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Abstract

Nonlinear partial differential equations with higher order dispersion terms play an important role in dynamics research. In
this paper, the fifth order KdV equation with high order dispersion term is studied and discussed. Firstly, the bilinear form
of the fifth order KdV equation with high order dispersion term is derived by Hirota bilinear form. Then, the combined test
function of the positive quartic function, quadratic function, exponential function and the interaction solution of the hyperbolic
function of the fifth order KdV equation with variable coefficients is constructed, and the resonance multi-soliton test function
of the equation is constructed by using the linear superposition principle.By means of mathematical symbol calculation, the
interaction solution between high-order Lump solution and periodic cross kink solution of the fifth order KdV equation with
variable coefficients and its resonance multi-solitons are solved.And by observing its corresponding graph analysis of its physical

phenomenon.
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1 | INTRODUCTION

Nonlinear partial differential equations (PDEs) have become very popular in natural science and social science, especially in
plasma physics!!l, ocean dynamics, lattice dynamics and fluid dynamics, etc. The most famous of the KdV equations in PDEs
is the KdV equation So far, many scholars have done a lot of research on nonlinear constant coefficient and variable coefficient
KdV equation, and put forward a variety of effective methods. For example: Backlund transform method=3!, Hirota bilinear
method“~®!, (G/G’)-expansion method [7], linear superposition principle ®!, Wronskian!®!, Self similar transformation!%.

At the same time, it is found that the physical linearity described by each type of KdV equation is different. For example, in
reference[11], the propagation characteristics of isolated waves in the ocean are described, and the effects of dissipation term
and perturbation term contained in the KdV equation on the elastic collision of two isolated waves in the ocean are given.
In reference[12], unstable drift waves in plasma physics are described. In reference[13], the propagation of solitons in non-
uniform propagation media in quantum mechanics, nonlinear mechanics and other fields is described. In reference[14], isolated
waves with large amplitude in atmosphere and ocean are described. In reference[15], the propagation depth and width of small
amplitude surface waves in large channels and channels are slowly changed by simulation to keep vorticity not disappearing.
After more in-depth research on PDEs, scholars found that the coefficient of dissipation term of KdV equation with variable

Study on generalized variable coefficient fifth-order KdV equation based on higher order dispersion term
0 Abbreviations:Higher order dispersion term; fifth-order KdV equation with variable coefficients; Hirota bilinear; interaction solutions; resonant multisolitons



2| AUTHOR ONE ET AL

coefficient changes with time and space, and the equation with variable coefficient can better describe the physical phenomenon
and properties behind it. Therefore, in recent years, the study of KdV equation with variable coefficient also increases, and it
is found that the method used in the study of constant coefficient can also be used in the study of KdV equation with variable
coefficient, and some progress has been made. For example:[16]The author uses the Pfaffians form to express the multi-soliton
solution of the KdV equation with variable coefficients, and further analyzes the properties of the understood dynamics. [17]The
author constructs two sets of exact periodic and soliton solutions of the fifth order KdV equation with variable coefficients and
linear damping terms using the improved sine-cosine method. [18]The author first obtained the n-soliton solution of the KdV
equation with variable coefficients in (241) dimension by using the Bell polynomial method, and analyzed the effects of soliton
fission, fission and rear-end collision on the coefficients. Then the Backlund transformation of the equation was obtained, and
the periodic wave solution of the equation was obtained by using the Riemannian function method.

This paper mainly studies the generalized variable coefficient Kortewey-de Vries(KdV) equation with higher order dissipative
terms. The form of the generalized variable coefficient KdV equation is

u, + a@®uu, + bu,, + c(t)uzux +d(uu,, +e(tuu,,  + f(Hu + g(t)ux();luy +hu,,, + k(tuu, = 0. M

XXXXX XXy

or

u, + a(Ouu, + b, ., + cOulu, +dtuuy, + e(uu,, . + fOu,, . +gOu,v+ htv,, . + kuo, =0,
Uy, = U,.

where u = u(x, y,t) in Eq.(1) is the function space of x, y, t. And a(¢), c(¢), d(t), e(t), g(¢), k(¢) are nonlinear term of time
t, b(t), h(t) for linear dispersion of time ¢, f(¢) for higher-order dispersion on time ¢. Eq.(1) tension waves on a gravitational
surface at a fluid interface, where surface tension, gravity, and fluid inertia are affected.

