Repeated cardiac arrests in a child due to severe aortic flow obstruction by Aortic cannula: A fatal complication

Vishnu Datt¹, Suman Keshav¹, Rachna Wadhwa¹, Sayyed Naqvi¹, Saket Agarwal¹, and * Nikhil¹

¹Govind Ballabh Pant Hospital

April 16, 2024

Abstract

In neonates and children the blood vessels are small in calibre and the correct choice of arterial and venous cannulas together with accurate placement are crucial to avoid obstructing vascular branches, and misdirecting flow or impairing venous drainage. Normally in children, to establish the cardiopulmonary bypass (CPB) one arterial cannula is inserted in the ascending aorta, and single stagevenous cannulae, where two cannulae inserted into the superior and inferior vena cava and joined by the Y-pieceare used in the most open-heartsurgeries to facilitate the circulatory, respiratory support along with the temperature management. Rarely aortic cannulation can lead to aortic dissection, aortic posterior wall rupture leading to trauma to the esophagus, dislodgement of the aortic atheroma, fatal bleeding leading even to cardiac arrest. In addition, SVC and IVC syndrome can also occur due displacement or obstruction by the venous cannulae. However, repeated cardiac arrestsin childrenafter successful weaning from CPB, even with the use of an appropriate size aortic cannula has not been reported in the literature to date. We wish to discuss this fatal complicationafter weaning from CPB, due to aortic flow obstruction due to aortic cannula in a one-year-old, 5.5 kg child following successfulventricular septal defect(VSD) repair. The international review board approval or waiver and clinical trial registrations are not applicable for this case report publication

Introduction:

CPB circuits are frequently necessary in the repair of congenital heart defects in neonates and children. Single stage cannulae are used during most open-heart surgeries, where two Cannulae are inserted in SVCand IVC and connected by Y-piece to establish CPB to divert the deoxygenated venous blood to the heart-lung machine for oxygenation and then back via the arterial cannula into the ascending aorta. Displacement of the venous cannulae can obstruct venous blood flow andmay result with SVC and IVC syndrome. [1] Conversely, the aortic cannulation can cause complications like aortic dissection, aortic rupture, profuse bleeding, and dislodgement of aortic atheroma resulting in systemic embolization. [2] we report a rarer consequence of aortic cannulation as a severe aortic blood flow obstruction embolization in repeated cardiac arrests in a child after successful VSD repair under CPB.

Key words: congenital heart disease, CPB, aortic cannulation, aortic obstruction, cardiac arrest, TEE Case report:

A one-year-old, 5.5 Kg,with a BSA of 0.33 m2,male child presented withhurried breathing since birth, and recurrentupper respiratorytract infection and easy fatiguability with decreased activity since three months of age. There was no history of cyanotic spells. On auscultation, a pansystolic murmur was present at the left fourth intercostal space. Chest X- ray showed pulmonary artery enlargement, cardiomegaly and increased pulmonary vascularity. Echocardiography revealed a large doubly committed VSD of 8.8 mm with moderate PAH, dilated RA,RV, and pulmonary artery (2.6 cm), and normal biventricular functions with LVEF

