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Abstract

A linear discrete ill-posed problem has a perturbed right-hand side vector and an ill-conditioned coefficient matrix. The solution

to such a problem is very sensitive to perturbation. Replacement of the coefficient matrix by a nearby one that has less condition

number is one of the well-known approaches for decreasing the sensitivity of the problem to perturbation. In this paper, we

suggest some new regularization matrix to the Tikhonov regularization. These new ones are based on fractional derivatives

such as Grunwald-Letnikov and Caputo and can cause to have more exact solutions.
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1 Introduction

Researchers have found that a great number of problems can be classified as ill-posed problems.
These problems arise in quantum mechanics, astronomy, optimal control theory, image deblur-
ring [15], ultrasound testing, etc [21]. A linear discrete ill-posed problem is the discretization of
an ill-posed problem such as the Fredholm integral equation of the first kind. This problem is
a linear system in which the coefficient matrix is ill-conditioned and the right-hand side vector
is contaminated by error [16]. The noise-free system is not available. The ill-conditioning of
the coefficient matrix leads to propagation of the noise in the solution. Therefore, a straight-
forward solution to this system is not meaningful. So the system must be regularized.
Regularization is the replacement of the available system by a nearby one that is less sensitive
to perturbation. The goal of regularization is to obtain an approximated solution close to the
exact solution of the unavailable noise-free system. There are some methods for regularization.
They can be classified as direct methods and iterative methods. Some of the direct methods
are Truncated singular value decomposition (TSVD) [18, 33] and Tikhonov regularization [32]
and some of the iterative methods are Krylov subspace-based methods such as CGLS, LSQR

∗Somaieh Mohammady (E-mail address: s.mohammady@modares.ac.ir)
†Corresponding author. M. R. Eslahchi (E-mail address: eslahchi@modares.ac.ir).



and GMRES [2, 10, 19, 26, 27]. Tikhonov regularization (TR) is one of the most popular
methods of regularization.
In this method, a regularized term is added to the available system. This term has a matrix
called the regularization matrix. The regularized solution of the TR method depends defini-
tively on the regularization matrix. A good choice of this matrix can help to approximate the
solution in a more stable way. In this paper, we will focus on the TR matrix and introduce
some new matrices based on fractional derivatives.
For the readers’ convenience, the main contributions of this paper are highlighted as follows:

• Some new regularization matrices are introduced based on Grunwald-Letnikov and Ca-
puto fractional derivative operators.

• The new matrices are dependent on a parameter α. A proper choice of this parameter
gives the user a more appropriate solution.

• Some properties of the new matrices are shown in the next sections and an important
one is proved in detail (see Theorem 3).

• Numerical examples are implemented to demonstrate the efficiency and accuracy of the
new matrices and the comparisons are given by the other regularization ones based on
other derivative operators.

The organization of this paper is as follows. Section 2 is devoted to study the Tikhonov regu-
larization (TR) methods and we review some researches on TR matrices. Section 3 introduces
some new TR matrices based on fractional derivatives. The advantages of these new matrices
are shown by solving some numerical examples in Section 4.

2 Tikhonov regularization and regularization matrix

Consider the following least-square problem:

min
x∈Rn

‖Ax− b‖ , A ∈ Rm×n, m ≥ n. (1)

In this paper, ‖.‖ denote the Euclidean vector norm. The matrix A is ill-conditioned in which
the singular values gradually decay to zero with no particular gap. The matrix A may be
singular and the right-hand side b is as follows:

b = b+ e, (2)

where e is an unknown noise vector. The unknown error-free system

Ax = b, (3)

is consistent and its solution is denoted by x. Since (3) is not available, we want to approximate
x by solving the available linear system (1). The ill-conditioning of A causes the propagation
of the noise of b in the solution and straightforward methods for solving this system does not
yield a meaningful solution. So researchers replace the available system (1) by a nearby one
which is less sensitive to the noise in data. This approach is called regularization. One of the
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most popular methods of regularization is Tikhonov regularization (TR). In this method, a
regularized term is added to (1). The general form of TR is as follows:

min
x∈Rn

‖Ax− b‖2 + λ2‖Lx‖2, (4)

in which L is called regularization matrix and λ is the regularization parameter. The regu-
larization parameter determines how well xλ approximates x and how xλ is sensitive to the
error e in the available data b. Note that there are different methods for the determination
of regularization parameter. Some of them are based on an estimation of ‖e‖, such as the
discrepancy principle. In this method, λ is determined such that

