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Abstract

This paper is devoted to studying the existence of of renormalized solution for an initial boundary problem of a quasilinear

parabolic problem with variable exponent and $ L ˆ{1} $-data of the type \begin{equation*} \left\{ \begin{array}{ll} (b(u)) -

{t}-\text{div}(\left\vert \nabla u\right\vert ˆ{p(x)-2}\nabla u)+\lambda \left\vert u\right\vert ˆ{p(x)-2}u=f(x,t,u) \text{
} & \text{in}\hspace{0.5cm}Q=\Omega \times ]0,T[, \\ u=0 & \text{on}\hspace{0.5cm}\Sigma =\partial \Omega \times

]0,T[, \\ b(u)(t=0)=b(u {0}) & \text{in}\hspace{0.5cm}\Omega , \\ & \end{array}% \right. \end{equation*}% where $
\lambda>0$ and $ T $ is positive constant. The results of the problem discussed can be applied to a variety of different fields

in applied mathematics for example in elastic mechanics, image processing and electro-rheological fluid dynamics, etc.
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Summary

This paper is devoted to studying the existence of of renormalized solution for an
initial boundary problem of a quasilinear parabolic problem with variable exponent
and L1-data of the type
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(b(u))t − div(|∇u|p(x)−2∇u) + � |u|p(x)−2 u = f (x, t, u) in Q = Ω×]0, T [,
u = 0 on Σ = )Ω×]0, T [,
b(u)(t = 0) = b(u0) in Ω,

where � > 0 and T is positive constant. The results of the problem discussed can be
applied to a variety of different fields in applied mathematics for example in elastic
mechanics, image processing and electro-rheological fluid dynamics, etc..

KEYWORDS:
Quasilinear parabolic problems; variable exponent; truncations; renormalized solutions; L1 data.

1 INTRODUCTION

In recent years, there are a lot of interest in the study of various mathematical problems with variable exponent (see for example
[8,11,16,20 ] and references therein), the problems with variable exponent are interesting in applications and raise many difficult
mathematical problems, some of the models leading to these problems of this type are the models of motion of electrorheological
fluids, the mathematical models of stationary thermo-rheological viscous fows of non-Newtonian fluids and in the mathematical
description of the processes filtration of an ideal barotropic gas through a porousmedium we refer the reader for example to9 .
In the classical case (p(.) = 2 or p(.) = p (a constant)), we recall that the notion of renormalized solutions was introduced by Di
Perna and Lions10 in their study of the Boltzmann equation.
It has been studied by many authors under various conditions on the data the existence and uniqueness of the renormalized solu-
tion for parabolic equations with L1-data in the classical Sobolev spaces (see4,17 and2 ) .
In Sobolev space with variable exponents, the authors11 have proved the existence of renormalized solutions for a class of non-
linear parabolic systems with variable exponents and, for the corresponding parabolic equations with L1 data, the authors in8

have proved the existence and uniqueness of renormalized solution to nonlinear parabolic equations with variable exponents
and, in20 have proved an existence and uniqueness results renormalized solutions and entropy solutions for nonlinear parabolic
equations with variable exponents and L1 data. And moreover, we obtain the equivalence of renormalized solutions and entropy
solutions. On the other hand in16 S.Ouaro and all obtains existence and uniqueness of entropy solutions to nonlinear parabolic
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equation with variable exponent and L1-data. The functional setting involves Lebesgue and Sobolev spaces with variable expo-
nents .
In the present paper, we establish the existence of a renormalized solution for a class of a quasilinear parabolic problem of type

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(b(u))t − div(x, t,∇u) + 
(u) = f (x, t, u) in Q = Ω×]0, T [,
u = 0 on Σ = )Ω×]0, T [,
b(u)(t = 0) = b(u0) in Ω.

(1)

In the problem (1),Ω be a bounded domain ofℝN (N ≥ 2) with lipshitz boundedary )Ω andQ = Ω×]0, T [ for any fixed T is a
positive real number. Let p ∶ Ω ←→ [1,+∞) be a continuous rel-valued function and let p− = minx∈Ω p(x) and p

+ = maxx∈Ω p(x)
with 1 < p− ≤ p+ < N. Let −div(x, t,∇u) = −div(|∇u|p(x)−2∇u) is a Leary-Lions operator (see assumption (8)-(10)),
respectively, 
 ∶ ℝ → ℝ with 
(u) = � |u|p(x)−2 u is a continuous increasing function for � > 0 and 
(0) = 0 such that 
(u) is
assumed to belong to L1(Q) . The function f ∶ Q × ℝ → ℝ be a Carathéodory function (see assumptions (12)-(13)). Finally
the function b ∶ ℝ → ℝ is a strictly increasing C1−function lipchizienne with b(0) = 0 (see (11) ), the data f (x, t, u) and b(u0)
is in L1(Q).
For the quasilinear parabolic problem with variable exponent and L1 data of (1) the existence of renormalized solution, this
result can be seen as a generalization of the result in classical sobolev space obtained by S. Fairouz and all in12 in the case where
b(u) = u and u0 ∈ L1(Ω).
The paper is organized as follows: In section 2, we give some preliminaries and basic assumptions. In section 3, we give the
definition of a renormalized solution of (1), and we establish (Theorem (1) ) the existence of such a solution.

2 ASSUMPTIONS ON DATA AND PRELIMINARIES

2.1 Functional spaces
In this section, we first state some elementary results for the generalized Lebesgue spacesLp(.)(Ω),W 1,p(.)(Ω) and the generalized
Lebesgue-Sobolev spaces W 1,p(.)

