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Abstract

Atherosclerosis refers to a unique form of chronic inflammatory anomaly of the vasculature, presented as
rupture-prone or occlusive lesions in arteries. In advanced stages, atherosclerosis leads to the onset and devel-
opment of multiple cardiovascular diseases with lethal consequences. Inflammatory cytokines in atheroscle-
rotic lesions contribute to the exacerbation of atherosclerosis. Pharmacotherapies targeting dyslipidemia,
hypercholesterolemia and neutralizing inflammatory cytokines (TNF-o, IL-1f, IL-6, IL-17, and IL-12/23)
have displayed some promising although contradictory results. Moreover, adjuvants such as melatonin, a
pluripotent agent with proven anti-inflammatory, anti-oxidative and neuroprotective properties, also display
promises in alleviating cytokine secretion in macrophages through mitophagy activation. Here, we share our
perspectives on this concept and present melatonin-based therapeutics as a means to modulate mitophagy
in macrophages and, thereby, ameliorate atherosclerosis.
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Abbreviations:

AJUBA (ajuba LIM protein), AMP (adenosine monophosphate), AMPK (5" AMP-activated protein kinase),
ATG (autophagy related), BECN1 (beclin 1), BNIP3 (BCL2 interacting protein 3), BNIP3L (BCL2 inter-
acting protein 3 like), COX4I1 (cytochrome c oxidase subunit 4I11), DNM1L (dynamin 1 like), FOXO3 (fork-
head box 03), FUNDC1 (FUN14 domain containing 1), GABARAP (GABA type A receptor-associated
protein), HAS3 (hyaluronan synthase 3), HSPAIL (heat shock protein family A [Hsp70] member 1 like),
MAPILC3/LC3 (microtubule associated protein 1 light chain 3), MTORC1 (mechanistic target of rapamycin
kinase complex 1), NBR1 (NBR1 autophagy cargo receptor), NFE2L2 (nuclear factor, erythroid 2 like 2),
NFKBI1 (nuclear factor kappa B subunit 1), NLRP3 (NLR family pyrin domain containing 3), OPA1 (OPA1
mitochondrial dynamin like GTPase), PARL (presenilin associated rhomboid like), PGAM5 (PGAM family
member 5, mitochondrial serine/threonine protein phosphatase), PINK1 (PTEN induced kinase 1), PRKN
(parkin RBR E3 ubiquitin protein ligase), ROS (reactive oxygen species), SIRT1 (sirtuin 1), SLNs (solid
lipid nanoparticles), SQSTM1 (sequestosome 1), TRAF3 (TNF receptor associated factor 3), ULK1 (unc-51
like autophagy activating kinase 1), VDACI1 (voltage dependent anion channel 1).

1. Introduction: Atherosclerosis and inflammation

Atherosclerosis displays a wide spectrum of pathological clinical presentations. However, patients with
atherosclerosis might be asymptomatic despite bearing atherosclerotic plaques for years or even decades
within their vasculature. The initial presentation of atherosclerosis is shown by silent lesions that grow
slowly and are termed “stable plaques” whereas the secondary clinical presentation is shown by overtly
increased unstable plaques (Fuster, Badimon, Badimon & Chesebro, 1992).

Atheroma denotes the formation of adhering materials such as cholesterol, fat, and calcium within arteries
(Lee & Libby, 1997). Clinical manifestations of atheroma typically include thrombosis in adults. The risk of
developing thromboembolism and thrombosis as major complications of atherosclerosis is attributed to an



atheroma’s instability rather than duration of the disease (Little et al., 1988). Furthermore, reactive oxygen
species (ROS), hypoxia, and nitric oxide (NO) in expanding atheroma further accelerate proinflammatory
responses and progression of atherosclerosis.

In all types of atherosclerotic plaques, inflammation constitutes a major component. Plaque rupture and
thrombosis are accompanied by profound inflammatory infiltration (Van Der Wal, Becker, Van der Loos &
Das, 1994). Among all stakeholders for inflammation, macrophages play a cardinal role, for example, in the
pathogenesis of acute myocardial infarction (MI) at the cap rupture site. Ample evidence has revealed that
T lymphocytes and activated macrophages usually triggers plaque destabilization (Hansson, 2005; Rocha &
Libby, 2009). Improper assembly of macrophages and lymphocytes in plaques contributes to the generation
and secretion of lytic enzymes and cytokines in fibrous cap, leading to rupture of the lesion, and ultimately,
exacerbation of atherosclerosis (Hansson, 2005; Rocha & Libby, 2009).

With respect to inflammation in atherosclerosis, various strategies have displayed promises to cease secre-
tion of inflammatory cytokine from macrophages and atherogenesis. One of the natural-occurring cellular
defensive processes upon inflammatory insult is induction of mitophagy (Minton, 2016). Mitophagy refers
to selective engulfment and removal of damaged/depolarized or superfluous mitochondria, thus preserving
mitochondrial homeostasis (Ajoolabady et al., 2020; Ajoolabady, Aslkhodapasandhokmabad, Aghanejad,
Zhang & Ren, 2020; Ajoolabady et al., 2021a; Ajoolabady et al., 2021b). Impairment of mitochondria trig-
gers ROS generation, inflammasome activation, and cytokine secretion from macrophages (Ma et al., 2018).
Recycling of damaged mitochondria by way of mitophagy retards inflammation in atherosclerotic lesions.

Melatonin is a commonly employed over-the-counter therapeutic agent with diverse biological activities, one
of which is “mitophagy induction” (Zhou et al., 2018). Recent reports have delineated the role of melatonin
in mitophagy regulation in many mammalian cells. Here we will decipher the role of melatonin in mitophagy
regulation in macrophages based on the lessons acquired from mammalian cells. We wish to propose mela-
tonin therapy as an adjuvant and alternative approach to cease inflammation in atherosclerotic lesions via
macrophage mitophagy regulation. Our ultimate goal is to share perspectives on the accessory therapeutic
strategies that accompany melatonin therapy, pharmaceutical, and natural mitophagy modulators as well as
targeted delivery of melatonin and therapeutic agents to macrophages.

2. Mitophagy: Definition and molecular mechanisms

Mitophagy, also known as mitochondrial autophagy, governs the removal of long-lived, damaged/depolarized
mitochondria, making it cardinal to mitochondrial and cellular homeostasis (Zhou, Zhu, Wang, Zhu, Ren
& Chen, 2018). Mitophagy process also plays a key role in development, for example removal of unneces-
sary mitochondria during erythropoiesis (Barde et al., 2013), or adaptation to changing nutrient conditions.
Mitophagy and mitochondrial dynamics including fission and fusion dominate mitochondria reconstruction
(Hernandez-Resendiz, Prunier, Girao, Dorn, Hausenloy & Action, 2020). Mitophagy also wards off mi-
tochondrial apoptosis by engulfing/neutralizing long-lived or damaged mitochondria. Therefore, defective
mitophagy culminates in accumulation of impaired mitochondria, thus evoking onset of chronic diseases such
as cancer, neurodegenerative, liver, and cardiovascular diseases.