‖Axλ − b‖ = ηδ, (5)

where δ is an estimation of ‖e‖, η ≥ 1 is an user-specified constant independent of δ and
close to unity [12, 16]. When there is no estimation of noise, one can choose generalized cross
validation, L-curve criterion, etc. For more details, we refer the reader to [12, 16, 28, 30].
Before getting into regularization matrices, let’s review some basic principles.

Definition 1. The null space of the matrix Am×n is denoted N(A) and is defined:

N(A) = {x ∈ Rn|Ax = 0}.

Theorem 1. If the assumption

N(A) ∩N(L) = {0},

is satisfied, then the solution of (4) by normal equation, i.e.,

xλ = (ATA+ λ2LTL)−1AT b, (6)

is unique [16].

Note that in the standard form of TR, L is equal to I, i.e.,

min
x∈Rn

{‖Ax− b‖2 + λ2‖x‖2}, (7)

Theorem 2. (Singular value decomposition) Suppose A be an m×n matrix. Then there exists
a factorization, called singular value decomposition (SVD) of A of the form

A = UΣV T , (8)

where Σ = diag[σ1, σ2, · · · , σn] ∈ Rm×n, σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0,
rank(A) = r, U = [u1, u2, · · · , um] ∈ Rm×m, UTU = I, V = [v1, v2, · · · , vn] ∈ Rn×n and
V TV = I.

Proof. See [14].
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The solution of the standard form of TR (7) by normal equation is

xλ = (ATA+ λ2I)−1AT b, (9)

and by using the SVD of matrix A in (9), the regularized solution of (7) could be written as

xreg =
r∑
i=1

σ2
i

σ2
i + λ2

uTi b

σi
vi. (10)

The general form of TR (4) can be transformed to the standard TR [16]. For doing this, let
the A-weighted pseudoinverse of matrix L be defined by

L†A := (I − (A(I − L†L))
†
A)L†,

where L† denotes the Moore-Penrose pseudoinverse of L. Now consider

x0 = (A(I − L†L))
†
b,

and
Â := AL†A, b̂ := b−Ax0, x̂ := Lx.

So the minimization problem (4) can be transformed to the following standard form [10]:

min
x̂∈Rn

∥∥∥Âx̂− b̂∥∥∥2
+ λ2‖x̂‖2. (11)

The solution xλ in (6) can be achieved by the solution x̂λ of (11) as follows

xλ = L†Ax̂λ + x0. (12)

Note that the regularization scheme does not affect on the component x0. Indeed, x0 belongs
to the null space of L (i.e., N(L)) [16].

Remark 1. If the matrix L is square and non-singular, then by considering Â = AL−1, b̂ = b
and x̂ = Lx in (11), the transformation of (4) to standard TR is very simple [16].

According to (6), the regularization matrix has a direct effect on the regularized solution.
So a good choice of regularization matrix can further improve the regularized solution. For
this aim, researchers are interested to introduce more relevant matrices. Here we look at some
of the proposed ones. To the best of the author’s knowledge, regularization matrices can be
classified into two types. One type is non-derivative-based matrices and another is derivative-
based ones. In the first type, some of the matrices are about multiplying a diagonal matrix by
an orthogonal one. In [13], the authors propose the regularization matrix

L = DV T , (13)

in which D is a diagonal matrix consisting of singular values of A and regularization parameter
λ and V T obtained by the SVD of A in (8). They consider D2