0 (Ω) where Ω is an open subset of ℝN . We refer to Fan and Zhao13 for further properties
of Lebesgue Sobolev spaces with variable exponents. Let p ∶ Ω ←→ [1,+∞) be a continuous rel-valued function and let
p− = minx∈Ω p(x), p

+ = maxx∈Ω p(x) with 1 < p(.) < N.We denote the Lebesgue space with variable exponent Lp(.)(Ω) as the
set of all measurable function u ∶ Ω ←→ ℝ for which the convex modular

�p(.)(u) = ∫
Ω

|u|p(x) dx; (2)

is finite. If the exponent is bounded, i.e., if p+ < +∞, then the expression

‖u‖Lp(.)(Ω) = inf

⎧

⎪

⎨

⎪

⎩

� > 0;∫
Ω

|

|

|

|

u(x)
�

|

|

|

|

p(x)
dx ≤ 1

⎫

⎪

⎬

⎪

⎭

, (3)

defines a norm in Lp(.) (Ω) called the Luxembourg norm. The space (Lp(.)(Ω); ‖.‖p(.)) is a separable Banach space. Moreover, if
1 < p− ≤ p+ < +∞, then Lp(.)(Ω) is uniformly convex, hence reflexive and its dual space is isomorphic to Lp′(.)(Ω), where
1
p(x)

+ 1
p′(x)

= 1, for x ∈ Ω .
The following inequality will be used later:

min
{

‖u‖p
−

Lp(.)(Ω) , ‖u‖
p+

Lp(.)(Ω)

}

≤ ∫
Ω

|u(x)|p(x) dx ≤ max
{

‖u‖p
−

Lp(.)(Ω) , ‖u‖
p+

Lp(.)(Ω)

}

. (4)

Finally, we have the Holder type inequality
|

|

|

|

|

|

|

∫
Ω

uvdx

|

|

|

|

|

|

|

≤
(

1
p−
+ 1
p+

)

‖u‖
p(.)
‖v‖

p′(.)
, (5)

for all u∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω).
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Let
W 1,p(.)(Ω) =

{

u ∈ Lp(.)(Ω), |∇u| ∈ Lp(.)(Ω)
}

, (6)
which is Banach space equiped with the following norm

‖u‖
1,p(.)

= ‖u‖
p(.)
+ ‖∇u‖

p(.)
. (7)

The space (W 1,p(.)(Ω); ‖.‖1,p(.)) is a separable and reflexive Banach space. An important role in manipulating the generalized
Lebesgue and Sobolev spaces is played by the modular �p(.) of the space Lp(.)(Ω). We have the following result:

Proposition 1. If un, u ∈ Lp(.)(Ω) and p+ < +∞, the following properties hold true.

(i) ‖u‖
p(.)
> 1 ⇐⇒ ‖u‖p+

p(.)
< �p(.)(u) < ‖u‖p−

p(.)
,

(ii) ‖u‖
p(.)
< 1 ⇐⇒ ‖u‖p−

p(.)
< �p(.)(u) < ‖u‖p+

p(.)
,

(iii) ‖u‖
p(.)
< 1 ( respectively = 1, > 1)⇐⇒ �p(.)(u) < 1 ( respectively = 1, > 1),

(iv) ‖
‖

un‖‖p(.) ←→ 0 ( respectively ←→ +∞)⇐⇒ �p(.)(un) < 1( respectively ←→ +∞),

(v) �p(.)
(

u
‖u‖

p(.)

)

= 1.

For a measurable function u ∶ Ω ←→ ℝ, we introduce the following notation

�1,p(.) = ∫
Ω

|u|p(x) dx + ∫
Ω

|∇u|p(x) dx.

Proposition 2. If u ∈ W 1,p(.)(Ω) and p+ < +∞, the following properties hold true.

(i)‖u‖
1,p(.)

> 1 ⇐⇒ ‖u‖p+
1,p(.)

< �1,p(.)(u) < ‖u‖p−
1,p(.)

,
(ii)‖u‖

1,p(.)
< 1 ⇐⇒ ‖u‖p−

1,p(.)
< �1,p(.)(u) < ‖u‖p+

1,p(.)
,

(iii)‖u‖
1,p(.)

< 1 (respectively = 1, > 1)⇐⇒ �1,p(.)(u) < 1(respectively = 1, > 1).
Extending a variable exponent p ∶ Ω ←→ [1,+∞) to Q = [0, T ] × Ω by setting p(x, t) = p(x) for all (x, t) ∈ Q.
We may also consider the generalized Lebesgue space

Lp(.)(Q) =

⎧

⎪

⎨

⎪

⎩

u ∶ Q ←→ ℝ mesurable such that∫
Q

|u(x, t)|p(x) d(x, t) <∞

⎫

⎪

⎬

⎪

⎭

;

endowed with the norm

‖u‖Lp(.)(Q) = inf

⎧

⎪

⎨

⎪

⎩

� > 0;∫
Q

|

|

|

|

u(x, t)
�

|

|

|

|

p(x)
d(x, t) ≤ 1

⎫

⎪

⎬

⎪

⎭

;

which share the same properties as Lp(.)(Ω).

