2004 ¹⁷	Jakarta, West Java, Yo- gyakarta, Makassar, Sulawesi, and Bali	1544	Nasal and pharyngeal swabs	influenza virus	influenza A (H1N1 and H3N2)	Adults (age, >14 years) and children (age, 4–14 years) with respiratory symptoms	Laboratory based passive surveillance study	Peak prevaler of influe infection tended coincide with th respecti rainy
Robertson et al. 2004 ⁵⁶	West Java	640	Nasopharynge specimens	eaRSV	RSV	children between 0- 5 years of age	Hospital based passive RSV surveillance	seasons The in- cidence of RSV- associat LRI per 1000 child- years was 34 in In- donesia and Mozam- bique, RSV cases occurre primar- ily during the rainy
Kandun et al. 2006 ²⁹	Jakarta	8	Serum, nasaland, throat swabs, tracheal aspirates	influenza A H5N1	influenza A H5N1	Patients between 1-38 years of age with avian influenza H5N1 infection	Outbreak investigation	season Clusters human infection with cla 2 H5N1 viruses included mild, severe, fatal ca amongs family member

Sedyaningsih et al. 2007 ³⁴	West Java, North Sumatera	598	Throatand, nasal swab, serum, en- dotracheal aspirates and washes, lung-biopsy	influenza A H5N1	influenza A H5N1	Patients with suspected H5N1 virus infection with a median age of 18.5 years.	Outbreak investigation	Sporadi and fan clusters cases of avian influenz H5N1 infectio with a l case- fatality proport occurre through Indones during 2005–20
Giriputro et al. 2008 ³⁰	Jakarta	296	NA	influenza A H5N1	influenza A H5N1	Children and adults 1- 40 years of age	Retrospective case series	

Kandun et al. 2008 ³⁸	Indonesia (location not defined)	127	NA	influenza A H5N1	influenza A H5N1	Patients with a median age of 20 years with H5N1 infection	Case series	Early ic tificatio suspect cases fo treatme was difficult because the very low incident the influenz and the common occurre	
Omer et al 2008 58	Lombok island	2878	Nasopharynge swabs	eaRSV	RSV	Hospitalized children between 0-2 years of age	Hospital based passive surveil- lance study for Haemophilus in- fluenza type B (Hib) project	of ILI Statistic associa- tion of monsoo associat weather with	
Santhia et al 2009 ³¹	Bali	87	Serum, cloacal, tracheal swabs, throat and nasal swabs	influenza A H5N1	influenza A H5N1	Household partici- pants from village with H5N1 outbreaks; Humans, Birds (poultry), pigs/swine survey at live bird markets	Behavioral, virological and seroepi- demiologi- cal survey	transmi Transm of H5N humans remaine rare eve despite high lev of hand both healthy sick bir	

(Adisasmito et al. 2010 ³⁹	Throughout Indonesia	93	NA	influenza A H5N1	influenza A H5N1	Laboratory- confirmed H5N1 in- fluenza cases with median age of 18 years	Observational study	Fatality due to in- fluenza A H5N1, may be related to delay in initi- ation of treat- ment after present:
	Dilantika et al. 2010 ¹⁸	Jakarta, Java, Yo- gyakarta, Bali, Sulawesi, North Sumatra	733	Stool samples, nasal and throat swabs	influenza virus	influenza A (H1N1 and H3N2) Influenza B	Pediatric patients (0-6 years of age) presenting with concurrent diarrhea and influenza- like illness	Hospital based passive surveillance study	In child the influenz virus infection may be localize the gastroin testinal tract an cause pediatri diarrhea
(Ramadhany et al. 2010 19	8 provinces of Indonesia	549	Nasal and throat swabs	influenza virus	i influenza A (H1N1) and influenza B	SARI patients	Hospital based passive SARI surveillance	There v 21 (4%) cases caused influenz and 12 (2%) caused influenz