Mechanistically, macroautophagy /autophagy involves the formation of a transient double-membraned struc-
ture, termed a “phagophore” that sequesters cytoplasm, including mitochondrial compartments (Wu, Zhang
& Ren, 2019). Upon completion, phagophores close to generate “autophagosomes” or, in the case of mi-
tophagy, “mitophagosomes”. Eventually, autophagosomes or mitophagosomes fuse with lysosomes, leading
to degradation and recycling of the cargo content (Fig. 1).

2.1. Mitophagy receptors

Mammalian cells would mandate a sophisticated quality control system, mitophagy, to sustain mitochon-
drial homeostasis. Once mitochondria are depolarized, mitophagy receptors are recruited to the mitochon-
drial outer membrane (MOM) and recognize the depolarized /damaged mitochondria (Ajoolabady, Aslkhoda-
pasandhokmabad, Aghanejad, Zhang & Ren, 2020). Mitophagy receptors are integrated into MOM via a C-



terminal transmembrane domain, and also bind to mammalian Atg8-family proteins localized on phagophore
membrane, including components of the MAP1LC3 (microtubule associated protein 1 light chain 3) and
GABARAP (GABA type A receptor-associated protein) subfamilies via a specific LC3-interacting region
(LIR) motif. This interaction connects the cargo with the autophagy machinery to promote sequestration
of the mitochondria within autophagosomes (Fig. 1) (Yamaguchi, Murakawa, Nishida & Otsu, 2016).

BNIP3 (BCL2 interacting protein 3) is an essential mitophagy receptor that participates in mitochon-
drial turnover upon hypoxia (Zhang & Ney, 2009). Mutations in the BNIP3 monomer or its LIR motif
can contribute to mitophagy defects (Hanna, Quinsay, Orogo, Giang, Rikka & Gustafsson, 2012). Also,
BNIP3L/NIX (BCL2 interacting protein 3 like), another mitophagy receptor, exhibits a 53-56% homology
to BNIP3 (Matsushima et al., 1998), and is activated upon reticulocyte maturation and ROS accumula-
tion (Melser et al., 2013; Schweers et al., 2007). LIR motif of BNIP3L binds MAP1LC3B, GABARAPL2
(GABA type A receptor associated protein like 2), GABARAP, and GABARAPL1 (GABA type A receptor
associated protein like 1) (Marinkovié¢, Sprung & Novak, 2020).

Upon hypoxia challenge, FUNDC1 (FUN14 domain containing 1) also functions as a mitophagy receptor.
Mechanistically, PGAM5 (PGAM family member 5, mitochondrial serine/threonine protein phosphatase)
phosphatase dephosphorylates FUNDC1 at serine 13 residue and mediates its binding to MAP1LC3B to
favor mitophagy induction (Ma et al., 2020; Ren et al., 2020). Furthermore, BCL2L13 (BCL2 like 13) and
FKBP8 (FKBP prolyl isomerase 8) are two other MOM integral proteins that serve as mitophagy receptors
in mammalian cells (Fig. 1) (Bhujabal et al., 2017; Fujiwara et al., 2019).

2.2. PINK1-PRKN-mediated mitophagy

PINK1 (PTEN induced kinase 1), a serine/threonine kinase, and PRKN (parkin RBR, E3 ubiquitin protein
ligase), an E3 ubiquitin ligase, are causal factors that drive hereditary recessive Parkinson disease (Truban,
Hou, Caulfield, Fiesel & Springer, 2017). Under physiological conditions, PINK1 is recruited to the mi-
tochondrial inner membrane and is cleaved/inactivated by mitochondria-residing proteasomes. Conversely,
upon mitochondrial depolarization/impairment, PINK1 begins to accumulate in MOM, recruiting PRKN to
this location for phosphorylation (activation). Phosphorylated PRKN ubiquitinates specific MOM proteins
such as VDAC1 (voltage dependent anion channel 1), RHOT1 (ras homolog family member T1), MFN1
(mitofusin 1), and certain mitophagy receptors recognized by an Atg8-family protein on phagophores (Fig.
1) (Eiyama & Okamoto, 2015; Springer & Kahle, 2011).

PINKI1 stabilization on MOM is an essential initial step in mitophagy. Under normal circumstances, the
serine protease PARL (presenilin associated rhomboid like) relocates to the mitochondrial inner membrane
and degrades PINK1 and PGAMb5. Once mitophagy is activated, PHB2 (prohibitin 2) deactivates PARL,
leading to PINK1 stabilization and PGAMS5 activation. Then, PGAMS5 interacts with PINK1 and further
increases its stabilization on the mitochondria (Yan et al., 2020). Also, HSPA/HSP70 participates in PINK1
stabilization by retarding its degradation (Zheng et al., 2018). In addition, overexpression of TAMM41
(TAM41 mitochondrial translocator assembly and maintenance homolog; a mitochondrial protein) accelerates
PRKN recruitment and enhances PINK1 stabilization (Yang et al., 2019).

PINK1 also phosphorylates ubiquitin chains, which accelerates PRKN recruitment to the mitochondria,
leading to polyubiquitination of MOM proteins (Gao, Yu, Lv, Liang, Sun & Zhang, 2021). Ultimately,
autophagy cargo receptors such as OPTN (optineurin), SQSTM1 (sequestosome 1), TAX1BP1 (Tax1 binding
protein 1), CALCOCO2 (calcium binding and coiled-coil domain 2), and NBR1 (NBR1 autophagy cargo
receptor), which contain a ubiquitin-binding domain (UBD), recognize polyubiquitinated proteins, and also
interact with MAP1LC3 on phagophores via their LIR motif (Onishi, Yamano, Sato, Matsuda & Okamoto,
2021).

As aforementioned, PRKN polyubiquitinates certain mitophagy receptors such as BNIP3L, which is rec-
ognized by the UBD domain of the autophagy receptor NBR1 (Gao et al., 2015). NBRI also binds to
MAPI1LC3B and GABARAP on the phagophore membrane to promote engulfment of mitochondria (Gao et
al., 2015).



CALCOCO2, another receptor, is also recruited to MOM, where, it binds polyubiquitinated proteins, re-
sulting in the activation and recruitment of the ULK1 (unc-51 like autophagy activating kinase 1) complex
to the MOM, resulting in amplified PINK1-PRKN-mediated mitophagy (Padman, Nguyen, Uoselis, Skul-
suppaisarn, Nguyen & Lazarou, 2019). ULK1 phosphorylates serine 14 residue of BECN1 (beclin 1, an
essential protein in autophagy), and thereby, promotes BECN1-PRKN interactions, which enhances PRKN
recruitment to mitochondria (Fig. 1) (Kumar & Shaha, 2018).

Furthermore, the interaction between BNIP3 and PINKI1 facilitates PINK1 accumulation in MOM, and
consequently, fosters PRKN recruitment to MOM (Zhang et al., 2016). It is thought that autophagy recep-
tors known thus far can participate in PINK1-PRKN-mediated mitophagy. This process ultimately leads
to the bridge formation between phagophores and depolarized mitochondria. Eventually, mitochondria-
encapsulating autophagosome/mitophagosomes fuse with lysosomes for ultimate degradation of sequestered
mitochondria into macromolecules that are released into the cytosol for reuse (Ding & Yin, 2012).