of 60%, and TAPSE of 21mm. He was put on oraldigitalis, enalapril, sildenafil and furosemide, and after obtaining informed consent from the parents, he was taken up for VSD patchclosure under cardiopulmonary bypass (CPB). He was premedicated with oral midazolam (3mg) two hours before surgery. In OR, standard ASAmonitoring was started. His baseline heart rate was 140 bpm and arterial saturation was 99%. General anaesthesia was induced with fentanyl (50mc), thiopentone sodium (5mg), midazolam (0.5mg), and vecuronium bromide(1mg) was used to facilitate the endotracheal intubation with 4.5 mm cuff tube. After induction of an aesthesia. 20 GL eader cath was inserted in the left femoral artery for continuous BP monitoring and intermittent ABG analysis. A 4.5 Fr triple lumen catheter was inserted via right internal jugular vein for CVP monitoring and administration of anaesthetic drugs and inodilators. His baseline BP and CVP were 85/50mmHgand 6 mmHgrespectively, and ABG revealed a pH 7.40, PO2-176 mmHg,PCO2 -35mmhg, Hb-11gm%, HCO3- 25mmol/l, SaO2- 99.8%. Anaesthesia was maintained with intermittent fentanyl, midazolam, vecuronium bromide, and sevoflurane(1-2%) and oxygen in air with fraction of inspired oxygen (FiO2) of 0.5–1. Anticoagulation with heparin(300U/kg) was used to achieve an ACT of >480 Sec. Aortic cannulation was done using 12 Fr straight Styletted cannula (Medtronic), Venous drainage was done using single stage 14 Fr angled DLP cannula for SVC and 16 Fr angled DLP cannula for IVC. VSD was closed with Gore- Texpatch under standard moderate hypothermic CPB, and potassium enriched (Den-Lido)cardiopegic myocardial protection. Weaning from CPB was easy with the use of infusion of milrinone (0.5mc/kg/min), dobutamine(5 mc/kg/min) and NTG (1mc/kg/min). On direct needle insertion, PA pressures were 22/7(10) mmHg, at cardioplegia line was 70/40 mmHg and atside port of the aortic cannula were 35/18mmHg, as compared to femoral artery pressure of 30/17 mmHg. However, on visual assessment, the LV contractility deteriorated and progressed to distension and cardiac arrest and necessitated to reinstitute CPB. Patient had similar repeated three episodes of cardiac arrest on each successful weaning from CPB, and LV contractility and hemodynamics could not be maintained even with the use of very high doses of inotropes. But we noted an unusual BP difference at proximal to a ortic cannulation measured by direct needle insertion (90/40 mmHg)and femoral artery(30/17mmHg). Therefore, it was decided to insert the TEE probe to rule out coarctation of aorta and other cardiac anomalies, and to assess the VSD patch closure and hemodynamics. TEE confirmed adequate VSD closure, and absence of Coartation of a orta and any other cardiac anomalies, and good LV contractility while patient was on CPB support. Therefore, one more attempt for weaning off CPB was made under the TEE guidance. However, still there was a big difference between FA pressure and aortic pressure proximal to cannulation. Once again, the LVgot distended and became almost akinetic. Consequently, the patientalso developed severe mitral regurgitation with 2-3 MR jets and hemodynamic deterioration. [Fig.1, Video 1] Finally in a desperate scenario, it was decided to remove the aortic cannula even in severehemodynamic instability (BP 31/17 mmHg), realizing that the aortic cannula might be the culpritfor the deterioration of the LV function by obstructing the aortic blood flow. Following aortic decannulation, the LV contractility and hemodynamicsimproved gradually and maintained even with minimum infusion of dobutamine, milrinone. [Fig. 2, Video.2] [Fig.3, video. 3a, 3b]Utmost important to mention here that the similar sudden fall in blood pressure was also noted following aortic cannulation, however, that was managed as usual byvolume administration through aortic cannula and promptly institution of CPB. Heparin was neutralized with protamine (1:1.3 ratio). Total CPB times were 188 min, 15 min, 22 min, 40 min, and ischemia time was 140 min. Chest was closed after achieving proper haemostasis. His Blood pressure and CVP before shifting to ICU were 90/45 mmHg and 7 mmHgrespectively, and ABG showed a Ph-7.47, HB- 8.8 gm%, PCO2- 27, PaO2-244 mmHg, and SaO2- 99%. Tracheal extubation was done on 2nd postoperative dayandinodilatorstapered slowly. Post -extubation, child was fully alert without any neurocognitive dysfunctions. Rest of the course was uneventful, and patient was discharged on 10th postoperative day.