Vivi 2010	et al.) ³⁶	Jakarta, Sukabumi	711	Sera	influenza A H5N1	influenza A H5N1	Poultry farmers and workers in poultry processing facilities	Observational study	workers were fo to have asymp- tomatic H5N1 v infectio but no antibod were detecte among poultry
Yupi et al 2010	l.	Java	794	NA	influenza A H5N1	influenza A H5N1	Humans and poultry	Descriptive epidemi- ological study and out- break investigation	farmers Human infectio with avian in- fluenza H5N1 was as- sociated with poultry outbrea
Adit et al 2011		Throughout Indonesia	139	NA	influenza A H5N1	influenza A H5N1	Risk factors for avian in- fluenza H5N1 infection were an- alyzed among a popula- tion all age groups.	Outbreak investigation	Avian

Simoes et al. 2011 ⁵⁷	Kota Bandung	2014	NA	RSV	RSV	Children between 0-5 years of age	Cohort study	In children between 0-6 months old, the inci- dence o RSV as sociated lower respira- tory infection was rel- atively low (les than 5%), most RSV- related disease occurre in older
Yamaoka et al. 2011 ⁶⁸	East Java	635	Pharyngeal swabs	influenza virus	influenza A(H3N3, pan- demic H1N1 2009), in- fluenza B	Patients ranging from all age groups.	Hospital based passive ILI surveil- lance study	children Younge patients with milder symp- toms were found to have pan- demic (H1N1) 2009 viruses

Aditama et al. 2012 ⁶⁹	Throughout Indonesia	673	Serum, nasal and throat swabs	influenza A H5N1	influenza A H5N1	Children and adults from 0-30 years of age	Outbreak Investiga- tion and disease transmis- sion analysis	The over househo attack 1 was 18 and seconda attack 1 was 5.5 The me interval between onset of subsequ cases in outbrea was 5.6 days.
Agustiningsih et al. 2012 70	Throughout Indonesia	230	Nasal and throat swabs, tracheal aspirate, bron- choalveolar lavage	influenza A/H5N1	influenza A, enteroviru, human rhinoviru, CoV 229E/NL 63, HADV, BoV, parain- fluenza virus -1,2,3, 4	Hospitalized suspected influenza H5N1 patients with ARI Children: 0-17 years of age Adults:15- 60 years of age	NA	In child and adu bacteria infectio remain most common etiologia acute respirat infectio althoug there w infectio caused viruses. Bacteria and vira co- infection were identifie among adults a children

Prawira et al. 2012 ⁷¹	Jakarta	321	NA	influenza A H5N1	influenza A H5N1	Hospitalized patients with in- fluenza A H5N1 with median ages of 7 and 25 years of age for children and adults respectively,	NA	Patients usually devel- oped rapid clinical deterio- ration and fatal out- comes. Deaths were mostly due to Acute Respira tory Distress Syn- drome and usually
Kosasih et al. 2013 ¹³	Sumatra, Java, Kali- mantan, Bali, Lombok, Sulawesi, Maluku, Timor, Papua	21030	Nasal and throat swabs	influenza Virus	influenza A(H3N2,H1N influenza A H5N1, Influenza B	ILI patients 1) with a median age of 17 years (mean age, 21.1 years; range, 1 month- 90 years of age)	Primary health centers and hospitals based passive ILI surveillance	occurre on day 7. Adults had a higher mortal- ity rate Among outpatie and hos talized patients influenz and B showed year-rou circulat and wen importa causes o ILI.