The amplitude, shape and velocity of the solitons correspond to the initial state one by one in elastic collision. While the
solitons interact with each other, one soliton can be split after collision, and two or more solitons can be split into inelastic
collision. The physical phenomenon of inelastic collision is called soliton fission, and conversely, it is called soliton fusion. The
variable coefficients of f(¢) and /(¢) in Eq.(1) can lead to fusion and fission of solitons.

In this paper, bilinear method and linear superposition principle are used to solve the generalized KdV equation with high
order dispersive term respectively, and the law of the high order dispersive term changing with time is studied. In the second
part, the bilinear form of the fifth order KdV equation with variable coefficients is obtained by Hirota bilinear method. In the
third part, the interaction solution of high-order Lump solution and periodic cross kink solution of the equation is obtained by
constructing positive quartic function, quadratic function and the combination of exponential function and hyperbolic function.
In the fourth part, the test function of the fifth order KdV equation with bilinear variable coefficients is constructed by means
of the principle of linear superposition. Mathematical software was used to carry out symbolic calculation, and several groups
of interaction solutions between high-order Lump solution and periodic cross kink solution and resonance multi-solitons were
obtained, complementing the research on the exact solution of generalized variable coefficient fifth-order KdV equation. Finally,
the conclusion is given in section 5.

2 | FIFTH ORDER KDV EQUATION WITH VARIABLE COEFFICIENTS

1. When c(t) = 6,d(t) =y, et) = f, f(t) = a, a(t) = g(t) = h(t) = k(t) = 0, Eq.(1) transforms into the generalized fifth order
KdV equation®! with constant coefficients.

Uy + Qg + Pusty ., + yuu,, + éuzux =0, )

Using ansatz and Jacobi elliptic function expansion method, the elliptic cosine wave solution of the equation is constructed.
2. When a(t) = b(t) = g(t) = h(t) = k(t) = 0, Eq.(1) transforms into Variable coefficient sawada-kotera equation/?"!.

u, + fOWPu, + gOuu . + h(Ouus + k(tus =0, 3)

The auto-Backlund transform, soliton solution and random soliton solution are obtained by using Hermite transform in
Kondrativ distribution space.
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3. When k(1) = 4h(t) = 2g(), a(t) = 6b(t), c(t) = d(t) = e(t) = f(t) = 0, Eq.(1) is transformed into a generalized 2+1
dimensional equation?!!
u, — hy(duuy, + 2ux0;1uy +u

h,(6uu, +u 0, (C))

xxy) xxx) -

The bilinear form, bilinear Backlund transformation, Lax pair and Darboux transformation are constructed by using binary
Bell polynomials. The equation is simplified into integrable equation, and the infinite conservation law of the equation is obtained
by using binary Bell polynomials.

In this part, the Hirota bilinear method is used to obtain the bilinear form of Eq.(1), and then the form of solution is constructed
to obtain the interaction solution of the equation. First use the transformation of related variables

u=2(Ing),,., (5)

Convert Eq.(1) to the bilinear equation as follows

By (8) = (DD, + b(t)D?! + f()D® + h()D?D,)g - g
= =88y + 88y + 3b(18], — 4b(18 8y = 10/ (g7, + BDZE sy + 157 (D81
=6/ (18 8xxxxx T (D88 xxxnx + M8 xxxy = 318 &rry + IN(1)8, 8y — H(1)E 118,
=0. (6)
where g = g(x, y, 1), D-operator is defined by reference[22] :