Discussion:

CPB is a standard procedure in paediatric cardiac surgery.[3] The general principles of CPB are same for neonates and adults. It requires aortic and bicaval cannulations, and some modifications are necessary to accommodate the multiple anatomical variations that may be encountered in congenital defects i.e. two aortic and three cava cannulas in associated interrupted aortic arch and a persistent left superior vena cava

(LSVC) for adequate drainage during the CPB.[4] The aortic cannulation is primarily done at the distal ascending aorta, positioning the cannula close to the origin of the brachiocephalic trunk.[5]The appropriate arterial cannula size depends upon the required CPB flow, calculated using the formula ;CPB blood flow rate (litre/min)=Body surface area (BSA)(m2)×Cardiac index (CI),(L m-2/min). Flows of 1.8 to 2.5 L/min/m² are commonly used for infants, children, and adults during mildtomoderate systemic hypothermia. The pump flow for this patient was calculated as Weight in KG x 150 ml/min= 750ml/min and accordinglyrecommended aortic cannula of 12 Fr for 700 ml – 1000 ml flow was used. If a cannula is too large, it can obstruct native heart output, particularly in the ascending aortic position as this output is critical during cannulation and the initiation and weaning phases of bypass, also too large of a cannula may require an aortotomy that is difficult to close in a standard fashion. Therefore, aortic cannula size should be selected in conjunction with the perfusionist team to utilize the appropriate cannula for adequate flow during CPB. Table below shows general sizes of cannulas used for initiating CPB.

Patient size (kg)	Arterial cannula (Fr)	Venous cannula (Fr)
2	8	8–10
3–6	10	10-12
6–8	12	14
8-16	14	17
16-30	17	19
30-40	17	21
>40	21	25

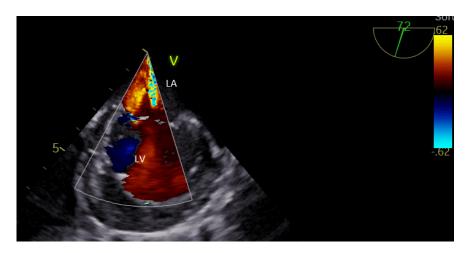
An arterial cannula that is too small, in addition to limiting flow, can causehigh pressuresgradient, cavitation, increased jet of flow velocities, jetting against the arterial wall and can increase the likelihood of dissection, and high shear forces which may damage the formed elements of the blood. However, diffusion-tip cannulas are available which provide multidirectional flow to reduce jets.[5]The tip of the cannula may be straight, tapered, or angled, as well as made from metal or plastic. Various tip modifications, such as flanges or adjustable rings, are available to prevent the cannula from being inserted too far into the aorta and impeding flow to the head vessels.[6] The inappropriately aortic cannulation can be associated with complications like bleeding, aortic dissection, malposition of cannula tip, atheroma dislodgement causing systemic embolism, accidental decannulation, aortic posterior wall puncture causing fatal bleeding and esophagealdamage. [7,8]

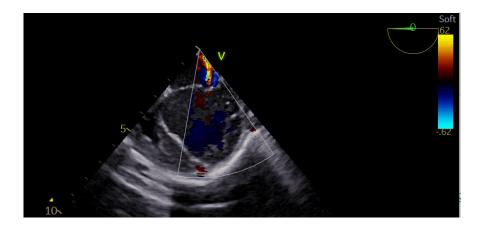
Our patient developed repeated LV distensions and cardiac arrests, even after repeated successful weaning from the CPB. Trans -esophagealechocardiography (TEE) was used to confirm any unnoticed congenital anomalies like PDA, ASD, coartation of the aorta, extra VSD, and VSD patch closure. After exclusion of the other possible causes of LV dysfunction and cardiac arrest, finally we reached to the decision that the repeated episodes of cardiac arrests were related to the rarer complication i.e. the aortic blood flow obstruction by the use of large aortic cannula. The LV dysfunction and cardiac arrests were even refractory to the very high doses of inotropes, inodilators and standard CPR, but at last LV dysfunctions and hemodynamic gradually improved only after aortic decannulation. This complication of aortic cannulation has been hypothesized but not reported in the existing literature till date.