Ikawati et al. 2014 ²⁶	Java	625	NA	NA	influenza A, in- fluenza B, in- fluenza A sub- types H1, H3, H5, pH1	Children between 0-5 years of age and adults >50 years of age	Passive ILI surveil- lance using National institute of health research and develop- ment (NHRD) data	ILI cases occurre most com- monly in children aged 0- years old. Males tended to expe rience ILI more fre- quently than females ILI cases occur mostly among children aged 0- and 6-1 years old. The in- cidence of ILI dropped in 13– 17-year- olds bur in- creased again in the 18–34 age groups.
WHO et al. 2014 72	Throughout Indonesia	3	NA	influenza A H5N1	influenza A H5N1	NA	NA	NA

Pangesti et al. 2014 ²⁰	Throughout Indonesia	333	Serum, nasal and throat swabs	influenza virus	influenza A, H3, pH1, H5	Adults and children from all age groups	Hospital based passive SARI surveillance	Among the tota SARI cases the pro- portion of in- fluenza A was \$ % and in- fluenza B was 1%
Zaman et al. 2014 ³⁵	Azerbaijan, Indonesia, Pakistan and Turkey	259	NA	influenza A H5N1	influenza A H5N1	Patients with possible or confirmed H5N1 infection with a median age of 17 years	Used data from inter- national patients registry for human cases of avain influenza	1%. Confirm cases w more lil to have direct contact with another case. U plained respirat illness, throat, excess sputum product and rhinorrl were mon frequen possible
Caini et al. 2015 ⁷³	Global	3653	NA	influenza virus	influenza A, influenza B	Outpatients and Inpatients	Passive surveil- lance, used data from national influenza centers of 43 countries.	cases Influenz co- circulat with influenz and account for roug 20% of total ca in all regions the wor

Farida et al. 2015 ⁷⁴	Semarang	148	Sputum, throat swabs, blood, sera, urine	viruses and bacteria	influenza A, influenza B, rhino virus, parain- fluenza virus, human coronavirus (HcoV OC43), adeno virus, human metapneu- movirus, RSV	Adult patients admitted with community acquired pneumonia with a median age of 58 years	Prospective cohort study	Viruses gram- negative bacilli a domina causes o commu acquiree pneumo in Semara and Cen Java
Prasetyo et al.2015 64	Central Java	106	Nasal and throat swabs	respiratory viruses and torque teno viruses	RSV influenza A H3, in- fluenza B virus, HMPV, HRV, adeno virus, human corona virus (HCoV- OC43), HPIV, TTV	Adult patients with ARI, ILI, or SARI ranging from 0-20 and >81 years of age	Hospital based passive ILI and SARI surveillance	First report of the circula- tion of HMPV, human aden- ovirus B, HCoV- OC43, and HPIV-3 in Indones
Storms et al. 2015 ²¹	East Jakarta	5065	NA	influenza virus	influenza A (pan- demic (H1N1) 2009, H3), in- fluenza A H5N1, in- fluenza B	Outpatients with ILI and hos- pitalized patients with SARI in all age groups.	Hospital based passive ILI surveillance	34.5% c ILI cases and 15. % of SARI cases were tested positive for in- fluenza A,

Wertheim et al. 2015 ⁶¹	Thailand, Vietnam and Indonesia	225 (Indonesia)	Nasal, and throat swabs, nasopha- ryngeal, and tracheal aspirates, nasal wash, bron- choalveolar lavage	viruses and bacteria	entero virus, rhinovirus, boca virus, RSV, para influenza virus -1,2,3,4 adenovirus, influenza A, and B, HMPV, coronavirus (HCoV- OC43), coronavirus e229, en- teroviruses, paraecho virus,	Patients hospital- ized with suspected influenza 0-5 and > 65 years of age	Passive surveillance from archived samples	In patie hospital ized wit ILI, respirat viruses were th most common detected pathoge Rhinovi was the most frequen detected virus account for 32% the pathoge whom v pathoge were
Caini et al. 2016 ²⁸	Global	4231	NA	influenza virus	influenza A, in- fluenza B	NA	Retrospective analysis of surveil- lance data (2000 -2014)	detected Reliable surveil- lance data is not yet avail- able for many coun- tries in the in- tertropi cal belt