Other molecules have been discovered that mediate mitophagy independent of PINK1 and PRKN including
cardiolipin, DNMI1L (dynamin 1 like), HUWE1 (HECT, UBA and WWE domain containing E3 ubiquitin
protein ligase 1), MARCHF5 (membrane associated ring-CH-type finger 5), ARIH1 (ariadne RBR E3 ubiqui-
tin protein ligase 1), SQSTM1-KEAP1 (kelch like ECH associated protein 1)-RBX1 (ring-box 1), and MUL1
(mitochondrial E3 ubiquitin protein ligase 1) (Ambivero, Cilenti, Main & Zervos, 2014; Di Rita et al., 2018;
Kageyama et al., 2014; Villa et al., 2017).

3. Mitophagy and inflammation

Mitophagy effectively alleviates inflammation, while defective mitophagy usually elicits inflammatory re-
sponses in mammalian cells. InAtg5 (autophagy related 5)-deficient C57BL/6 J mice administered with
angiotensin II, impaired mitophagy results in enhanced ROS production, and, subsequently, NFKB1 (nu-
clear factor kappa B subunit 1) activation, causing inflammation and cardiac damage (Vincent et al., 2020).
Therefore, mitophagy anomaly culminates in inflammation, suggesting a role for mitophagy in alleviation
of inflammation. Also, impaired mitophagy can lead to sterile inflammation as mutation in DNM1L results
in mitophagy defect, mitochondrial depolarization, loss of ATP, and myocardial inflammation in a murine
model of dilated cardiomyopathy (Cahill et al., 2015).

It is noteworthy that Mir103 (microRNA 103) inhibits mitophagy through suppressing TRAF3 (TNF re-
ceptor associated factor 3; a target molecule of Mir108 ), thus reinforcing inflammation in bothin wvitro
and in vivo models of adipose inflammation (Zhang, Zhang, Feng, Huang, Xia & Sun, 2019). In addition,
ARF3 (ADP ribosylation factor 3) inhibits Mir103 , resulting in TRAF3 upregulation, mitophagy activation,
NFKB inhibition, and NLRP3 (NLR family pyrin domain containing 3) inflammasome suppression (Zhang,
Zhang, Feng, Huang, Xia & Sun, 2019). Thus, the ARF3-Mir103 -TRAF3 signaling cascade depicts a new
paradigm in the regulation of mitophagy and its link with inflammation suppression upon obesity disorders.

Moreover, FUNDC1-mediated mitophagy inhibits activation of the NLRP3 inflammasome, resulting in inhi-
bition of inflammation secondary to intracerebral hemorrhage in murine models (Zheng, Jian, Gan, Wang,
Zhao & Zhai, 2021). This study suggests that FUNDCI is a potential target for inhibition of inflammation.
Apart from this, the AJUBA (ajuba LIM protein) molecule participates in PINK1-mediated mitophagy
through translocation to depolarized mitochondria (Ponia et al., 2021). In this respect, AJUBA deficiency
causes mitophagy impairment and contributes to systemic inflammation upon viral infection in mice (Ponia
et al., 2021). Therefore, AJUBA acts as an essential molecule to maintain PINK1-mediated mitophagy and
prevent inflammation.

In contrast, some pieces of evidence also suggests that excessive mitophagy can further exacerbate inflam-
mation. For instance, KMT2B (lysine methyltransferase 2B) deficiency culminates in excessive mitophagy,
inflammation, and lipolysis in murine white adipose tissues (He et al., 2020). Scrutiny for a role of mitophagy
in mitochondrial DNA release demonstrated that PINK1-PRKN-mediated mitophagy evokes mitochondrial
DNA release, which in part triggers TLR9 activation (Jing et al., 2020). Subsequently, TLR9 activates
MYD88 (MYDS8S8 innate immune signal transduction adaptor)-NFKB1 axis, leading to inflammation inin



vivo models of lung injury (Jing et al., 2020). This study suggests that hyperactive mitophagy evokes in-
flammation through the TLR9-MYD88-NFKB1 pathway. In summary, mild induction of mitophagy is an
anti-inflammatory process, indicating that mild induction of mitophagy in macrophages might cease inflam-
mation in atherosclerotic lesions.

4. Melatonin and mitophagy regulation in mammalian cells

Myriad studies have delineated the preventive role of melatonin against atherosclerosis. To begin with, our
group for the first time, reported that melatonin administration impedes activation of NLRP3 inflamma-
some and consequently ceases secretion of inflammatory factors from macrophages in atherosclerotic lesions
in a murine model of atherosclerosis (Ma et al., 2018). The underlying mechanism seems to be related
to melatonin-mediated activation of mitophagy via a SIRT3-FOXO3 (forkhead box O3)-PRKN signaling
cascade, resulting in ROS scavenging and inhibition of ROS-activated NLRP3 inflammasomes (Ma et al.,
2018).

Similar results were noted from examination of melatonin in subarachnoid hemorrhage (Cao et al., 2017).
This study revealed that melatonin treatment significantly upregulates autophagy-associated molecules such
as ATG5 and MAP1LC3A, and mitophagy molecules such as PRKN and PINK1 in subarachnoid hemorrhage,
resulting in ROS scavenging, remarkable inactivation of the NLRP3 inflammasomes, and attenuation of
cytokine secretion (Cao et al., 2017). Furthermore, examination of a rat model of radiculopathy showed that
melatonin alleviates apoptosis and NLRP3 inflammasome activation through instigating PRKN-dependent
mitophagy (Xie et al., 2021).

Conversely, melatonin was shown to induce OPA1 (OPA1 mitochondrial dynamin like GTPase)-mediated
mitophagy and mitochondrial fusion via AMP-activated protein kinase (AMPK) under ischemia-reperfusion
(I/R) injury in vivo and in vitro , prompting the role of AMPK-OPA1 axis as a new paradigm for melatonin-
evoked mitophagy induction (Zhang et al., 2019). Likewise, melatonin significantly attenuates calcium
deposition in vascular smooth muscle cells in a pattern dependent on mitophagy via AMPK-OPA1 axis
(Chen, Zhou, Yang, Liu, Wu & Sha, 2020). Besides, melatonin downregulates cleaved CASP3 (caspase
3) and RUNX2 (RUNX family transcription factor 2), upregulates MAP1LC3B and MFN2 (mitofusin 2),
reduces mitochondrial superoxide, and activates mitophagy via the AMPK-OPA1 signaling axis (Chen, Zhou,
Yang, Liu, Wu & Sha, 2020).

In addition, melatonin treatment reactivates mitophagy and boosts mitochondrial function via upregulation
of HSPA1L (heat shock protein family A [Hsp70] member 1 like) in senescent mesenchymal stem cells.
Mechanistically, HSPA1L forms a complex with cellular PRNP (prion protein) then recruits PRNP to the
mitochondria. Afterward, the HSPA1L-PRNP complex binds to COX4I1 (cytochrome ¢ oxidase subunit
411), resulting in elevated mitochondrial membrane potential, induced antioxidant enzymes, and mitophagy,
validating the role of the HSPAIL-PRNP-COXA4I1 axis in melatonin-induced mitophagy induction (Lee,
Yoon, Song, Noh & Lee, 2020). Likewise, supplementation of human mesenchymal stem cells with melatonin,
causes HSPA1L upregulation, and, enhances HSPA1L-mediated recruitment of PRKN to mitochondria, to
favor mitophagy and cell survival (Yoon, Kim, Lee & Lee, 2019). Therefore, the HSPA1L-PRKN axis is
modulated by melatonin and promotes mitophagy.