λ as follows

D2
λ = diag[max{λ2 − σ2

1, 0},max{λ2 − σ2
2, 0}, · · · ,max{λ2 − σ2

n, 0}].
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Some other diagonal matrices for (13) are suggested in [5, 25, 34]. In [24], an extension form of
diagonal matrix D in (13) by adding some parameters to the Tikhonov regularization method is
considered. The worthy point of this matrix is that it is an extended form of all the presented
methods in [13, 25, 34] with appropriate choices of parameters. The added parameters are
obtained by solving a linear fractional programming problem based on some conditions.
Now, the second type is introduced. It can be stated that one of the most desirable TR matrices
is based on the discrete approximation to derivative operators.
To show this type of matrices, let us consider the interval [a, b] and define the mesh points

xj = a+ jh, j = 0, 1, ..., n, (14)

where h = b−a
n .

The approximation of m-th order derivative operators for m ∈ N in the mesh points (14) is as
follows:

f (m)(xj) =
dmf(xj)

dxm
= lim

h→0

1

hm

m∑
r=0

(−1)r
(
m
r

)
f(xj+r), j = 0, 1, ..., n−m, (15)

and the banded matrix Lm

Lm =


l0 l1 l2 · · · lm 0

l0 l1 l2 · · · lm
. . .

. . .
. . .

. . .
. . .

0 l0 l1 l2 · · · lm


(n−m)×n

, li = (−1)i
(
m

i

)
, i = 0, 1, ...,m, (16)

is the scaled approximations to the m-th order derivative. Common choices of regularization
matrices are L1 and L2 as follows:

L1 =


1 −1 0

1 −1
. . .

. . .

0 1 −1


(n−1)×n

, (17)

and

L2 =


1 −2 1 0

1 −2 1
. . .

. . .
. . .

0 1 −2 1


(n−2)×n

, (18)

which are obtained by (16) for m = 1 and m = 2, respectively.
The null space of L1 and L2 are

N(L1) = span{[1, 1, · · · , 1]T },

and
N(L2) = span{[1, 1, · · · , 1]T , [1, 2, 3, · · · , n]T }.
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respectively [16].
Calvetti et al. construct invertible smoothing preconditioners from L1 and L2 which are well
suited for use with the iterative methods [3]. The authors in [7] discuss the design of square
regularization matrices based on L1 and L2 that can be used in iterative methods based on
the Arnoldi process for large-scale Tikhonov regularization problems. With a focus on the
boundary conditions, some square regularization matrices from finite difference equations are
introduced in [8]. Reichel and Ye [29] present two approaches for constructing some square
regularization matrices: zero-padding of the rectangular matrices and extending the rectan-
gular matrix to a square circulant. The authors in [20] consider the distance of a matrix to
the closest matrix with a user-specified null space by using the Frobenius norm and describe
an approach to construct some square regularization matrices. Dykes et al. in [9] extends the
approach of [20] to problems in higher space dimensions.
In the next section, we suggest a new approach to constructing TR matrices by fractional
derivative operators.

3 The new regularization matrices based on fractional deriva-
tives

Due to the high usage of L1 and L2 as TR matrices, the authors of this work are focused on
fractional derivatives. Firstly, consider the following definition:

Definition 2. For a function f defined on an interval J = [a, b], the Grunwald-Letnikov
fractional derivative of order α > 0 is defined by [22]:

GD
α
x,bf(x) = lim

h→0

1

hα

[ b−x
h

]∑
r=0

(−1)r
(
α

r

)
f(x+ rh). (19)

So (19) can lead to the following approximation in the mesh points (14)

GD
α
xj ,b

f(xj) =
1

hα

n−j∑
r=0

(−1)r
(
α

r

)
f(xj+r). (20)

To use the Grunwald-Letnikov fractional derivative operator by (20), this paper suggests the
following case as TR matrix which include the scaled coefficients of (20) in the mesh points:

GLα :=



(−1)0
(
α
0

)
(−1)1

(
α
1

)
(−1)2

(
α
2

)
· · · (−1)n−1

(
α
n−1

)
0 (−1)0

(
α
0

)
(−1)1

(
α
1

)
· · · (−1)n−2

(
α
n−2

)
...