Conclusion:

Aortic Cannula size should be selected in conjunction with the perfusionist team to utilize the appropriate cannula for adequate flow during CPB. It is imperative to finally decide the aortic cannula size after observing the ascending aorta size after opening the chest. Use of an inappropriately large aortic cannula particularly in neonates and children can obstruct the aortic blood flow before and after CPB and patient may develop refractory LV distension and cardiac arrest.

Financial support and sponsorship


Nil.


Conflicts of interest

There are no conflicts of interest.

References:

- 1. Review of evolving etiologies, implications and treatment strategies for the superior vena cava syndrome. Straka C, Ying J, Kong F-M, Willey CD, Kaminski J, Kim DW. Springerplus. 2016;5:229.
- 2. Gargava A, Sarkar M, Umbarkar S, Shringarpure A. Aortic cannula tip dislodgement: A rare complication. Ann Card Anaesth. 2020 Oct-Dec;23(4):515-517
- 3. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association. Circulation. 2019 Mar 5;139(10):e56-e528. doi: 10.1161/CIR.0000000000000059. Erratum in: Circulation. 2020 Jan 14;141(2):e33. PMID: 30700139.
- 4. Kouchoukos N, Blackstone E, Doty D, Hanley F, Karp R. Cardiac surgery. WB Saunders, 2003:107–118
- 5. Bond, E., Valadon, C. & Slaughter, M. Cannulation for Cardiopulmonary Bypass. In Cardiac Surgery Procedures (IntechOpen, 2019.Published: October 3rd 2019.DOI: 10.5772/intechopen.86033
- 6. Hessel EA, Hill AG. Circuitry and cannulation techniques. In: Gravlee GP, Davis RF, Kursz M, Utley JR, editors. Cardiopulmonary Bypass: Principles and Practice. 2nd ed. Philadelphia, PA: LWW; 2000
- Kincaid EH, Hammon JW. Cardiopulmonary bypass. In: Yuh DD, Vricella LA, Yang SC, Doty JR, editors. Johns Hopkins Textbook of Cardiothoracic Surgery. 2nd ed. New York, NY: McGraw-Hill; 2014
- 8. Sarkar M, Prabhu V. Basics of cardiopulmonary bypass. *Indian J Anaesth* . 2017;61(9):760-767. doi: 10.4103/ija.IJA_379_17

Hosted file

Fig.3.jfif available at https://authorea.com/users/413861/articles/713051-repeated-cardiac-arrests-in-a-child-due-to-severe-aortic-flow-obstruction-by-aortic-cannula-a-fatal-complication

Hosted file

Video.1.mp4 available at https://authorea.com/users/413861/articles/713051-repeated-cardiac-arrests-in-a-child-due-to-severe-aortic-flow-obstruction-by-aortic-cannula-a-fatal-complication

Hosted file

Video.2.mp4 available at https://authorea.com/users/413861/articles/713051-repeated-cardiac-arrests-in-a-child-due-to-severe-aortic-flow-obstruction-by-aortic-cannula-a-fatal-complication

Hosted file

Video.3b.mp4 available at https://authorea.com/users/413861/articles/713051-repeated-cardiac-arrests-in-a-child-due-to-severe-aortic-flow-obstruction-by-aortic-cannula-a-fatal-complication

Hosted file

Video.3a.mp4 available at https://authorea.com/users/413861/articles/713051-repeated-cardiac-arrests-in-a-child-due-to-severe-aortic-flow-obstruction-by-aortic-cannula-a-fatal-complication

Hosted file

Legends for the Fig- cardiac arrest.docx available at https://authorea.com/users/413861/articles/713051-repeated-cardiac-arrests-in-a-child-due-to-severe-aortic-flow-obstruction-by-aortic-cannula-a-fatal-complication