A number of studies have noted PINK1 and PRKN modulation by melatonin. Melatonin supplementation
culminates in upregulation of PINK1, PRKN, PPARGC1A (PPARG coactivator 1 alpha), NRF1 (nuclear
respiratory factor 1), and TFAM (transcription factor A, mitochondrial) proteins with a role in mitophagy
and mitochondrial integrity in rats with liver fibrosis (Kang, Hong & Lee, 2016). Melatonin-mediated
upregulation of PRKN is also observed in nucleus pulposus cells in a time- and dose-dependent manner
(Chen et al., 2019). In addition, melatonin enhances PRKN mitochondrial translocation via inhibition of
MST1 (macrophage stimulating 1) phosphorylation, compromises mitophagy in diabetic cardiomyopathy
(Wang et al., 2018).

Furthermore, ample evidence has shown that melatonin modulates NFE2L2 (nuclear factor, erythroid 2
like 2), HAS3 (hyaluronan synthase 3), and MTOR (mechanistic target of rapamycin kinase) complex 1



(MTORCI1) to induce mitophagy. Melatonin upregulates NFE2L2 to induce NFE2L2-dependent mitophagy
to heal brain injury in a murine model of subarachnoid hemorrhage (Sun, Yang, Li & Hang, 2018). Also,
melatonin activates HAS3 and associated mitophagy, in a neuroblastoma N2a cell line (Lee et al., 2019).
Furthermore, melatonin activates mitophagy through MTORC1 modulation, which in turn, ceases inflam-

mation by suppressing IL1B (interleukin 1 beta) secretion upon immunopathology of traumatic brain injury
(Lin et al., 2016).

Melatonin also modulates other signaling pathways to activate mitophagy. Interestingly, our group revealed
that melatonin backs up the CGAS (cyclic GMP-AMP synthase)-STING1 (stimulator of interferon response
c¢GAMP interactor 1)-TBK1 (TANK binding kinase 1) signaling pathway, leading to mitophagy reactivation
involving ALDH2 (aldehyde dehydrogenase 2 family member) activation in APP- (amyloid beta precursor
protein) and PSEN1 (presenilin 1)-mutant mice (Wang et al., 2020). Our study suggested the role of
melatonin in rescuing myopathic changes in the heart via reinstating mitophagy. Moreover, melatonin
therapy inhibits mitochondrial fission and boosts mitophagy through inhibiting NR4A1 (nuclear receptor
subfamily 4 group A member 1)-PRKDC (protein kinase, DNA-activated, catalytic subunit)-TP53 (tumor
protein p53) signaling pathway in nonalcoholic fatty liver disease (Zhou et al., 2018).

Despite mitophagy activation, ample studies have revealed other mechanisms of melatonin regarding mi-
tophagy regulation in mammalian cells. It was suggested that melatonin maintains mild induction of mi-
tophagy through preventing excessive mitophagy induction. This notion was observed in a murine model
of microvascular I/R injury, where melatonin activates PRKAA1 (protein kinase AMP-activated catalytic
subunit alpha 1) to inhibit DNM1L-based mitochondrial fission. Subsequently, the VDAC1-HK2 (hexok-
inase 2) interaction is recovered, which results in inhibition of the mitochondrial permeability transition
pore opening, and attenuation of PINK1-PRKN-dependent mitophagy (Zhou et al., 2017). It is perceived
that melatonin-evoked PRKAA1-DNM1L-VDAC1-HK2-mitochondrial permeability transition pore signaling
pathway is a cytoprotective mechanism that blunts excessive mitophagy-evoked cell death ensuing microvas-
cular I/R damage.

More cell signaling pathways are reported to be modulated by melatonin to govern mitophagy including the
MT2A (metallothionein 2A)-SIRT3-FOXO03 pathway, which inhibits mitophagy in H9c¢2 cells (Wu, Yang,
Gao, Wang & Ma, 2020), and MAPKS (mitogen-activated protein kinase 8)-PRKN pathway, which is neg-
atively modulated by melatonin, and causes a cessation of excessive mitophagy induction in human HeLa
cells (Chen, Liu, Li & Gao, 2018). In addition, melatonin maintains mild levels of mitophagy-associated
proteins such as PRKN, BECN1, SIRT3, FOX03, and BNIP3L, thus keeping mitophagy in check (Wu, Yang,
Gao, Wang & Ma, 2020). Melatonin can also upregulate SIRT1 (sirtuin 1), as a result suppressing excessive
PINK1-PRKN mitophagy (Yi, Zheng, Zhu, Cai, Sun & Zhou, 2020). Collectively, these data suggest that
melatonin regulates mitophagy by two dogmas: (i) induction of a low-level activation and (ii) prevention of
excessive activation, both of which, can be beneficial to cell homeostasis and inflammation suppression.

5. Combinational therapy: Melatonin therapy with accessory therapeutic agents

Based on the aforementioned studies we propose melatonin therapy to inhibit inflammatory cytokine secre-
tion and alleviate atherosclerosis by regulating macrophage mitophagy. However, for optimal management
of mitophagy, accessory therapeutic agents could be used alongside with melatonin therapy, forming combi-
national therapeutic systems.

5.1. Therapeutic agents targeting the SIRT3-FOXO3-PRKN pathway

As mentioned above (Ma et al., 2018; Reiter, Ma & Sharma, 2020; Reiter, Tan, Rosales-Corral, Galano, Jou
& Acuna-Castroviejo, 2018), melatonin activates the SIRT3-FOXO3-PRKN pathway to trigger mitophagy
and block inflammation. In this regard, applying pharmaceutical or natural therapeutic agents to modulate
SIRT3 and FOXO3 may aid melatonin to reinstate mitophagy in macrophages.

A natural biphenolic compound, honokiol, was reported to exert anti-oxidative and anti-inflammatory prop-
erties and reverse cardiac hypertrophy due to its capacity to mediate SIRT3 upregulation bothin vivo and in



vitro (Pillai et al., 2015). Honokiol also binds with SIRT3 in mitochondria to enhance SIRT3 activity (Pillai
et al., 2015).

Furthermore, resveratrol is a natural phenol abundant in peanuts and grape skins, which significantly atten-
uate mitochondrial ROS by enhancing SIRT3 levels in the mitochondria and evoke FOXO3 upregulation in
human vascular endothelial cells (Zhou et al., 2014). In addition, resveratrol activates the SIRT1-FOXO3
pathway, upregulates PINK1, BNIP3, RAB7A (RABT7A, member RAS oncogene family), and BECN1, and
therefore, resulting mitophagy induction (Kuno et al., 2018; Ren & Zhang, 2018). Resveratrol is also capa-
ble of inhibiting AKT1 (AKT serine/threonine kinase 1), resulting in FOXO3 activation and consequently
activation of antioxidant enzymes (Franco et al., 2014).

Troxerutin is also a natural flavonol extracted from flavonoid rutin, and its administration remarkably
upregulates SIRT3 and SIRT1, leading to suppression of oxidative stress, apoptosis, and acute neuroinflam-
mation in Wistar rats following lipopolysaccharide challenge (Jamali-Raeufy, Kardgar, Baluchnejadmojarad,
Roghani & Goudarzi, 2019).