e	Viyatno t al 016 ⁶³	Bandung	209	Preserved sera	coxsackievirus	s coxsackievirus	Archived speci- mens avail- able from non- dengue cases	Retrospective study from archived samples	The firs case of coxsack ievirus (CVB3) from an undiffer entiated febrile illness speci- men from Indones
	Adam et al. 017 ⁷⁵	Sumatra, Java, Kali- mantan, Sulawesi, East Indonesia	334	Nasal and throat swabs	NA	influenza A, influenza B, RSV, rhinovirus adeno virus, enterovirus, parain- fluenza virus, bocavirus	ILI patients with a median age of 9 years	Hospital based passive ILI surveillance	The mo frequen combina tion of viruses identifie were adenovi and hun rhinovin
	Haji et al. 017 ³²	Global	175 (Indonesia)	NA	influenza A H5N1	influenza A H5N1	Individuals 0-16 and >63 years of age	Retrospective analysis of data reported to WHO (1997-2017)	in Indones due to H5N1 remaine
	Root et 1. 2017 7	West Java	163014	Nasal and oropha- ryngeal swabs	influenza virus	influenza A (H3N2, H1N1 pdm09, H1N1), in- fluenza B	Patients between 0-5 years of age with ILI cases and symptoms	Hospital based passive in- fluenza surveillance	high In rural Indone- sian house- holds with young children and poultry, there was an increase in in- fluenza A virus infectio

Amin et al. 2018 ⁷⁶	East Java	28,197	OropharyngealMH swabs Co		MERS- CoV	Returning Hajj Pilgrims with body tempera- ture of > 38 °C ac- companied by respiratory	Active surveillance	Absence infection due to MERS- CoV
Pawestri et al. 2018 ⁷⁷	24 Provinces of Indonesia	4752	Nasopharyngeähf and vir oropharyn- geal swabs		influenza A(H1N1 pdm09)	symptoms Patients with ILI and SARI	Hospital based passive ILI and SARI surveillance	Indicate the first occurre of oseltam resistan influenz (H1N1) viruses Indones
Susilarini et al. 2018 ¹⁰	Yogyakarta, East Kali- mantan, North Sumatera	1527	Respiratory inf specimens vir	rus	pdm09,H3N2) in- fluenza	Inpatients screen- ing for ,SARI, in patients 0-4 and > 70 years of age.	Public health center and hospital based active SARI surveillance	The overall esti- mated annual inci- dence o influenz associat SARI ranged from 13-19 per 100 000 popula- tion Inci- dence was highest in childrer aged 0- years (82-114 per 100 000 populat

Wignjadiput et al. 2018 ⁷⁸	roNorth Sumat- era, East Kali- mantan, Yo- gyakarta, West Nusa Teng- gara, North Su- lawesi,	1806	Nasal and throat swabs	influenza virus	Influenza A(H3N2, H1N1)pdm09 and in- fluenza B viruses.	Patients with SARI cases from 0-1 and [?]65 years of age.	Hospital based passive SARI surveil- lance study	Indones SARI surveil- lance system is flexible to incor porate surveil- lance fo other viruses
Wiyatno et al 2018 ⁶²	Maluku Jakarta	1	Serum, nasal swabs	rhinovirus C	rhinovirus C	4-year-old boy with increasing breathless- ness for a week	Case report	In a chi with ac onset of dilated cardion opathy, there w possible associat of rhinovin C and myocar

Lafond et al. 2019 ²²	Jakarta	9819	Nasal and throat swabs	influenza virus	influenza A (H1N1 pdm09, H3N2), influenza A H5N1, influenza B	ILI case patients, SARI case patients between 0-5 or [?]65 years of age.	Public health centers based passive surveillance	31% of case- patients and 15% SARI c patients tested positive influenz A(H1N influenz A(H1N influenz A(H3N) and influenz virus infectio were detected for 3 yea and the epidemi season extended from Novemi through
Pawestri et al. 2019 ³³	15 provinces of Indonesia	180	Nasal, pharyn- geal, pleural, tracheal, bronchial, rectal, fecal, blood specimens	influenza A H5N1	influenza A H5N1	Patients with H5N1 infec- tion, from 1- 67 years of age.	Retrospective study from clinical specimens	