. . .
. . .

. . .
...

(−1)0
(
α
0

)
(−1)1

(
α
1

)
0 · · · 0 (−1)0

(
α
0

)


n×n

. (21)

It is remarkable that this square matrix is non-singular and this causes the simplicity of trans-
formation to the standard form of TR (see Remark 1) and the null space of a non-singular
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matrix only contains the zero vector.
Note that for α = 1, GL1 is as follows (If α ∈ N and r > α, then

(
α
r

)
= 0):

GL1 =


1 −1 0

1 −1
. . .

. . .

1 −1
0 1


n×n

, (22)

which is equal to the suggested square matrix in [7] for approximation of the first derivative
and for α = 2, GL2 is as follows:

GL2 =



1 −2 1 0
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

0 1


n×n

, (23)

which could be use as a square regularization matrix for approximation of the second deriva-
tive. Generally, GL1 and GL2 are similar to (17) and (18) for n× n case, respectively.
Now we consider another fractional derivative formula:

Definition 3. For a function f defined on an interval J = [a, b], the Caputo fractional deriva-
tive of order α > 0 is defined by [22]:

CD
α
x,bf(x) =

(−1)N

Γ(N − α)

∫ b

x

f (N)(t)

(t− x)α−N+1
dt, (24)

where N = [α] + 1.

Consider the discretization of (24) by using finite difference method for 0 < α < 1 (N = 1)
in the mesh points (14) which is proposed in [23]:

CD
α
xj ,b

f(xj) =
1

Γ(2− α)hα

n−1∑
r=j

(fr+1 − fr)gj,r, (25)

where gj,r = (r − j)1−α − (r − j + 1)1−α.
In order to use the Caputo fractional derivative operator for 0 < α < 1, It is suggested the
following regularization matrix:

CL
1
α =



−g1,1 h1,2 h1,3 · · · h1,n−1 g1,n−1

0 −g2,2 h2,3 · · · h2,n−1 g2,n−1

...
. . .

. . .
...

...

−gn−2,n−2 hn−2,n−1 gn−2,n−1

0 · · · 0 −gn−1,n−1 gn−1,n−1


∈ R(n−1)×n, (26)
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in which

hi,j = gi,j−1 − gi,j . (27)

The discretization of (24) by using finite difference method for 1 < α < 2 (N = 2) in the mesh
points (14) is as follows [23]:

CD
α
xj ,b

f(xj) =
1

Γ(3− α)hα

n−1∑
r=j

(fr+1 − 2fr + fr−1)cj,r, (28)

where

cj,r = (r − j + 1)2−α − (r − j)2−α. (29)

The following regularization matrix for utilizing the Caputo fractional derivative with 1 < α <
2 is proposed:

CL
2
α =



c2,2 d2,2 q2,3 q2,4 · · · q2,n−2 l2,n−2 c2,n−1

0 c3,3 d3,3 q3,4 l3,n−2 c3,n−1
...

. . .
. . .

. . .
...

...
...

cn−3,n−3 dn−3,n−3 qn−3,n−2 ln−3,n−2 cn−3,n−1

cn−2,n−2 dn−2,n−2 ln−2,n−2 cn−2,n−1

0 · · · 0 cn−1,n−1 −2cn−1,n−1 cn−1,n−1


∈ R(n−2)×n,

(30)

where

di,j = −2ci,j + ci,j+1, qi,j = ci,j−1 − 2ci,j + ci,j+1, li,j = ci,j − 2ci,j+1. (31)

Since Theorem 1 plays an important role on the regularized solution, the null spaces of N(CL
1
α)

and N(CL
2
α) are studied in the following theorem.

Theorem 3. The null spaces of CL
1
α and CL

2
α are

N(CL
1
α) = N(L1) = span{[1, 1, · · · , 1]T },

and
N(CL

2
α) = N(L2) = span{[1, 1, · · · , 1]T , [1, 2, 3, · · · , n]T },

respectively.