DZD;fog (_x - ﬁ)m(a_y - —)n(a - w)kf(x y.0g(x', ' t )|x’=x,y’=y,t’=t

3 | INTERACTION SOLUTION BETWEEN HIGH-ORDER LUMP SOLUTION AND
PERIODIC CROSS KINK SOLUTION

In order to obtain the interaction solution between the high-order Lump solution and the periodic cross kinking solution of the
generalized KdV equation of the fifth order with variable coefficients, the following positive quartic function, quadratic function
and the test function of the combination of exponential function and hyperbolic function are assumed

g=ePé 4 k, el 4 ky cos(p,&,) + ks cosh(&;) + ky sinh(&y) + ks sin(és) + ay;. @)

where

&
&
& =agx +a;py+a () +ap,,

a\x + a,y + as(t) + ay,

asx + agy + a;(t) + ag,

54 = al3x + a14y + als(t) + 016’
E =apx+agy+ ay(t) + ay,

where a;,(2 < i £21), k;(1 < j <5) are constant. A set of algebraic equations about ¢;,(1 <i < 21,andi # 3,7,9,11,15,19)
are obtained by substituting Eq.(7) into Eq.(1) and making the coefficients of x and y zero. By solving this set of overdetermined
equations, we can find the following sets of rich solutions.

Case 1:

{ a; =0,a5(t) = a5(t),a; =0,a9 = 0,a,,(t) = fat a%aloh(s) ds,a;; =0,p; =0, )
ay5() = [} @ a,,h(s)ds, a (1) = [ 4a2 f(s)ds,ky = 0.k, = 0, f(t) = £(1), h(t) = h(t),

a,,a,,06,03,d10,412,414-016-013-K3.k4.K5,p, are all constants. a;; is a constant that is not equal to zero, and the relation between
5a3, f(H)—aygh(t)
17

apy

the dispersion term of Eq.(1) and the higher-order dispersion term is b(¢) = . The exact solution of Eq.(1) can be

obtained by transformation (5).
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q)l
w(x,3.0) = &= ®
1

where
D, = —2a%7k5(sin(a19(t) + a;7x + a;gy + ayy)(k, sinh (als(t) +apy+ am) +
kycosh (ay, (1) + ayy + ap) +ay + 1) + k),
¥, = 2kssin (alg(t) +ap;x+agy+ a20) (k4 sinh (als(t) +apy+ a,G) +
kycosh(ay (t) + ajgy + ap) + ay + 1)+ 2 (ay + 1) kysinh(a;s(1) + ayyy + aj6) +
k3 cosh (a;,(t) + ayoy + ay,) * + k; cosh (a;5(8) + ayy + aj6) > + (ay +1) 2
+2ks cosh(ay (1) + ayyy + a;y)(ky sinh (ay5(1) + a4y + agg) + ay + 1) — k2 + k

_kg COS (alg(t) + a17x + alsy + a20) 2.
Case 2:
{ a = 0Ca, a(1) = [} @,a,h(s)ds, as = 0,a5(t) = a;(1), ay = 0,a,,(1) = [} @ ayph(s)ds,a;; =0, 10
a;5(t) = [ aay4h(s)ds,ayy(t) = [} 4a f(s)ds, ky = 0,k, = 0, f(t) = f(8), h(t) = h(D),

a,,a,,06,03,410,A12,014-016-313-K;(3 < i < 5),p;,p, are all constants. a5 is a constanst Eh;l(t)is ng(t)equal to zero, and the relation
ay, f({1)—a;ghlt

between the dispersion term of Eq.(1) and the higher-order dispersion term is b(t) =
a7

. The exact solution of Eq.(1)
can be obtained by transformation (5).