Setianingsih et al. 2019 ²³	Jakarta	13	Sputum, oropharyn- geal swabs, nasal swabs, nasopha- ryngeal swabs, and serum	MERS- CoV, al- phavirus,flaviv para myxovirus, herpes virus, henipa virus, hanta Virus, arenavirus and human metapneumov	(EV D68, rhinovirus C, and A60) Coro- navirus 229E, flavivirus, alphavirus, herpes simplex 1	Hospitalized patients with suspected MERS- CoV infec- tion.Majority of patients presented with pneumonia and symptoms of fever, dyspnea, and cough ranging from 32- 79 years of age		The etiologic agents detected the sam were enterov D68, dengue virus ty 3, rhinovin C, HCo 229E, HSV-1, influenz virus H1N1, influenz virus H3N2, HMPV, and rhinovin A60
Anggraini et al. 2020 ⁴⁸	Surakarta	9	Blood, nasal and throat swabs	NA	SARS CoV-2	Pregnant women with SARS CoV-2 that were [?]20 years of age	Observational study	

Asyary et al. 2020 ⁴⁰	Jakarta	NA	NA	NA	NA	Patients with SARS CoV-2	Cross sec- tional study	Higher duration of sunlight expo- sure wa related to more cases of recovery from COVID 19 disease among patients
Burhan et al. 2020 ⁷⁹	Jakarta	3	NA	SARS CoV-2	SARS CoV-2	Patients with SARS CoV-2 47-year- old man	Case report	CT- Scan might be a better diagnos tic tool com- pared to RT- PCR in diagnos ing COVID 19

Gasem et al. 2020 ⁸⁰	Jakarta, Ban- dung, Yo- gyakarta, Se- marang, Suryabaya, Bali, Makassar	1,486	Blood, nasal swabs, sputum, feces, urine	Pathogens causing febrile illness	NA	Children and adults [?]1 year of age, with body temper- ature of [?]38°C, and being hospita- lized within the past 24 hours		Indicate a lack o diagno- sis of in- fluenza in hos- pitals where most cases were di- agnosed as non- specific upper respira- tory tract in fections or
Gunadi et al. 2020 ⁵⁴	Yogyakarta	15	Nasopharynge swabs	eadARS- CoV-2	SARS- CoV-2	Hospitalized patients with COVID- 19 between 30 - 53 years of age	Observational study	pneumo SARS- CoV-2 with the D614G muta- tion appears to become the major circulat ing virus in Indones

Hafiz et al. 2020 ⁴¹	Yogyakarta and Central Java	30	Nasopharyng swabs	eadARS- CoV-2	SARS- CoV-2	Adult humans with SARS- CoV-2. 16 (53.3%) were male and 14 (46.6%) were female	Observational case series	to- lympho ratio (NLR) and CXR are cost effective findings and car be used as a disease severity marker in primary health care to deter- mine further
Pitoyo et al. 2020 ⁴²	Jakarta	3	Serum, oropha- ryn- gealand na- sopha- ryngeal swabs	SARS- CoV-2, cytomegalovi	cytomegalov: irus	iru A dults above 60 years of age	Case report	referral Cytome infection might be missed when depend- ing only on CT scans and radio- logical reports

	utra et . 2020	Jakarta	1	Oropharyngea na- sopha- ryngeal swabs	d SAR S- CoV-2	SARS- CoV-2	29-year- old COVID with SARS- CoV-2	Case report	A COVID 19 patient reporte a pins and needles sensa- tion, and ex- foliation of the
et	avindran 5 al. 020 ⁸¹	Bali	41	NA	SARS- CoV-2	SARS- CoV-2	The median age of cases was 31 years (range 3–64 years), which was similar	Retrospective cohort study	skin on their hands
et	ozaliyani 5 al. 020 ⁴⁴	Jakarta	4052	Nasal and pharyn- geal swabs	SARS- CoV-2	SARS-CoV-2	to non- cases at 30 years (range 3–71 years) Participants' age range was 0-9 and 70 years of age. The mean age of the patients were 45.8 years	Retrospective cohort study	Older age, dysp- nea, pneu- monia, and pro- existing hyper- tension were as sociated with SARS- CoV-2 related deaths