2.2 Assumptions
Let Ω be a bounded open set of ℝN (N ≥ 2), T > 0 is given and we set Q = Ω × ]0, T [, and  ∶ Q × ℝN → ℝN be a
Carathéodory function such that for all �, � ∈ ℝN , � ≠ �

(x, t, �).� ⩾ � |�|p(x) , (8)

|(x, t, �)| ⩽ �
[

L(x, t) + |�|p(x)−1
]

, (9)

((x, t, , �) −(x, t, �)).(� − �) > 0, (10)
where 1 < p− ≤ p+ < +∞, �, � are positives constants and L is a nonnegative function in Lp′(.)(Q) and 
 ∶ ℝ → ℝ is a
continuous increasing function with 
(0) = 0.
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Let b ∶ ℝ → ℝ is a strictly increasing C1−function lipchizienne with b(0) = 0 and for any �, �
are positives constants such that

� ≤ b′(s) ≤ �, ∀s ∈ ℝ, (11)
f ∶ Q ×ℝ → ℝ be a Carathéodory function such that for any � > 0, there exists c ∈ Lp′(.)(Q) such that

|f (x, t, s)| ≤ c(x, t) + �|s|p(x)−1, (12)
for almost every (x, t) ∈ (Q), s ∈ ℝ,

f (x, t, s)s ≥ 0, (13)

b(u0) ∈ L1(Ω). (14)

3 MAIN RESULTS

In this section, we study the existence of renormalized solutions to problem (1).

Definition 1. Let 2 − 1
N + 1

< p− ≤ p+ < N and b(u0) ∈ L1 (Ω). A measurable function u defined on Q is a renormalized
solution of problem (1) if ,

Tk(u) ∈ Lp
−(]0, T [;W 1,p(.)

0 (Ω)) for any k > 0 , 
(u), f (x, t, u) ∈ L1 (Q) , (15)

and b(u) ∈ L∞
(

]0, T [;L1 (Ω)
)

∩ Lq−(]0, T [;W 1,q(.)
0 (Ω)), (16)

for all continuous functions q(x)on Ω satisfying q(x) ∈
[

1, p(x) − N
N+1

)

for all x ∈ Ω,

lim
n→∞ ∫

{n≤|u|≤n+1}

(x, t,∇u)∇udxdt = 0, (17)

and if, for every function S ∈ W 2,∞(ℝ) which is piecewise C1 and such that S′ has compact support on ℝ, we have,

(BS(u))t − div((x, t,∇u)S′(u)) + S′′(u)(x, t,∇u)∇u + 
(u)S′(u) (18)

= f (x, t; u)S′(u) in ′(Q),

BS(u)(t = 0) = S(b(u0)) in Ω, (19)
where BS(z) = ∫ t

0 b
′(r)S′(r)dr.

The following remarks are concerned with a few comments on definition (1).

Remark 1. Note that, all terms in (18) are well defined. Indeed, let k > 0 such that supp(S′) ⊂ [K,K], we have BS(u) belongs
to L∞(Q) because

|BS(u)| ≤

u

∫
0

|b′(r)S′(r)|dr ≤ �‖S′‖L∞(ℝ);

and S(u) = S(Tk(u)) ∈ Lp−(]0, T [;W 1;p(.)
0 (Ω)) and )BS (u)

)t
∈ ′(Q). The term S′(u)(x, t,∇Tk(u)) identifes with

S′(Tk(u))(x, t,∇(Tk(u))) a.e. in Q, where u = Tk(u) in {|u| ≤ k}, assumptions (9) imply that

|

|

S′(Tk(u))(x, t,∇Tk(u))||
≤ � ‖S′‖L∞(ℝ)

[

L(x, t) + |

|

∇(Tk(u))||
p(x)−1

]

a.e in Q.
(20)

Using (9) and (15), it follows that S′(u)(x, t,∇u) ∈ (Lp′(.)(Q))N . The term S′′(u)
(x, t,∇u)∇(u) identifes withS′′(u)(t, x,∇(Tk(u)))∇Tk(u) and in view of (9), (15) and (20), we obtainS′′(u)(x, t,∇u)∇(u) ∈
L1(Q) and S′(u)
(u) ∈ L1(Q). Finally f (x, t, u) S′(u) = f (x, t, Tk(u))S′(u) a.e in Q . Since |Tk(u)| ≤ k and S′(u) ∈ L∞(Q),
c(x, t) ∈ Lp′(.)(Q) , we obtain from (12) that f (x, t, Tk(u))S′(u) ∈ L1(Q).
We also have )BS (u)

)t
∈ L(p−)′(]0, T [;W −1,p′(.)(Ω)) + L1(Q) and BS(u) ∈ Lp−(]0, T [;W 1,p(.)

0 (Ω)) ∩ L∞(Q), which implies that
BS(u) ∈ C(]0, T [;L1(Ω)).



Fairouz Souilah ET AL 5

Theorem 1. Let b(u0) ∈ L1(Ω), assume that (8)-(14) hold true, then there exists at least one renormalized solution u of problem
(1) ( in the sens of Definition (1) ).

Proof. of Theorem (1) The above theorem is to be proved in five steps.

• Step 1: Approximate problem and a priori estimates.
Let us define the following approximation of b and f for " > 0 fixed

b"(r) = T 1
"
(b(r)) a.e in Ω for " > 0, ∀r ∈ ℝ, (21)

b"(u"0) are a sequence of C
∞
c (Ω) functions such that (22)

b"(u"0)→ b(u0) in L1(Ω) as " tends to 0.

f "(x, t, r) = f (x, t, T 1
"
(r)), (23)

in view of (12) and (13), there exist c" ∈ Lp
′(.)(Q) and �" > 0 such that

|f "(x, t, s)| ≤ c"(x, t) + �"|s|p(x)−1, (24)

for almost every (x, t) ∈ (Q), s ∈ ℝ,
f "(x, t, s)s ≥ 0, (25)

Let us now consider the approximate problem
(

b"(u")
)

t − div(x, t,∇u
") + 
 (u") = f "(x, t, u") in Q, (26)

u" = 0 on ]0, T [ × )Ω, (27)

b"(u") (t = 0) = b"(u"0) in Ω. (28)
As a consequence, proving existence of a weak solution u" ∈ Lp−(]0, T [;W 1,p(.)