Proof. Suppose x = [x1, x2, ..., xn]T and consider CL
1
αx = 0. Now we solve the last equation

(i.e., (n− 1)th one) of CL
1
αx = 0:

−g(n−1)(n−1)xn−1 + g(n−1)(n−1)xn = 0,

which leads to xn = xn−1.
By choosing the (n− 2)th equation of CL

1
αx = 0, i.e.,

−g(n−2)(n−2)xn−2 + h(n−2)(n−1)xn−1 + g(n−2)(n−1)xn = 0,

8



and by substitution (27) in h(n−2)(n−1), then it is concluded that xn−2 = xn.
Now consider the (n− i)th equation (1 ≤ i ≤ n− 1):

− g(n−i)(n−i)xn−i + h(n−i)(n−i−1)xn−i−1 + h(n−i)(n−i−2)xn−i−2 + ...

+ h(n−i)(n−1)xn−1 + g(n−2)(n−1)xn = 0,

and by (27) we conclude that xn−i = xn.

Hence the solution of CL
1
αx = 0 is


x1

x2
...
xn

 =


1
1
...
1

xn.

and the null space of CL
1
α is spanned by [1, 1, . . . , 1]T .

Now to find the null space of CL
2
α, consider The (n− 2)th equation of CL

2
αx = 0:

c(n−1)(n−1)xn−2 − 2c(n−1)(n−1)xn−1 + c(n−1)(n−1)xn = 0,

and it can be obtained directly that

xn−2 = 2xn−1 − xn. (32)

Next, the (n− 3)th equation of CL
2
αx = 0 is

c(n−2)(n−2)xn−3 + d(n−2)(n−2)xn−2 + l(n−2)(n−2)xn−1 + c(n−2)(n−1)xn = 0,

and by substitution (31) in above equation, it can be seen that

xn−3 = 3xn−1 − 2xn. (33)

We repeat the substitution (31) in the (n− 4)th equation of CL
2
αx = 0, i.e.,

c(n−3)(n−3)xn−4 + d(n−3)(n−3)xn−3 + q(n−3)(n−2)xn−2 + l(n−3)(n−2)xn−1 + c(n−3)(n−1)xn = 0,

and it leads to xn−4 = 4xn−1 − 3xn.
Generally, the (n− i)th equation for i = 5, . . . , (n− 1) of CL

2
αx = 0 is:

c(n−i+1)(n−i+1)xn−i + d(n−i+1)(n−i+1)xn−i+1 + q(n−i+1)(n−i+2)xn−i+2+

q(n−i+1)(n−i+3)xn−i+3 + ...+ q(n−i+1)(n+2)xn−2 + l(n−i+1)(n−i+2)xn−1+

c(n−i+1)(n−1)xn = 0,

and substitution (31) in the above equation leads to

xn−i = ixn−1 − (i− 1)xn.

Therefore, the solution of CL
2
αx = 0 is

x1
...

xn−3

xn−2

xn−1

xn


=



(n− 1)xn−1 − (n− 2)xn
...

3xn−1 − 2xn
2xn−1 − xn

xn−1

xn


=



n− 1
...
3
2
1
0


xn−1 +



−(n− 2)
...
−2
−1

0
1


xn−1.
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This shows that the null space of CL
2
α is spanned by w1 = [n − 1, n − 2, . . . , 1, 0]T and

w2 = [1, 1, · · · , 1]T .
Now we want to show span{w1, w2} = span{v1, v2} where v1 = [1, 2, · · · , n]T and v2 =
[1, 1, · · · , 1]T . For this purpose, it is sufficient to show that v1 and v2 can be written as
linear combination of w1 and w2 and vice versa.
It can be easily concluded that{

w1 = nv2 − v1,
w2 = v1 − (n− 1)v2,

{
v1 = (n− 1)w1 + nw2,

v2 = w1 + w2.