Soedarsono et al. 2020 ⁴⁹	Surabaya, East Java	4	NA	SARS- CoV-2	SARS- CoV-2	Adults 34-58 years old with SARS- CoV-2	Case studies	Infectio caused by SARS- CoV-2 can present with differen clinical manifes tations. Some patients that had no symp- toms initially devel- oped symp- toms later on

Somasetia et al. 2020^{50}	Bandung	1	NA	SARS- CoV-2	SARS- CoV-2	6-year- old male with	Case report	The patient was pre
						SARS- CoV-2		sented without
						infection		classic
								upper
								respira- tory
								symp-
								toms of
								SARS-
								CoV-2, conjunc
								tivitis,
								or rash
								and was
								instead pre-
								sented
								with
								fever,
								acute abdomi
								nal
								pain,
								and
								shock

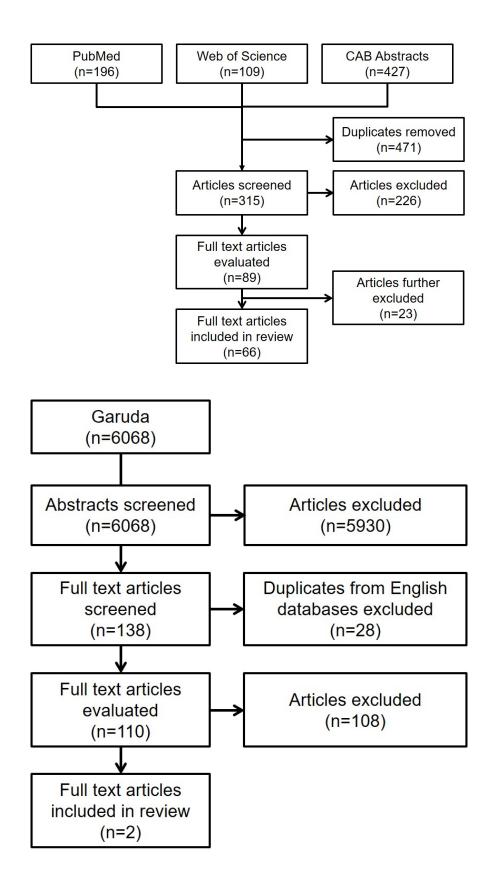
et	nda al. 20 ⁴⁵	Jakarta	3	Oropharynge andna- sopha- ryngeal swabs	alSARS- CoV-2	SARS- CoV-2	Older adults between 37-57 years of age with SARS- CoV-2	Case studies	Fever was the most common symp- tom of SARS- CoV-2. Gas- troin- testinal symp- toms in the form of diarrhea ap- peared in only one patient. Only one patient had dry cough
----	--------------------------------	---------	---	---	------------------	----------------	---	-----------------	---

Widhidewi et al. 2020 24	Bali	200	Throat swabs	Family of paramyx- oviridae, herpesviri- dae, coronaviri- dae, adenoviri- dae, adenoviri- dae, arenaviri- dae Genus of enterovirus, heni- pavirus, influenza A virus, bocavirus, Pneu- movirinae viruses, Sub- family of RSV, human metapneumo	influenza A virus(H1N1, H1N2,), enterovirus 84, cox- sackievirus A6, and A24, rhinovirus A, and C, coxsack- ievirus B3, human adenovirus B2, B3, and C measles D8, and parain- fluenza virus 3, bocavirus, RSV A, B, human metapneu- movirus, human wi cus onavirus OC43,	Children and adults 0-6 and 80 years of age with acute respiratory tract infections	Cohort studies of children and adults with Acute respiratory infections	Positive detection rate of respirate viruses 490 % 7 most common viruses detected were help pesviride enterov influenz and RS
Widysanto et al. 2020 ⁵²	Tangerang City	1	NA	SARS- CoV-2	cytomegalov SARS- CoV-2	irus 48 year old male patient	Case report	Surviva with hypoxia in a critical COVID 19- positive ICU hospi- talized
Wirawan et al. 2020 ⁸²	Bali	NA	NA	SARS- CoV-2	SARS- CoV-2	NA	Modeling Study	patient from Indones NA