Metformin is perhaps one of the most widely used medication clinically that can enhance FOXO3 activation
through AMPK activation and may enhance mitophagy due to the activation of the AMPK-FOXO3 axis
(Sato et al., 2012). Auranofin is an approved therapeutic agent with diverse biological affects, one of which
is the activation of FOXO3 and promotion of its nuclear localization (Park, Lee, Berek & Hu, 2014).

6,8-diprenylorobol, extracted from Glycyrrhiza uralensis Fisch roots, is a phytochemical compound with
anti-cancer properties, which are attributed to FOXO3 upregulation (Lee et al., 2020).

Taken together, a combinational therapeutic system comprising melatonin and STRT3 or FOX03 modulators
might be a potential package for provoking mitophagy in macrophages. However, some of these modulators
have not yet been clinically approved and much effort should be engaged for their optimization to meet
clinical expectations.

Besides, a growing trend shows that miRNAs play a crucial role in the regulation of SIRT3 and FOXO3,
and thus mitophagy induction. For instance, Mir21/ blocks SIRT3 expression as its target molecule, and its
knockdown restores SIRT3 expression, as well as mitochondrial activity and morphology, in a murine model
of angiotensin II-induced cardiomyopathy (Ding et al., 2020). Furthermore, MIR708-5ptargets and blocks
SIRT3 expression in cancer cells (Huang, Guo, Cao & Xiong, 2019), suggesting that MIR708-5p knockdown
might induce SIRT3 upregulation. Similarly, MIR/9/ suppresses SIRT3 expression in hepatoma cell lines
and its inhibition might induce SIRT3 upregulation (Zhang, Zhu, Hu, Yan & Chen, 2019).

In the case of FOXO03, Mir182 transfection into rat muscle cells targets Foro3 mRNA and suppresses its
expression (Hudson, Rahnert, Zheng, Woodworth-Hobbs, Franch & Russ Price, 2014). Further, MIR96 binds
to the seed region in FOX0O8 mRNA, and remarkably reduces its expression, whereas MIR96 downregulation
induces FOXO03 upregulation (Li et al., 2015). Moreover, MIR629negatively regulates FOXO3 at the post-
transcriptional stage and suppresses its expression (Yan et al., 2017), indicating that inhibitory targeting of
MIR629 may reverse its effect on FOXO3 expression. Overall, miRNAs regulate the expression of FOXO03
and SIRT3, and, thereby, their modulation could be a part of melatonin-based combinational therapies.

Apart from microRNAs, two major lifestyle medication factors, exercise and diet, mediate SIRT3 and FOXO3
upregulation. Exercise training, caloric restriction, and fasting upregulate SIRT3, whereas a high-fat intake
downregulates SIRT3 in skeletal muscles (Palacios et al., 2009). Mechanistically, caloric restriction activates
SIRT3, which in turn deacetylates lysine residues on SOD2 (superoxide dismutase 2; an antioxidant enzyme
residing in mitochondria), leading to removal of ROS (Qiu, Brown, Hirschey, Verdin & Chen, 2010). In
addition, caloric restriction activates mammalian SIRT2, which in turn deacetylates FOXO3 and enhances
its function (Wang, Nguyen, Qin & Tong, 2007). Calorie restriction in aged rats also preserves the melatonin
rhythm which probably helps to maintains SIRT3 activity (Stokkan, Reiter, Nonaka, Lerchl, Yu & Vaughan,
1991). Thus, caloric restriction can also boost mitophagy through upregulation of FOX0O3 and SIRTS.

5.2. Therapeutic agents targeting the AMPK-OPA1 pathway



As several studies have noted a role for the AMPK-OPA1 pathway in mitophagy activation upon melatonin
treatment (Zhang et al., 2019), targeting components of AMPK-OPA1 should help to strengthen melatonin-
regulated mitophagy.

AMPK activators induce intracellular accumulation of either adenosine monophosphate (AMP) or Ca?* and
are thus termed “indirect activators”, whereas, some activators directly interact with AMPK to foster its
kinase activity, thus being termed “direct activators” (Samant et al., 2014).

Substantial evidence indicates that metformin antidiabetic actions are attributed to AMPK activation. Mech-
anistically, metformin blocks complex I of the mitochondria, thus increasing AMP levels and activating
AMPK (Owen, Doran & Halestrap, 2000). Thiazolidinediones are a class of pharmaceutical drugs includ-
ing rosiglitazone, pioglitazone, and troglitazone, which activate AMPK via AMP accumulation due to the
inhibition of mitochondrial respiratory complex I (Brunmair et al., 2004).

In addition to pharmaceutical agents, some naturally occurring agents can activate AMPK. Polyphenols
including curcumin, quercetin, genistein, berberine, epigallocatechin-3-gallate, and resveratrol, which ex-
ist in fruits, vegetables, and plants, have been reported to switch on AMPK (Sharma & Kumar, 2017).
Epigallocatechin-3-gallate, curcumin, quercetin, and resveratrol increase AMP levels by targeting the mito-
chondrial ATP synthase (Gledhill, Montgomery, Leslie & Walker, 2007; Zheng & Ramirez, 2000), whereas
berberine increases AMP levels by targeting mitochondrial respiratory complex I (Turner et al., 2008).

Ginsenosides are extracted from ginseng and exhibit a favorable impact on type 2 diabetes, largely at-
tributable to AMPK activation (Jeong, Kim & Chung, 2014). A naturally available dithiol agent, a-lipoic
acid, generated from octanoic acid, can also activate AMPK likely by inducing Ca2* accumulation, and,
thereby, activation of the CAMKK1 (calcium/calmodulin dependent protein kinase kinase 1)-AMPK axis.

Several AMPK activators directly interact with AMPK complex and cause conformational changes, leading to
its enzymatic activation. For example, 5-aminoimidazole-4-carboxamide riboside, thienopyridine, salicylate,
compound-13, PT-1, and MT 63-78 are AMPK activators (Cool et al., 2006; Corton, Gillespie, Hawley
& Hardie, 1995; Gémez-Galeno et al., 2010; Hawley et al., 2012; Pang et al., 2008; Zadra et al., 2014).
Overall, a combinational therapeutic system comprising melatonin plus AMPK modulators might boost
mitophagy activation and regulation in macrophages. Given that mitochondrial SIRT3 can deacetylate OPA1
and enhance its activity (Samant et al., 2014), SIRT3 modulators may confer OPA1 activation as well.

5.3. Therapeutic agents targeting the MTORC1 pathway

Regarding the role of MTORCI1 in mitophagy and the effect of melatonin on MTORCI1 regulation, it can be
assumed that inhibiting MTORC1 may upregulate mitophagy. Besides, a combinational therapeutic system
including melatonin and MTORCI] inhibitors might show satisfactory results.