¢2
uz(X,y,t) = lP_v (11)
2

where

@, = —2a3,ks(sin(a,o(t) + a;7x + aygy + ay)(ky sinh(a;s(1) + ay,y + ai6) +
ks cosh(ay () + a1gy + ajp) + ay;) + e P1GBO ) sin(q o () + ap,x + agy + ayy) + ks),

P, = e P @BOrayta) ok sin(a,o(f) + a;,x + a3y + ayg) + 2k, sinh(a;s(t) + a4y + a;6) +
2kycosh(a; (1) + ajgy + apy) + 2a,;) — ké cos(a;9(t) + a7 x + agy + ayy)* +
sin(a,o(t) + a;7x + agy + a,0)(2k ks sinh(a 5(f) + a4y + a;6) + a%l - ki + k?
+2kykscosh(a, (1) + agy + ap) + 2a5,ks) + 2a,, k, sinh(as(t) + aj,y + aj) +
k3 cosh(ay (1) + ayoy + ap,)* + k; cosh(a;s(t) + a4y + a16)* + cosh(ay, () + ay0y + ay,)
(2kyky sinh(as(t) + ay,y + a6) + 2ay, ky) + e 2P (@OFaytan),

Case 3:
{ al = O, a:;(t) = a3(t)a5 = 0, a7(t) = a7(t), (19 = O, a“(t) = _‘/.at 0%3010/’1(5‘) ds, kl = 0, k2 = 0, (12)
a;s(t) = 4/; a?Sf(s) ds,a;; =0,a,4(t) = —fat a%algh(s) ds,p, =0, f(t) = f(), h(t) = h(?),

a,,a,,06,03,410,A12,413,014-016-813-k;(3 < i < 5),p, are all constants. a5 is a constant that is not equal to zero, and the relation
_ 5a, f(t+ay h(n)
a

13

between the dispersion term of Eq.(1) and the higher-order dispersion term is b(t) = . The exact solution of Eq.(1)

can be obtained by transformation (5).

q)3
u3(x’y’t) = lP_’ (13)
3

where
D, = 2a%3k4(k4 sinh (als(t) +apx+ay+ a16) 2 — ky cosh(a;s(t) + aj3x + ay,y + aj)” +
sinh(a5(t) + a;3x + a4y + a16)(ks sin(ao(?) + a3y + ayg) + ks cosh(ay (t) + a,py +
ap) +ay + 1)),
W5 = (kysinh(a,5(t) + a;3x + a4y + ajg) + ks sin(a,o(t) + agy + ayy) +
ks cosh(a;, () + a,gy + ajp) + ay; + 12
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Case 4:
{ a = 0,a;(1) = - [} @,a,h(s)ds, a5 = 0, ag =0,a,,() =~ [} a*a,0h(s)ds, k, =0, 14
ais() =4 [ a},f(s)ds, a3 = 0,a,0(t) = = [ a},a13h(s)ds, ky = 0, f(1) = f(1), h(t) = h(1),

a5,a,,06,03,010,412,013,014,016-013-K;(3 < i < 5),p;,p, are all constants. a5 is a constant that is not equal to zero, and the
53, f(t)+a, h(t)
Bt EEA il Lt

a3

relation between the dispersion term of Eq.(1) and the higher-order dispersion term is b(¢) = . The exact solution

of Eq.(1) can be obtained by transformation (5).

@,
uy(x, y,1) = v, 15)
where
D, = 20%3k4(k4 sinh (als(t) +apx+ayuy+ a16) % — k, cosh (als(t) +apx+ay+ a16) 2
+sinh (a;5(t) + aj3x + a4y + a56) (ks sin (a,9(1) + a;gy + ayy) + k cosh(ay, () + ayoy
+a,)) + ay)) + e P (@O ay+a) ging (a15() + a;3x + ayy + ag)),
W, = (ky sinh (ay5(t) + a;3x + ayy + ayg) + ks sin (a10(1) + aygy + ay) +
ks cosh (ay,(1) + aygy + ay, ) + e (B0 @rta) 4 g, )2
Case 5:
{ a, =0,a3() = a3(t),as = 0,a,(t) = a,(t),ag = 0,a,, = 0,a,,(t) =0,a,, = a‘;:‘“,als(t) =0, (16)
a,9(t)=0,k; =0,ky =0,p, =0, f(t) =0, h(z) = h(1),

a5,a,,06,03,012,013,016.813-020-821,k;(3 < i £ 5),p, are all constants. a,; is not equal to zero for the constant, Eq.(1) the high
order dispersion is zero, the relationship between a linear dispersion b(f) = — ‘“Z—h(t) The exact solution of Eq.(1) can be obtained
. 17
by transformation (5).