Yasmin et al. 2020 ⁵¹	Bangdung	1	Nasopharyng and pharyn- geal specimens	e a ARS- CoV-2	SARS- CoV-2	64-year- old female	Case report	Propose a syner gistic concept of letha
								arrhyth mia due to direc SARS- CoV-2-
								associat cardiac injury, hyperin flamma
								tory re- sponse, and
								drug- induced arrhyth
Aman et al. 2021 ²⁵	Bandung, Den- pasar, Jakarta, Makas- sar, Se- marang, Surabaya, and	420	Blood, na- sopha- ryngeal swabs, sputum, urine, feces	influenza virus, RSV, chikun- gunya virus, measles virus, human coron-	influenza, RSV, chikun- gunya virus, measles, human coron- avirus OC-43	Adults and children either 0-1 or [?]60 years of age with SARI	Hospital based passive SARI surveillance	Implem of the SARI criteria in tertiary referral hospi- tals would
	Yogyakarta			avirus OC-43, en- terovirus, herpes virus, human metapneumo	en- terovirus, her- pesviri- deae virus, human ovi nus tapneumo	ovirus		help identify poten- tial in- fluenza infectio

Baskara et al. 2021 ⁴⁶	Yogyakarta	1	Nasopharyngeaaars- and CoV-2 oropha- ryngeal swabs	SARS- CoV-2	42 year old diabetic male with SARS- CoV-2	Case report	First case of COVID 19 disease with active primary tubercu losis in Indone- sia. Limited or no protec- tion against COVID 19 is one of the prob- lems that leads to
Kadriyan et al. 2021 ⁵³	Nusa Teng- gara Barat	2	NasopharyngealARS- and CoV-2 oropha- ryngeal swabs	SARS- CoV-2	26-year- old woman and 19- year-old man	Case report	co- infectio The SARS- CoV2 gene remains detected in the tonsil and detritus even after th negative PCR report

Riawati et al. 2021 ⁴⁷	Yogyakarta	7	Nasopharyng and oropha- ryngeal swabs	gealARS- CoV-2	SARS-CoV-2	Young and older adults (36- 71 years of age)	Case reports	Chest X-ray (CXR) is con- sidered more effective and useful for initial screen- ing and follow- up of the progress of patients with COVID 19
								19


Figure Legend

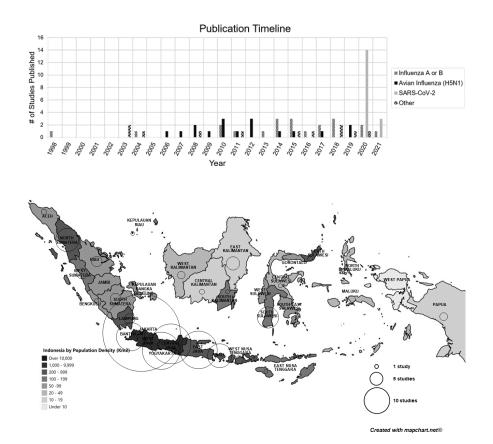

Figure 1. Flow chart of the English language article search, review, and selection process.

Figure 2. Flow chart of the Indonesian language article search, review, and selection process.

Figure 3. Timeline of selected article publication by virus with notations of key respiratory virus outbreaks that have occurred in Indonesia since 1998.

Figure 4. Map of the study locations and population densities in Indonesia.

/doi.org/10.22541/au.170670322.25933439/v1 — This is a preprint