Rapamycin is an FDA-approved MTORC1 inhibitor employed in clinics for suppression of organ rejection
following tissue transplantation and cancer treatment (Kennedy & Lamming, 2016). In various disease mo-
dels, rapamycin protects mitochondria via enhancing mitophagy (Li et al., 2018; Li et al., 2014). Of note,
melatonin reduces transplant rejection probably due to its antioxidant property to reduce rapamycin toxicity,
denoting the value of combining melatonin with rapamycin (Vairetti et al., 2005). A derivative of rapamycin,
Everolimus serves as an immunosuppressant, now in phase II of clinical trials. Everolimus has been shown
to block MTORC1 with greater specificity (Goutagny et al., 2015). Also, temsirolimus is a preclinical the-
rapeutic agent with the potential to inhibit MTORCI1 through allosteric regulation, leading to mitophagy
activation (Chiarini et al., 2011). Ridaforolimus/deforolimus is another novel MTORCT inhibitor which went
through several phases I/II and even phase III clinical trials for the treatment of certain tumors (Mita,
Sankhala, Abdel-Karim, Mita & Giles, 2008).

5.4. New perspective on targeting PINK1-PRKN-mediated mitophagy

PINK1 and PRKN activators were proposed to drive PINK1-PRKN-mediated mitophagy. However, PINK1
and PRKN are also parts of other signaling pathways in biological processes; thus, targeting these molecules



may yield off-target effects (Miller & Mugqit, 2019). Thus, we propose new trends to reinvigorate PINK1-
PRKN-mediated mitophagy. To do this, we divide this process into three major stages including (i) the
initiation stage, which is commenced by mitochondrial depolarization or damage, (ii) the maintenance stage,
which requires PINK1 stabilization, and (iii) the amplification stage, which mainly involves ULK1 activation.

We propose that inducing mild mitochondrial depolarization along with manipulating other stages might
boost PINK1-PRKN-mediated mitophagy (Georgakopoulos, Wells & Campanella, 2017). Mild induction of
mitochondrial depolarization mainly influences already depolarized mitochondria. Such an approach might
avert unwanted depolarization of plasma membrane and intact/healthy mitochondria. For this purpose, two
polymethoxylated flavones including nobiletin and tangeretin have shown promising effects (Wu et al., 2013).
Nonetheless, new compounds should be developed to be applicable in clinical settings.

As discussed above, for PINK1 stabilization at the MOM, the PHB2-PARL-PGAMS5 pathway, TAMM41, and
HSPA2 (heat shock protein family A [Hsp70] member 2) are essential components. Therefore, future attempts
should be directed towards pharmaceutical/natural agents to modulate these components and strengthen
PINK1-PRKN-mediated mitophagy in macrophages. Of note, before drug development, to limit off-target
effects and avert excessive mitophagy, altered expression, dysfunction, and activation of these components
in macrophages of atherosclerotic lesions should be explored. Table 1 lists the mitophagy modulators under
clinical investigation.

5.5. New mitophagy targets, new therapeutic agents

As discussed in section 4, melatonin modulates various signaling pathways to turn on mitophagy. For instance,
melatonin modulates HSPA1L-PRNP-COX41I1, CGAS-STING1-TBK1, HSPA1L-PRKN, HSPA1L-PRNP-
COX4I1, and NR4A1-PRKDC-TP53 pathways, leading to mitophagy activation and regulation in healthy
mammalian cells. Thus, molecular components of these pathways are new targets for mitophagy regulation.
Given that therapeutic modulation of these pathways has largely remained unexplored, new drug-developing
approaches should be geared towards novel pharmaceutical or natural agents for specific targeting of these
pathways.

5.6. Caution merited to avoid excessive mitophagy induction

As mentioned above, mild mitophagy induction is a benign process in mammalian cells, whereas excessive
mitophagy may have adverse effects. In line with this, caution should be exercised when implementing com-
binational therapeutic systems. Currently, there is no available method to restrain mitophagy overactivation
upon using mitophagy inducers. Thus, melatonin therapy and accessory therapeutic agents might lead to
mitophagy overactivation. However, executing pre-clinical studies may show us a safe regimen for applying
these agents. Thus, we propose dose-finding and duration-finding studies to identify optimal drug concen-
trations and treatment durations to avoid excessive mitophagy activation, while maintaining mild induction.
Of note, some drugs also exhibit different effects in terms of intensity at different times of the day, which is
referred to as chronopharmacology.

6. Optimization of combinational therapeutic systems
6.1. Encapsulation techniques

The beneficial effects of therapeutic agents discussed earlier will only be realized if they can reach intended
site of action within human body in a bioactive form. There are a number of issues currently limiting the
bioavailability and bioactivity of therapeutic agents deemed effective against atherosclerosis. Initially, it is
important to be able to formulate a delivery vehicle that contains a sufficiently high dose of the therapeutic
in a chemically stable and bioavailable form. For oral administration, this formulation may be in the form
of a pill, capsule, fluid, or functional food. It is important that this formulation is designed to inhibit any
chemical degradation of the therapeutic agent during production, transport and storage but that it then
releases the therapeutic agent in a bioavailable form in the human gastrointestinal tract. The design of an
effective formulation is highly dependent on the nature of the therapeutic agent and the delivery format
and must be established on a case-by-case basis (McClements, 2018). Some of the most important factors to
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take into account when designing an efficacious formulation are the polarity (LogP), water solubility, melting
point, charge, and chemical reactivity of the therapeutic agent.

Under physiological conditions, resveratrol is a strongly hydrophobic molecule (LogP = 3.4) with a low
water solubility (0.14 mg/L) and poor chemical stability (especially under alkaline conditions) (Zhou, Zheng
& McClements, 2021a), which reduces its bioavailability and bioactivity and therefore limits its application as
a therapeutic agent in the pharmaceutical industry (De La Lastra & Villegas, 2007; Erlank, Elmann, Kohen
& Kanner, 2011; Salehi et al., 2018). Similarly, melatonin is a modestly hydrophobic molecule (LogP=1.15)
with a relatively low water solubility (1.0 mg/mL) (chemicalize.com). Melatonin has also been reported
to chemically degrade when dispersed in aqueous solutions, with the rate of degradation increasing with
increasing pH, temperature, and light exposure (Daya, Walker, Glass & Anoopkumar-Dukie, 2001; Pranil,
Moongngarm & Loypimai, 2020). The limited water solubility and chemical stability of melatonin reduces
its bioavailability and bioactivity, which again limit its efficacy as an effective therapeutic agent (Molska,
Nyman, Sofias, Kristiansen, Hak & Widerge, 2020). For these reasons, there has been considerable interest
in the utilization of nanotechnology-based encapsulation methods to improve the efficacy of resveratrol and
melatonin as therapeutic agents in drugs, supplements, and functional foods (Chuffa et al., 2021; Schaffazick,
Pohlmann & Guterres, 2007; Zhou, Zheng & McClements, 2021a; Zhou, Zheng & McClements, 2021b).

Nanoenabled-encapsulation typically involves trapping the therapeutic agent within small (colloidal) par-
ticles, which typically have dimensions somewhere between around 10 and 1000 nm (McClements, 2020a;
McClements, 2020b). Having said this, larger particles are sometimes utilized for certain applications. The
colloidal particles may be solid, semi-solid, or liquid and may be fabricated from a range of different na-
tural and synthetic ingredients, including proteins, polysaccharides, lipids, phospholipids, surfactants, and
synthetic polymers. In general, these particles may vary in their size, shape, composition, charge, physical
state, internal structure, and aggregation state, which means that their properties can be tailored for specific
applications. It should be noted that these properties may change once the particles are incorporated into a
formulation or after they enter the human gut, which needs to be taken into account for drug design purpose.