0 (Ω)) of (26)-(28) is an easy task (see15).

We choose Tk(u")�(0,t) as a test function in (26), we have

∫
Ω

B"k(u
")(t)dx +

t

∫
0
∫
Ω

(x, t,∇u")∇Tk(u") +

t

∫
0
∫
Ω


 (u") Tk(u")dxds (29)

=

t

∫
0
∫
Ω

f "(x, t, u")Tk(u")dxds + ∫
Ω

B"k(u
"
0)dx,

for almost every t in (0, T ), and where

B"k(r) =

r

∫
0

Tk(s)
)b"(s)
)s

ds.

Under the definition of B"k(r) the inequality

0 ≤ ∫
Ω

B"k(u
"
0)(t)dx ≤≤ k|b"(u"0)|dx, k > 0.

Using (8), f "(x, t, u")Tk(u") ≥ 0, and we have 
(u") = �|u"|p(x)−1u" ≥ 0 because 1 < p− ≤ p(x) ≤ +∞ and the definition
of B"k(r) in (29), we obtain

∫
Ω

B"k(u
")(t)dx + �∫

Ek

|∇u"|p(x) dxds ≤ k ‖‖
‖

b"(u"0)
‖

‖

‖L1(Q)
, (30)
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where Ek = {(x, t) ∈ Q ∶ |u"| ≤ k}, using B"k(u
")(t) ≥ 0 and inequality (4) in (30) , we get

T

� ∫
0

min
{

‖

‖

∇Tk(u")‖‖
p−
Lp(x)(Ω) , ‖‖∇Tk(u

")‖
‖

p+
Lp(x)(Ω)

}

≤ � ∫
{(x,t)∈Q∶ |u"|≤k}

|∇u"|p(x) dxdt ≤ C, (31)

then is Tk(u") is bounded in Lp−(]0, T [ ;W
1,p(x)
0 (Ω)).

In the other hand, we obtain
k ∫
{(t,x)∈Q∶|u"|>k}

|
(u")| dxdt ≤ k ‖‖
‖

b"(u"0)
‖

‖

‖L1(Q)
, (32)

and
k ∫
{(x,t)∈Q∶|u"|>k}

|f "(x, t, u")| dxdt ≤ k ‖‖
‖

b"(u"0)
‖

‖

‖L1(Q)
. (33)

Now, let T1(s−Tk(s)) = Tk,1(s) and we take Tk,1(b"(u")) as test function in (26). Reasoning as above, using that∇Tk,1(s) =
∇s�{k≤|s|≤k+1} and appling young’s inequality, we obtain

� ∫
{k≤|b"(u")|≤k+1}

b′"(u
") |∇(u")|p(x) dxdt ≤ k ∫

|
b"(u"0)|>k

|

|

|

b"(u"0)
|

|

|

dx + Ck ∫
|
b"(u")|>k

|
(u")| dxdt

+Ck ∫
|
b"(u")|>k

|f "(x, t, u")| dxdt ≤ C1,

inequality (4) implies that
T

∫
0

��{k≤|b"(u")|≤k+1} min
{

‖

‖

∇(b"(u"))‖‖
p−
Lp(x)(Ω) , ‖‖∇(b"(u

"))‖
‖

p+
Lp(x)(Ω)

}

(34)

≤ � ∫
{k≤|b"(u")|≤k+1}

b′"(u
") |∇(u")|p(x) dxdt ≤ C1.

On sait que the propriete of B"k(u
"), (B"k(u

") ≥ 0, B"k(u
")) ≥ �(|s| − 1), we obtain

∫
Ω

|

|

B"k(u
")(t)|

|

dx ≤ k∫
Ω

|

|

b"(u")(t)|| dx ≤ �
⎛

⎜

⎜

⎝

∫
Ω

|1| dx + k ‖‖
‖

b"(u"0)
‖

‖

‖L1(Ω)

⎞

⎟

⎟

⎠

≤ �
(

meas(Ω) + k ‖‖
‖

b"(u"0)
‖

‖

‖L1(Ω)

)

. (35)

From the estimation (31), (34), (35) and the properites of B"k and b"(u
"
0), we deduce that

b"(u") is bounded in L∞
(

]0, T [;L1 (Ω)
)

; (36)

and
b"(u") is bounded in Lp−(]0, T [ ;W

1,p(x)
0 (Ω)); (37)

by Lemma 2.1 in8 and by (34), (35) and si 2 − 1
N + 1

< p(.) < N , we obtain

b"(u") is bounded in Lq−(]0, T [ ;W
1,q(x)
0 (Ω)), (38)

for all continuous variable exponents q ∈ C(Ω) satisfying 1 ≤ q(x) <
N(p(x) − 1) + p(x)

N + 1
, for all x ∈ Ω.