So the null space of CL
2
α is spanned by the vectors [1, 2, · · · , n]T and [1, 1, · · · , 1]T

From N(CL
1
α) = N(L1) and N(CL

2
α) = N(L2), it is concluded that the unregularized

components of x0 of xλ (12) for L1 and CL
1
α are the same. The same is true for L2 and CL

2
α.

To have more insight into the TR matrices, Figure 1 shows the graphs of ||CL1
αx||2 = 1, 0 <

α < 1 and ||GL1
0.5x||2 = 1 in blue and green lines, respectively ( for n = 2). It is interesting

that the graphs of ||CL1
αx||2 = 1, 0 < α < 1 and ||L1x||2 = 1 are the same.

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

Figure 1: ||GL0.5x||2 = 1 by green line and ||CL1
αx||2 = 1, 0 < α < 1 by blue line.

Remark 2. The GLα matrix is the extension of all the previous derivative-based TR matrices,
i.e., L1 and L2.

Remark 3. The CL
1
α and CL

2
α have the same properties with L1 and L2, respectively, such

as the order of matrix and the null space. With regard to Caputo fractional derivative formula
(24), it can be seen that the first and second derivative are used in 0 < α < 1 and 1 < α < 2,
respectively. Therefore, it seems convenient to compare the numerical results of CL

1
α and GLα

(for 0 < α ≤ 1) with L1 and the results of CL
2
α and GLα (for 1 < α ≤ 2) with L2.
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4 Numerical examples

We illustrate the performance of the regularization matrices (21), (26) and (30) and compare
them to the first and second derivative-based regularization matrices (17)-(18). The computa-
tions are carried out in Matlab software. Consider the error-free linear system

Ax̄ = b̄,

in which A ∈ Rn×n, x̄ ∈ Rn, b̄ ∈ Rn. Note that b̄ and x̄ are the error-free right-hand side and
the exact solution respectively. A white Gaussian noise vector e ∈ Rm with zero mean is added
to b̄ according to (2) to yield the right-hand side b. The noise vector e is scaled to obtain a
specified noise level defined by

ε =
‖e‖∥∥b̄∥∥ .

The relative error is computed by ‖xapp−x̄‖
‖x̄‖ in which xapp shows the approximated solution

of TR method (4) with different regularization matrices. For simplicity, we call Grunwald-
Letnikov and Caputo derivative-based regularization matrices as GR and CR, respectively.
All the ill-posed problems in examples are taken from the MATLAB package Regularization
Tools [17].

Example 4.1. The first test problem is an integral equation which is studied in [31] by Shaw
as follows: ∫ π

2

−π
2

k(s, t)f(t)dt = g(s), −π
2
≤ s ≤ π

2
, (34)

where the kernel k is given by

k(s, t) = (cos(s) + cos(t))2(sin(u)/u)2, u = π (sin (s) + sin (t)) .

The exact solution is

f(t) = 2exp(−6(t− 4

5
)
2

) + exp(−2(t+
1

2
)
2

).

The discretization of k(s, t) and f(t) by simple quadrature lead to produce A ∈ Rn×n and
x̄ ∈ Rn, respectively. Then the discrete right-hand side b̄ is produced as b̄ := Ax̄. Table 1
displays the results over 20 runs for noise level 1% and n = 100.

The results in Table 1 show that GR and CR (fractional derivative-based regularization)
matrices have better performance than L1 and L2. To have more insight into the accuracy of
different regularization matrices, Figure 2 shows the approximated solutions and x̄.

Example 4.2. The Fredholm integral equation of the first kind of problem Deriv2 discussed
in [6] is ∫ 1

0
k(s, t)f(t)dt = g(s), 0 ≤ s ≤ 1. (35)
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TR matrix α Relative error TR matrix α Relative error