The entrapped ingredients (in this case therapeutic agents) are often referred to as the “core material”
whereas the surrounding matrix is referred to as the “encapsulant” or “shell material” (Nedovic, Kalusevic,
Manojlovic, Levic & Bugarski, 2011). Encapsulation has been shown to enhance the dispersibility of thera-
peutic agents in aqueous solutions, to protect them against chemical degradation by environmental factors,
and to promote their absorption in gastrointestinal tract (Davidov-Pardo & McClements, 2014). Emulsi-
ons and nanoemulsions, microemulsions, liposomes, and cyclodextrins are among the most commonly used
encapsulation technologies for this purpose.

Oil-in-water emulsions and nanoemulsions are composed of oil, water, and emulsifiers, which exist as nu-
merous small emulsifier-coated spherical oil droplets suspended in water (McClements & Rao, 2011). By
definition, droplets in nanoemulsions present diameters below 200 nm whereas those in emulsions have dia-
meters above this value. The smaller dimensions of oil droplets in nanoemulsions offer benefits for certain
encapsulation applications, including increased optical clarity, greater storage stability, and higher bioavaila-
bility of therapeutic agents. Emulsions and nanoemulsions can be used to encapsulate lipophilic bioactive
compounds such as resveratrol and melatonin within their hydrophobic cores (Donsi, Sessa, Mediouni, Mgaidi
& Ferrari, 2011; Rondanelli et al., 2012). Studies have shown the encapsulating melatonin within oil-in-water
nanoemulsions significantly increases its physicochemical stability and solubility (Molska, Nyman, Sofias,
Kristiansen, Hak & Widerge, 2020). Nevertheless, it is important to carefully select the oil phase of emul-
sions and nanoemulsions so that it can inhibit any chemical degradation of the therapeutic agents during
storage, as well as to ensure that it promotes their bioavailability after ingestion. For instance, it has been
shown that long chain triglycerides are more effective than medium chain triglycerides at increasing the
bioavailability of strongly hydrophobic therapeutical agents, which is attributed to their ability to form large
mixed micelles that can trap the bioactive agents inside (McClements, 2021). It is also important to careful-
ly selected the type of emulsifier used to ensure that small droplets can be formed during homogenization,
the systems remain stable during storage, and the droplets do not undergo extensive aggregation within
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the gastrointestinal tract (as this can reduce bioavailability by restricting the access of digestive enzymes
to the lipids). It may also be important to include other additives, such as antioxidants, to preserve the
therapeutic agents during storage. Emulsions and nanoemulsions are typically produced using mechanical
devices known as homogenizers, such as high shear mixers, colloid mills, high pressure valve homogenizers,
sonicators, and microfluidizers (McClements, 2011; McClements & Rao, 2011). Emulsions and nanoemulsi-
ons are thermodynamically unstable and may be broken down through a variety of physical and chemical
instability mechanisms, including creaming, sedimentation, flocculation, coalescence, and Ostwald ripening
(McClements, 2011; McClements & Rao, 2011). Consequently, they must be carefully formulated to avoid
these problems. After formation, emulsion-based systems are typically in a fluid form. They can be converted
into gels by adding gelling agents or promoting aggregation of the oil droplets. They can be converted into
powders through dehydration, which is usually carried out commercially using spray drying technologies. The
functional performance of emulsions and nanoemulsions can be improved by using structural design methods
to generate more sophisticated morphologies, such as multilayer emulsions, multiple emulsions, Pickering
emulsions, or filled microgels (Tan & McClements, 2021). However, these advanced emulsion technologies
are more costly to prepare and therefore they should only be utilized when required.

Nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) are oil-in-water emulsions or
nanoemulsions where the lipid has been partially or fully solidified, respectively (McClements & Li, 2010).
They are typically prepared using the same homogenization methods as used to produce emulsions and
nanoemulsions (Weiss, Decker, McClements, Kristbergsson, Helgason & Awad, 2008). However, the lipid
phase is comprised of a high melting point lipid. Typically, an emulsion or nanoemulsion is first formed at
a high temperature (above the melting point of the lipid), then it is rapidly cooled to form NLCs or SLNs.
However, the lipid phase must be carefully selected to ensure that the lipophilic therapeutic agent is not
expelled and the lipid droplets do not aggregate after the lipid phase is solidified (Weiss, Decker, McClements,
Kristbergsson, Helgason & Awad, 2008). Well-designed SLNs and NLCs are often more effective at preserving
encapsulated lipophilic compounds against chemical degradation during storage, which is attributed to the
ability of the solidified lipid phase to inhibit molecular diffusion (Weiss, Decker, McClements, Kristbergsson,
Helgason & Awad, 2008). Encapsulation of melatonin in SLNs has also been shown to lead to a more
sustained release profile after oral ingestion (Priano et al., 2007), to increase its bioavailability after oral
administration to humans (Mistraletti et al., 2019), and to increase its antioxidant activity after dermal
application (Mirhoseini et al., 2019). Stearic acid-based SLNs have been used to encapsulate resveratrol and
increase its bioavailability after oral administration to Wistar rats (Pandita, Kumar, Poonia & Lather, 2014).
Furthermore, NLCs have been shown to increase the bioactivity of melatonin in in vitro fertilization media
(Siahdasht, Farhadian, Karimi & Hafizi, 2020).

Microemulsions contain small spheroidal particles consisting of a hydrophobic core and a hydrophilic shell,
which are primarily made up from surfactants (McClements, 2020a). The non-polar tails of the surfactants
cluster together through hydrophobic attraction and form a hydrophobic core, while the polar heads of the
surfactants form a hydrophilic shell that ensures their water-dispersibility. Lipophilic therapeutic agents,
like resveratrol or melatonin, can be incorporated into the hydrophobic core of microemulsions (Nemen &
Lemos-Senna, 2011). These colloidal systems are thermodynamically stable and can often be formed by
simply mixing the ingredients together, once the optimum composition has been established. They tend to
be optically clear because the size of the particles (< 50 nm) is typically much less than the wavelength
of light. Encapsulation of resveratrol in microemulsions has been shown to increase its water-dispersibility,
photostability, and antioxidant activity (Juskaite, Ramanauskiene & Briedis, 2017; Lv et al., 2018). The
encapsulation of melatonin in microemulsions has been shown to increase its bioavailability after being
applied to the skin of human patients (Mistraletti et al., 2019). The main drawback of microemulsions is
that they usually have to be formed from relatively high concentrations of non-ionic surfactants, which can
cause taste, cost, or toxicity problems.

Liposomes (d > 200 nm) and nanoliposomes (d < 200 nm) are spheroidal particles that typically have an
onion-like (vesicular) structure, which are formulated from phospholipids (McClements, 2020a). These lipo-
somal systems are comprised of one or more concentric phospholipid bilayers surrounding an aqueous core.
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The bilayer structures tend to form spontaneously when the phospholipids are mixed with water due to the
hydrophobic effects. However, some form of processing is need to create a dispersion of relatively small and
uniform liposomes or nanoliposomes, such as microfluidization. Liposomal systems can encapsulate hydro-
philic and hydrophobic therapeutic agents because they have both polar and non-polar regions inside them.
Hydrophobic molecules like melatonin and resveratrol are usually located within the non-polar regions for-
med by the tails of the phospholipids in the bilayer membranes. Encapsulating resveratrol within a liposomal
formulation has been shown to prolong its release and increase its therapeutic effects in rat models of nerve
injury (Feng, He, Mao, Shui & Cai, 2019). Metformin-encapsulated liposomes enhance therapeutic efficacy
and clinical use of metformin against breast cancer cells (Khiavi, Safary, Barar, Ajoolabady, Somi & Omidi,
2020; Shukla et al., 2019).