And
Tk (u") is bounded in Lp

−
(

]0, T [;W 1,p(.)
0 (Ω)

)

. (39)
By (32) and (33) , we may conclude that


(u") is bounded in L1
(

]0, T [;L1 (Ω)
)

, (40)
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and
f "(x, t, u") is bounded in L1

(

]0, T [;L1 (Ω)
)

, (41)
independently of ".
Proceeding as in4,5 that for any S ∈ W 2,∞(ℝ) such that S′ is compact (supp S′ ⊂ [−k, k])

S (u") is bounded in Lp−
(

]0, T [;W 1,p(.)
0 (Ω)

)

, (42)

and
(S (u"))t is bounded in L1 (Q) + L(p−)

′ (]0, T [;W −1,p′(.) (Ω)
)

. (43)
In fact, as a consequence of (39), by Stampacchia’s Theorem, we obtain (42). To show that (43) holds true, we multiply
the equation (26) by S′(u") to obtain

(

BS (u")
)

t = div(S′ (u")(x, t,∇u")) −(x, t,∇u")∇
(

S′ (u")
)

(44)

−
 (u")S′ (u") + f "(x, t, u")S′ (u") in ′ (Q) .
Since supp(S′) and supp(S′′) are both included in [−k; k]; u" may be replaced by Tk(u") in {|u"| ≤ k}. On the other
hand we have

|

|

S′ (u")(x, t,∇u")|
|

(45)

≤ � ‖
‖

S′‖
‖L∞

[

L(x, t) + |

|

∇Tk(u")||
p(x)−1

]

.

As a consequence, each term in the right hand side of (44) is bounded either in L(p−)′
(

]0, T [;W −1,p′(.) (Ω)
)

or in L1(Q),
and we then obtain (43).
Now we look for an estimate on a sort of energy at infinity of the approximating solutions. For any integer n ≥ 1, consider
the Lipschitz continuous function �n defined through

�n (s) = Tn+1 (s) − Tn (s) =

⎧

⎪

⎨

⎪

⎩

0 if |s| ≤ n,
(|s| − n) sign(s) if n ≤ |s| ≤ n + 1,

sign(s) if |s| ≥ n.

Remark that ||�n||L∞ ≤ 1 for any n ≥ 1 and that �n (s) → 0, for any s when n tends to infinity. Using the admissible test
function �n(u") in (26) leads to

∫
Ω

�̃n (u") (t) dx + ∫
Q

(x, t,∇u")∇
(

�n(u")
)

dxdt + ∫
Q


 (u") �n(u")dxdt

= ∫
Q

f "(x, t, u")�n(u")dxdt + ∫
Ω

�̃n
(

u"0
)

dx, (46)

where �̃n (r) (t) = ∫ r
0 �n(s)

)b"(s)
)s

ds,

for almost any t in ]0, T [ and where �̃n(r) =
r
∫
0
�n(s)ds ≥ 0. Hence, dropping a nonnegative term

∫
{n≤|u"|≤n+1}

(x, t,∇u")∇u"dxdt (47)

≤ ∫
Q


 (u") �n(u")dxdt + ∫
Q

f "(x, t, u")�n(u")dxdt + ∫
Ω

�̃n
(

u"0
)

dx

≤ ∫
{|u"|≥n}

|
 (u")| dxdt + ∫
{|u"|≥n}

|f "(x, t, u")| dxdt + ∫
{|b"(u"0)|≥n}

|

|

|

b"(u"0)
|

|

|

dx.

• Step 2: The limit of the solution of the approximated problem.
Arguing again as in [4,5,6] estimates (42) and (43) imply that, for a subsequence still indexed by ",

u" converge almost every where to u in Q, (48)
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using (26) ,(39) and (45), we get

Tk(u") converge weakly to Tk(u) in Lp−
(

]0, T [ ,W 1,p(.)
0 (Ω)

)

, (49)

�{|u"|≤k}(x, t,∇u")⇀ �k weakly in
(

Lp′(.) (Q)
)N

, (50)

as " tends to 0 for any k > 0 and any n ≥ 1 and where for any k > 0, �k belongs to
(

Lp′(.) (Q)
)N . Since 
(u") is a

continuous incrassing function, from the monotone convergence theorem and (32) and by (48), we obtain that


(u") converge weakly to 
(u) in L1(Q). (51)

We now establish that b(u) belongs to L∞
(

]0, T [ ;L1 (Ω)
)

. Indeed using (29) and ||
|

B"k (s)
|

|

|

≥ |s| − 1 leads to

∫
Ω

|

|

b"(u")|| (t)dx ≤ meas(Ω) + k ‖f "(x, t, u")‖L1(Q) + k ‖
 (u")‖L1(Q) + k
‖

‖

‖

b"(u"0)
‖

‖

‖L1(Ω)
.

Using (32) and (22),(33) , we have u belongs to L∞
(

]0, T [ ;L1 (Ω)
)

.We are now in a position to exploit (47). Since u"
is bounded in L∞

(

]0, T [ ;L1 (Ω)
)

, we get

lim
n→+∞

(

sup
"
meas {|u"| ≥ n}

)

= 0. (52)

The equi-integrability of the sequence f "(x, t, u") in L1(Q). We shall now prove that f "(x, t, u") converges to f (x, t, u)
strongly inL1(Q), by using VitaliâĂŹs theorem. Since f "(x, t, u")→ f (x, t, u) a.e inQ it suffices to prove that f "(x, t, u")
are equi-integrable in Q. Let � > 0 and A be a measurable subset belonging to Ω×]0, T [, we define the following sets

G� = {(x, t) ∈ Q ∶ |

|

un|| ≤ �}; (53)
F� = {(x, t) ∈ Q ∶ |

|

un|| > �}. (54)

Using the generalized Hölder’s inequality and Poincaré inequality, we have

∫
A

|f "(x, t, u")| dxdt = ∫
A∩G�

|f "(x, t, u")| dxdt + ∫
A∩F�

|f "(x, t, u")| dxdt,
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therfore