GLα 0.2 1.83 · 10−1
GLα 1.2 1.73 · 10−1

0.4 2.01 · 10−1 1.4 1.57 · 10−1

0.6 2.02 · 10−1 1.6 1.42 · 10−1

0.8 1.97 · 10−1 1.8 1.31 · 10−1

1 1.86 · 10−1 2 1.31 · 10−1

CL
1
α 0.2 2.53 · 10−1

CL
2
α 1.2 2.27 · 10−1

0.4 2.47 · 10−1 1.4 2.23 · 10−1

0.6 2.42 · 10−1 1.6 2.19 · 10−1

0.8 2.36 · 10−1 1.8 2.14 · 10−1

L1 − 5.43 · 10−1 L2 − 6.53 · 10−1

Table 1: Average relative error of Shaw test problem with noise level 1% and n = 100
(Example 4.1).
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0.6
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Figure 2: Approximated solutions with GL0.2, CL
1
0.6, L1, L2 and Exact solution for Shaw test

problem with noise level 1% and n = 100 (Example 4.1).
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The kernel is

k(s, t) =

{
s(t− 1) s < t,
t(s− 1) s ≥ t,

where

f(t) = exp(t),

and the right-hand side g is given by

g(s) = exp(s) + (1− e)s− 1.

This problem is discretized by Galerkin method with orthonormal box functions which leads
to produce a linear system with the coefficient matrix A ∈ Rn×n and the right-hand side vector
b̄ ∈ Rn.

The average relative errors of the approximated solutions over 20 runs for noise level 50%
with n = 100 are shown in Table 2. Again, GR and CR matrices have less relative errors
and give more accurate results than the results of L1 and especially L2. Figure 3 shows the
approximated solutions and x̄.

TR matrix α Relative error TR matrix α Relative error

GLα 0.2 3.98 · 10−1
GLα 1.2 5.04 · 10−1

0.4 3.93 · 10−1 1.4 5.30 · 10−1

0.6 4.17 · 10−1 1.6 5.54 · 10−1

0.8 4.48 · 10−1 1.8 5.81 · 10−1

1 4.77 · 10−1 2 6.12 · 10−1

CL
1
α 0.2 2.33 · 10−1

CL
2
α 1.2 2.54 · 10−1

0.4 2.27 · 10−1 1.4 2.54 · 10−1

0.6 2.19 · 10−1 1.6 2.54 · 10−1

0.8 2.08 · 10−1 1.8 2.54 · 10−1

L1 − 4.71 · 100 L2 − 1.02 · 10+2

Table 2: Average relative error of Deriv2 test problem with noise level 50% and n = 100
(Example 4.2).

Example 4.3. Consider the following first kind of Fredholm integral equation∫ π

0
k(s, t)f(t)dt = g(s), 0 ≤ s ≤ π

2
, (36)

with kernel k and right-hand side g given by

k (s, t) = exp (scos (t)) , g (s) = 2sinh (s) /s.

The exact solution is
f (t) = sin (t) .
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Figure 3: Approximated solutions with GL0.2, CL
1
0.6, L1, L2 and Exact solution for Deriv2

test problem with noise level 50% and n = 100 (Example 4.1).

This integral equation is discussed by Baart [1].
It is discretized by the Galerkin method to produce a linear system Ax̄ = b̄ with the coefficient
matrix A ∈ Rn×n and the right-hand side vector b̄ ∈ Rn.

Table 3 shows the average relative errors over 20 runs with noise level 5% and n = 100.

Example 4.4. Consider Heat [4, 11] the inverse heat equation which is a Volterra integral
equation of the first kind on [0, 1] as integration interval with kernel k(s, t) = K(s− t), where

K(t) =
t−

3
2

2
√
π

exp(− 1

4t
).

The exact solution is taken to be

x(t) =


300
4 t2 0 ≤ t ≤ 1

10 ,
3
4 + (20t− 2)(3− 20t) 1

10 < t ≤ 3
20 ,

3
4e

2(3−20t) 3
20 < t ≤ 1

2 ,
0 1

2 < t ≤ 1.
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TR matrix α Relative error TR matrix α Relative error

GLα 0.2 1.95 · 10−1
GLα 1.2 9.83 · 10−2

0.4 1.65 · 10−1 1.4 7.74 · 10−2

0.6 1.46 · 10−1 1.6 6.40 · 10−2

0.8 1.32 · 10−1 1.8 7.68 · 10−1

1 1.17 · 10−1 2 1.08 · 10−1

CL
1
α 0.2 2.77 · 10−1

CL
2
α 1.2 2.66 · 10−1

0.4 2.74 · 10−1 1.4 2.61 · 10−1

0.6 2.70 · 10−1 1.6 2.53 · 10−1

0.8 2.64 · 10−1 1.8 2.43 · 10−1

L1 − 4.38 · 10−1 L2 − 6.86 · 100

Table 3: Average relative error of Baart test problem with noise level 5% and n = 100
(Example 4.3).