Cyclic oligosaccharides, known as cyclodextrins, consist of glucopyranose units with o (1-4) bonds (Astray,
Gonzalez-Barreiro, Mejuto, Rial-Otero & Simal-Gandara, 2009). In aqueous solutions, cyclodextrins have
a hydrophobic cavity than can incorporate non-polar therapeutic agents and a hydrophilic exterior that
ensures their water-dispersibility. Inclusion complexes formed between a-/3-/y-cyclodextrins and resveratrol
have been shown to significantly improve the water-dispersibility of resveratrol (Bertacche, Lorenzi, Nava,
Pini & Sinico, 2006; Silva et al., 2021). Researchers have also shown that cyclodextrins can also be used to
increase the water-dispersibility of melatonin (Grygorova et al., 2019). Studies have confirmed that cyclodex-
trins and resveratrol form 1:1 complexes with the therapeutic molecule trapped in the hydrophobic cavity
(Lucas-Abelldn, Fortea, Gabaldén & Nufiez-Delicado, 2008). An in vivo study showed that encapsulation of
resveratrol in cyclodextrins increased its anticancer activity against cervical cancer (Hao et al., 2021), which
was probably because the delivery system increased the amount of the therapeutic agent reaching the site
of action in an active form.

6.2. Targeted drug delivery to macrophages

For an effective therapeutic intervention, either melatonin or accessory therapeutic agents should be delivered
specifically to macrophages in the atherosclerotic lesions to avoid off-target effects on other tissues. However,
it is noteworthy that melatonin off-target effects are beneficial and caution should be directed towards other
therapeutics (Reiter, Tan, Paredes & Fuentes-Broto, 2010). Targeted drug delivery refers to the specific
delivery of a therapeutic agent or a combination of agents using various carriers (basically nano-scale carriers)
such as nanoparticles, liposomes, niosomes, carbon nanotubes, and dendrimers to a certain cell or tissue.
Targeted drug delivery to the macrophages in the atherosclerotic lesions seems to optimize the efficacy of
therapeutic agents enwrapped in drug-delivery systems (Fig. 2) (Jain, Mishra & Mehra, 2013).

The basis of targeted drug delivery is to decorate drug carriers with ligands that can specifically recognize
the target (cell or tissue of interest). For example, macrophages express high levels of sugar-binding receptors
such as mannose receptors on their surface. Therefore, decorating drug-delivery systems with ligands to bind
mannose receptors can create a targeted drug-delivery system for specific delivery of the therapeutic agents
to macrophages (Ezekowitz et al., 1991; Taylor, Bezouska & Drickamer, 1992).

In line with this, functionalization of liposomes with mannosyl ligand (mannosylated liposomes) specifically
targets rat alveolar macrophages and elicits increased uptake of liposomes both in vivo andin vitro (Chono,
Tanino, Seki & Morimoto, 2007). Functionalization of gelatin nanoparticles with mannose ligands success-
fully delivers amphotericin B to macrophages to ameliorate visceral leishmaniasis (Nahar, Dubey, Mishra,
Mishra, Dube & Jain, 2010). Mannosylated SLNs (Nimje et al., 2009), and mannose-engineered polyethy-
lene glycol/PLGA show similar results (Tomoda & Makino, 2007). Also, encapsulating therapeutic agents
in chitosan microparticles has shown enormous success in the specific delivery of the agents to macrophages
(Kunjachan, Gupta, Dwivedi, Dube & Chourasia, 2011).

In addition to mannose receptors, other macrophage cell surface molecules could be a specific target, against
which new ligands can be designed on drug carriers. We propose that further experiments should be carried
out to find out the cell surface molecules that are specifically expressed/overexpressed in activated macro-
phages in the atherosclerotic regions. Discovering such molecules would enable us to deliver melatonin and
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other accessory agents to macrophages that specifically reside in atherosclerotic regions.
7. Concluding remarks

Melatonin serves as a potential anti-inflammatory agent through regulation of mitophagy in macrophages
in atherosclerotic regions. Thus, melatonin along with other mitophagy regulators and inducers can form
a multiplex therapeutic package that can be delivered to macrophages to confer desired effects on the
amelioration of atherosclerosis. Nanomedicine and drug delivery systems can be applied to guarantee the
specificity of this delivery and avoid off-target effects of the therapeutic package.
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Table 1: Other mitophagy modulators.

Compounds Full name/source Mechanisms of action

MA-5 Mitochonic acid 5 PRKN-dependent mitophagy via activation of AMPK-S
Puerarin Derived from Pueraria with antioxidant capacity Regulates mitochondrial fission and fusion, reactivates k
TMP 2,3,5,6-Tetramethylpyrazine Blocks CCL2 (C-C motif chemokine ligand 2)-CCR2 (C
Tributyrin A natural triglyceride that exists in butter Enhances PRKN, ameliorates mitochondrial dysfunctio

Undecanone 2-Methyl nonyl ketone derived from H. cordata Mitophagy activation via inhibition of AKT1-MTORC1

Figures:
Fig. 1. PINK1-PRKN-mediated mitophagy and initial signaling cascade of mitophagy.

Once mitochondria are damaged or depolarized, they evoke accumulation of ROS that trigger initial mi-
tophagy induction. Mitochondrial injury also induces AMP and Ca?t accumulation in the cytosol. ROS
along with Ca?t and AMP accumulation in the cytosol can activate AMPK, which, in turn, phosphorylates
and activates a spectrum of mitophagy and autophagy regulators. Mainly, the AMPK-MTORC1-ULK1 axis
represents the first complex that mediates phagophore, and subsequently autophagosome, formation. Mi-
tochondrial changes also involve biochemical modulation inside mitochondria. Mitochondrial depolarization
triggers PINK1 stabilization on the MOM, which recruits PRKN, and PRKN also mediates ubiquitination of
MOM proteins. Further PRKN accumulation on the MOM results in polyubiquitination of MOM proteins.
Ultimately, polyubiquitinated MOM proteins are recognized by autophagy cargo receptors such as OPTN,
NBRI1 and SQSTM1, which connect them with MAP1LC3B/LC3B and the phagophore. ULK1 not only is
involved in the formation of phagophores and autophagosomes but also activates BECN1, which interacts
with PRKN and amplifies its recruitment to the MOM. Following the sequestration of damaged mitochondria
within autophagosomes and the subsequent fusion of the latter with a lysosome, ROS is dramatically scav-
enged from the cytosol. It is also noteworthy that Golgi-derived membrane can participate in the formation
of phagophores.

Fig. 2. Targeted drug delivery to macrophages.

Using mannose-coated nanocarriers such as liposomes and SLNS, melatonin and other therapeutic drugs can
be delivered specifically to macrophages. Once nanoparticles arrive, mannose receptors recognize them and
endocytosis occurs, culminating in the release of the drugs within the macrophage cytosol.
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