∫
A

|f "(x, t, u")| dxdt ≤ ∫
A∩G�

(

c"(x, t) + �" ||un||
p(x)−1

)

dxdt + ∫
A∩F�

|f "(x, t, u")| dxdt

≤ ∫
A

c"(x, t)dxdt + �" ∫
Q

|

|

∇T�(u")||
p(x)−1 dxdt

+ ∫
A∩F�

|f "(x, t, u")| dxdt

≤ ∫
A

c"(x, t)dxdt + �"

(

1
p−
+ 1
p′−

)

(meas(Q) + 1)
1
p−

⎛

⎜

⎜

⎝

∫
QT

|

|

∇T�(u")||
(p(x)−1)p′(x) dxdt

⎞

⎟

⎟

⎠

1
p′−

+ ∫
A∩F�

|f "(x, t, u")| dxdt

≤ K1 + C2
(k
�
‖

‖

‖

b"(u"0)
‖

‖

‖L1(Ω)

)

1
2 + ∫

A∩F�

1
|u"|

|u"f "(x, t, u")| dxdt

≤ K2 + ∫
A∩F�

1
�
|u"f "(x, t, u")| dxdt

≤ K2 +
1
�

(

1
p−
+ 1
p′−

)

⎛

⎜

⎜

⎝

∫
A∩F�

|u"|p(x) dxdt
⎞

⎟

⎟

⎠

1
p−

⎛

⎜

⎜

⎝

∫
A∩F�

|f "(x, t, u")|p
′(x)(p(x)−1) dxdt

⎞

⎟

⎟

⎠

1
p′−

→ 0 when meas(A)→ 0.

Which shows that f "(x, t, u") is equi-integrable. By using Vitali’s theorem, we get

f "(x, t, u")→ f (x, t, u) strongly in L1(Q). (55)

Using (51), (55) and the equi-integrability of the sequence |b"(u"0)| in L
1(Ω), we deduce that

lim
n→+∞

⎛

⎜

⎜

⎝

sup
" ∫
{n≤|u"|≤n+1}

(x, t,∇u")∇u"dxdt
⎞

⎟

⎟

⎠

= 0. (56)

• Step 4: Strong convergence.
The specifie time regularization of Tk(u) (for fixed k ≥ 0) is defined as follows. Let

(

v�0
)

� be a sequaence in L∞ (Ω) ∩
W 1,p(.)
0 (Ω) such that‖‖

‖

v�0
‖

‖

‖L∞(Ω)
≤ k, ∀� > 0, and v�0 → Tk(u0) a.e in Ω with 1

�
‖

‖

‖

v�0
‖

‖

‖Lp(.)(Ω)
→ 0 as � → +∞.

For fixed k ≥ 0 and � > 0, let us consider the unique solution Tk(u)� ∈L∞ (Ω)∩Lp−
(

]0, T [;W 1,p(.)
0 (Ω)

)

of themonotone
problem

)Tk(u)�
)t

+ �
(

Tk(u)� − Tk(u)
)

= 0 in ′ (Q) , (57)

Tk(u)�(t = 0) = v
�
0 . (58)

The behavior of Tk(u)� as � → +∞ is investigated in9 and we just recall here that (57)-(58) imply that

Tk(u)� → Tk(u) strongly in Lp−
(

]0, T [;W 1,p(.)
0 (Ω)

)

a.e in Q as � → +∞, (59)

with ‖‖
‖

Tk(u)�
‖

‖

‖L∞(Ω)
≤ k, for any �, and )Tk(u)�

)t
∈ L(p−)′

(

]0, T [;W −1,p′(.) (Ω)
)

.
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The main estimate is the following

Lemma 1. Let S be an increasing C∞ (ℝ) − function such that S(r) = r for r ≤ k, and suppS′ is compact. Then

lim inf
�→+∞

lim
"→0

T

∫
0

⟨)u"

)t
, S′(u")

(

Tk(u")� − Tk(u)
)

⟩

dt ≥ 0,

where here ⟨., .⟩ denotes the duality pairing between L1(Ω) +W −1,p′(.) (Ω) and L∞ (Ω) ∩W 1,p(.)
0 (Ω).

Proof. See6, Lemma 1.

• Step 4: Here we are to prove that the weak limit �k and we prove the weak L1 convergence of the "truncted" energy

(

x, t,∇Tk(u")
)

as " tends to 0. In order to show this result we recall the lemma below.

Lemma 2. The subsequence of u" defined in step 3 satisfies

lim sup
"→0 ∫

Q

 (x, t,∇u") ∇Tk(u")dxdt ≤ ∫
Q

�k∇Tk(u)dxdt, (60)

lim
"→0∫

Q

[


(

x, t,∇u"�{|u" |≤k}
)

−
(

x, t,∇u�{|u|≤k}
)]

×
[

∇u"�{|u" |≤k} − ∇u�{|u|≤k}
]

dxdt = 0 (61)

�k = 
(

x, t,∇u�{|u|≤k}
)

a.e in Q, for any k ≥ 0, as " tends to 0.