Discretization of this problem is done by means of simple quadrature (midpoint rule) and a
linear system with the coefficient matrix A ∈ Rn×n and exact solution x̄ ∈ Rn is produced.
The right-hand side vector b̄ ∈ Rn is obtained by b̄ := Ax̄.

The average relative errors of the approximated solutions over 20 runs for noise level 0.01%
and n = 100 are shown in Table 4.

TR matrix α Average relative error TR matrix α Average relative error

GLα 0.2 1.83 · 10−2
GLα 1.2 1.84 · 10−2

0.4 1.81 · 10−2 1.4 1.86 · 10−2

0.6 1.82 · 10−2 1.6 1.87 · 10−2

0.8 1.83 · 10−2 1.8 1.88 · 10−2

1 1.84 · 10−2 2 1.89 · 10−2

CL
1
α 0.2 5.77 · 10−2

CL
2
α 1.2 1.89 · 10−2

0.4 4.37 · 10−2 1.4 1.95 · 10−2

0.6 2.56 · 10−2 1.6 1.97 · 10−2

0.8 1.87 · 10−2 1.8 1.99 · 10−2

L1 − 5.30 · 10−1 L2 − 6.82 · 10−1

Table 4: Average relative error of Heat test problem with noise level 0.01% and n = 100
(Example 4.4).

Example 4.5. Here an image restoration example is provided by Blur from the regularization
tool package [17]. The image is contaminated by 0.1% noise level and the parameters σ = 0.7
and band = 3 is considered for the blurring function. The performance of different TR matrices
is shown by images and relative errors.

Table 5 shows that GLα could not produce good results. However, CLα yields the least
relative errors and the restored images by this matrix are very clear than those obtained by
L1 and L2.
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Original image Blurred and Noisy Image

Figure 4: True image and blurred and noisy one (Example 4.5).

TR matrix α Relative error TR matrix α Relative error

GLα 0.2 4.40 · 10−2
GLα 1.2 8.99 · 10−1

0.4 4.33 · 10−2 1.4 9.00 · 10−1

0.6 8.94 · 10−1 1.6 9.02 · 10−1

0.8 9.04 · 10−1 1.8 9.05 · 10−1

1 9.10 · 10−1 2 9.08 · 10−1

CL
1
α 0.2 1.25 · 10−2

CL
2
α 1.2 1.43 · 10−2

0.4 1.38 · 10−2 1.4 1.44 · 10−2

0.6 1.39 · 10−2 1.6 1.44 · 10−2

0.8 1.40 · 10−2 1.8 1.45 · 10−2

L1 − 4.19 · 10−2 L2 − 8.79 · 10−1

Table 5: Relative error of Blur test problem with noise level 0.1% (Example 4.5).

5 Conclusion

Using derivative operators is the common way as Tikhonov regularization matrix. In this paper,
the authors extend this approach and introduce some new Tikhonov regularization matrices
based on fractional derivative. One of the advantages of this extension is the existence of
parameter α in these new matrices. The good choice of this parameter can help to decrease
the relative error and so to improve the regularized solution. Another interesting point for
these research is obtaining the null spaces of matrices, explicitly. The results show that the
new matrices have superiority in reducing the relative errors over the classic derivative-based
regularization matrices (first and second derivatives). The future work of the authors is the
study of other fractional derivative operators which could be utilizable as TR matrices.
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Figure 5: Restored images with different TR matrices (Example 4.5).
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