 (x, t,∇u") ∇Tk(u")→  (x, t,∇u) ∇Tk(u) weakly in L1 (Q) . (62)

Proof. Let us introduce a sequence of increasing C∞(ℝ)-functions Sn such that, for any n ≥ 1

⎧

⎪

⎨

⎪

⎩

Sn(r) = r if |r| ≤ n;
supp

(

S′n
)

⊂ [−(n + 1), (n + 1)] ,
‖

‖

S′′n ‖‖L∞(ℝ) ≤ 1.
(63)

For fixed k ≥ 0, we consider the test function S′n(u
")
(

Tk(u") −
(

Tk(u)
)

�

)

in (26), we use the definition (63) of S′n and
we definieW "

� = Tk(u") −
(

Tk(u)
)

� , we get
T

∫
0

⟨

(u")t , S′n(u
")W "

�

⟩

dt + ∫
Q

S′n(u
")(x, t,∇u")∇W "

� dxdt (64)

+∫
Q

S′′n (u
")(x, t,∇u")∇u"W "

� dxdt + ∫
Q


(u")S′n(v
")W "

� dxdt

= ∫
Q

f "(x, t, u")S′n(u
")W "

� dxdt.

Now we pass to the limit in (64) as " → 0, � → +∞, n → +∞ for k real number fixed. In order to perform this task, we
prove below the following results for any k ≥ 0 ∶

lim inf
�→+∞

lim
"→0

T

∫
0

⟨

(u")t , S′n(u
")W "

�

⟩

dt ≥ 0 for any n ≥ k, (65)

lim
n→+∞

lim
�→+∞

lim
"→0∫

Q

S′′n (u
")(x, t,∇u")∇u"W "

� dxdt = 0, (66)
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lim
�→+∞

lim
"→0∫

Q


(u")S′n(u
")W "

� dxdt = 0, for any n ≥ 1, (67)

lim
�→+∞

lim
"→0∫

Q

f "(x, t, u")S′n(u
")W "

� dxdt = 0, for any n ≥ 1, (68)

Proof of (65). In view of the definition W "
� , we apply lemma (1) with S = Sn for fixed n ≥ k. As a consequence, (65)

hold true.

Proof of (66). For any n ≥ 1 fixed, we have supp(S′′n ) ⊂ [−(n + 1),−n]∪[n, n + 1] ,
‖

‖

‖

W "
�
‖

‖

‖L∞(Q)
≤ 2k and ‖

‖

S′′n ‖‖L∞(ℝ) ≤ 1,
we get

|

|

|

|

|

|

|

∫
Q

S′′n (u
") (x, t,∇u") ∇u"W "

� dxdt

|

|

|

|

|

|

|

(69)

≤ 2k ∫
{n≤|u"|≤n+1}

 (x, t,∇u") ∇u"dxdt

for any n ≥ 1, by (56) it possible to etablish (66)

Proof of (67). For fixed n ≥ 1 and in view (51) . Lebesgue’s convergence theorem implies that for any � > 0 and any
n ≥ 1

lim
"→0∫

Q


(u")S′n(u
")W "

� dxdt = ∫
Q


(u)S′n(u)(Tk(u) − Tk (u)�)dxdt. (70)

Appealing now to (59) and passing to the limit as � → +∞ in (70) allows to conclude that (67) holds true.

Proof of (68). By (23), (55) and Lebesgue’s convergence theorem implies that for any � > 0 and any n ≥ 1, it is possible
to pass to the limit for "→ 0

lim
"→0∫

Q

f "(x, t, u")S′n(u
")W "

� dxdt = ∫
Q

f (x, t, u)S′n(u)(Tk(u) − Tk (u)�)dxdt,

using (59) permits to the limit as � tends to +∞ in the above equality to obtain (68).

We now turn back to the proof of Lemma (2), due to (65)-(68), we are in a position to pass to the limit-sup when " → 0,
then to the limit-sup when � → +∞ and then to the limit as n→ +∞ in (64). Using the definition ofW "

� , we deduce that
for any k ≥ 0,

lim
n→+∞

lim sup
�→+∞

lim sup
"→0 ∫

Q

(x, t,∇u")S′n(u
")∇

(

Tk(u") − Tk(u)�
)

dxdt ≤ 0.

Since(x, t,∇u")S′n(u
")∇Tk(u") = (x, t,∇u")∇Tk(u") fo k ≤ n, the above inequality implies that for k ≤ n,

lim sup
"→0 ∫

Q

(x, t,∇u")∇Tk(u")dxdt (71)

≤ lim
n→+∞

lim sup
�→+∞

lim sup
"→0 ∫

Q

(t, x,∇u")S′n(u
")∇Tk(u)�dxdt.

Due to (50), we have
(x, t,∇u")S′n(u

")→ �n+1S
′
n(u) weakly in

(

Lp′(.) (Q)
)N as "→ 0

and the strong convergence of Tk(u)� to Tk(u) in Lp
−(]0, T [;W 1,p

0 (Ω)) as � → +∞, we get

lim
�→+∞

lim
"→0∫

Q

(x, t,∇u")S′n(u
")∇Tk(u)�dxdt (72)

= ∫
Q

S′n(u)�n+1∇Tk(u)dxdt = ∫
Q

�n+1∇Tk(u)dxdt,
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as soon as k ≤ n, since S′n(s) = 1 for |s| ≤ n. Now, for k ≤ n, we have

S′n(u
")(x, t,∇u")�{|u" |≤k} = (x, t,∇u")�{|u" |≤k} a.e in Q.

Letting "→ 0, we obtain
�n+1�{|u|≤k} = �k�{|u|≤k} a.e in Q − {|u| = k} for k ≤ n.

Recalling (71) and (72) allows to conclude that (60) holds true.

Proof of (61). Let k ≥ 0 be fixed. We use the monotone character (10) of (x, t, �) with respest to �, we obtain

I" = ∫
Q

(

(x, t,∇u"�{|u"|≤k}) −(x, t,∇u�{|u|≤k})
) (

∇u"�{|u"|≤k} − ∇u�{|u|≤k}
)

dxdt ≥ 0. (73)

Inequality (73) is split into I" = I"1 + I
"
2 + I

"
3 where

I"1 = ∫
Q

(x, t,∇u"�{|u"|≤k})∇u"�{|u"|≤k}dxdt,

I"2 = −∫
Q

(x, t,∇u"�{|u"|≤k})∇u�{|u|≤k}dxdt,

I"3 = −∫
Q

(x, t,∇u�{|u|≤k})
(

∇u"�{|u"|≤k} − ∇u�{|u|≤k}
)

dxdt.

We pass to the limit-sup as " → 0 in I"1 , I
"
2 and I"2 . Let us remark that we have u" = Tk(u") and ∇u"�{|u"|≤k} = ∇Tk(u")

a.e in Q, and we can assume that k is such that �{|u"|≤k} almost everywhere converges to �{|u|≤k}(in fact this is true for
almost every k, see Lemma 3.2 in7). Using (60), we obtain

lim
"→0

I"1 = lim
"→0∫

Q

(x, t,∇u")∇Tk(u")dxdt (74)

≤ ∫
Q

�k∇Tk(u)dxdt.

In view of (49) and (50), we have

lim
"→0

I"2 = −lim
"→0∫

Q

(x, t,∇u"�{|u"|≤k})
(

∇Tk(u)
)

dxdt (75)

= −∫
Q

�k
(

∇Tk(u)
)

dxdt.

As a consequence of (49), we have for all k > 0

lim
"→0

I"3 = −∫
Q

(x, t,∇u�{|u|≤k})
(

∇Tk(u") − ∇Tk(u)
)

dxdt = 0. (76)

Taking the limit-sup as "→ 0 in (73) and using (74), (75) and (76) show that (61) holds true.

Proof of (62). Using (61) and the usual Minty argument applies it follows that (62) holds true.

• Step 5: In this step we prove that u satisfies (17), (18) and (19) . For any fixed n ≤ 0 one has

∫
{n≤|u"|≤n+1}

(x, t,∇u")∇u"dxdt

= ∫
Q

(x, t,∇u")∇Tn+1(u")dxdt − ∫
Q

(x, t,∇u")∇Tn(u")dxdt.



Fairouz Souilah ET AL 13

According to (50) and (62) one is at liberty to pass to the limit as " tends to 0 for fixed n ≥ 1 and to obtain

lim
"→0 ∫

{n≤|u"|≤n+1}

(x, t,∇u")∇u"dxdt (77)

= ∫
Q

(x, t,∇u)∇Tn+1(u)dxdt − ∫
Q

(x, t,∇u)∇Tn(u)dxdt

= ∫
{n≤|u"|≤n+1}

(x, t,∇u)∇udxdt.

Taking that limit as n tends to +∞ in (77) and using the estimate (56), that u satisfies (17).

Let S be a function inW 2,∞(ℝ) such that S′ has a compact. Let k be a positive real number such that supp(S′) ⊂ [−k, k].
Pontwise multiplication of that approximate equation (26) by S′(u") leads to

(

BS(u")
)

t − div(S
′(u")(x, t,∇u")) (78)

+S′′(u")(x, t,∇u")∇(u") + 
(u")S′(u") = f "(x, t, u")S′(u") in ′(Q).

In what follows we pass to the limit as " tends to 0 in each term of (78). Since S is bounded, and S(u") converges to S(u)
a.e in Q and in L∞(Q) *-weak, then (S(u"))t converges to (S(u"))t in ′(Q) as " tends to 0. Since supp(S′) ⊂ [−k, k],
we have S′(u")(t, x,∇u") = S′(u")(x, t,∇u")�{|u"|≤k} a.e in Q. The pointwise convergence of u" to u as " tends to 0,
the bounded character of S and (62) of Lemma(2) imply that S′(u")(x, t,∇u") converges to S′(u)(x, t,∇u) weakly in
(

Lp′(.)(Q)
)N as " tends to 0, because S′(u) = 0 for |u| ≥ k a.e in Q. The pointwise convergence of u" to u, the bounded

character of S′, S′′ and (62) of Lemma (2) allow to conclude that

S′′(u")(x, t,∇u")∇Tk(u")→ S′′(u)(x, t,∇u)∇Tk(u) weakly in L1(Q)

as " → 0. We use (51) we obtain that 
(u")S′(u") converges to 
(u)S′(u) in L1(Q), and we use (23), (49) and we obtain
that f "(x, t, u")S′(u") converges to f (x, t, u)S′(u) inL1(Q). As a consequence of the above convergence result, we are in a
position to pass to the limit as " tends to 0 in equation (78) and to conclude that u satisfies (18). It remains to show thatS(u)
satisfies the initial condition (19). To this end, firstly remark that, S being bounded, S(u") is bounded in L∞(Q), BS (u")
is bounded in L∞(Q). Secondly, (78) and the above considerations on the behavior of the terms of this equation show
that )BS (u

")
)t

is bounded in L1(Q) +L(p−)′(]0, T [;W −1,p′(.)(Ω)). As a consequence, an Aubin’s type lemma (18, Corollary 4)
implies that BS(u") lies in a compact set of C(]0, T [;L1(Ω)). It follows that, on the one hand, BS(u")(t = 0) converges to
BS(u)(t = 0) strongly in L1(Ω) Due to(22), we conclude that (19) holds true. As a conclusion of Step 3 and Step 5, the
proof of Theorem (1) is complete.
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