( ) ‘{‘ ( )
us X, }71 s 1 ‘

‘DS = _20%7165 (k3 COSh (all(t) + alz) + a21 + 1) Sin (alg(t) + al7x + algy + (120) -

a;7ay5(t) + a5 (a;3x + ay) + ajzagy
2k4sinh< 115(0) + i (@13 + ) + iyt >((a2 — a2, ks sin(ago(r) + ayx +

ar; 17
a5y + ayy) — ajy(ky cosh (ay (1) + apy) + ay + 1) = 4ay3a,7k,ks cos(ao(r)
aj7a15(t) + a7 (a3x + aj) + ajzagy
2a7,k3 = 2a3,k; + a17x + aygy + ayy) cosh( ( ; ) ),
17
Wy = +2k; (k3 cosh (a“(t) + 012) +a, + 1) sin (alg(t) +apx+agy+ azo) +
2k, sinh (anals(’) +ay; (a;3x + aj6) + apsagy

a7

> (ks sin (ayo(t) + a7x + a;gy + azy) +

kycosh (ay,(t) + ayy) + ay + 1) + 2 (ay; + 1) ky cosh (a;,(1) + ap,) +
k3 cosh(ay (1) + app)* + (ay; + 1> — k] + k3 — k2 cos(ayo(t) + ay7x + agy + ay)’

a7a,5(t) +a7(azx +a) +anza
+kicosh( 1705(1) 17(ay3 16) 13 18y)2.

a7
Case 6:

(18)

al = 0, az = O, a3(t) = 0, as = O, a7(t) = a7(t), ag = O, alo = O, all(t) = O,
ayy = " ay5(0) = 0,a19(t) = 0,ky = 0,ky = 0, (1) = 0, h(t) = h(1),

a7
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ay, ag, Ag, A1y, A3, A1, A3, dogs A1, k;(3 < i <5), p.p, are all constants. a,; is not equal to zero for the constant, Eq.(1)
the high order dispersion is zero, the relationship between a linear dispersion b(?) = —a‘fl—h@. The exact solution of Eq.(1) can
. . 17
be obtained by transformation (5).

@4

u6(x9y7t) = T_’ (19)
6

where
D¢ = —2a% ks <k3 cosh (ay (1) + ) + e Pi(@OFa) a21> sin (a,9(t) + a;7x + aygy + ay)

ajza;s(t) + ay; (013" + a16) +apagy

+2k, sinh ( ) (a3,(ks cosh(ay, (1) + a;y) +

ajy
e PO+ 4 g ) + (af, — al,)ks sin(a (1) + ay7x + aygy + ay))) — 4a 3a,7k,ks

aja;s(t) + ay; (a13x + ‘116) + a13‘118)’>

cos (a9(1) + ay7x + aygy + ayy) cosh <
a7

2,2 2 2
—2ay,ks = 2ay;k;,

W, = 2k, (k3 cosh (ay () + ;) + e P(@0%a) 4 a21> sin (ayo(t) + ay7x + aygy + ay) +

) aya;5() + ay7 (a;3x + ay6) + ajzay
2k, sinh
ap

> (ks sin (alg(t) +ap;;x +agy+ azo)
+ky cosh(a,,(t) + ay,) + e P @O%a) 4 gy 4 e P @OV . cosh(ay (1) + aj,)
+2a,,) — k§ cos(a;o(t) + aj;x +agy + a20)2 + 2a, ks cosh(a; () + a;,) +

k3 cosh(ay (1) + ay,)* + e 2@ 4 g2 — k2 4 k2

17415(0) + a7(a3x + a6) + a13‘118y)2

) a
+k; cosh(
apy
Case 7:

{ a, =0,a5(t) = as(t),a; = 0,a,(t) = a;(t),a9g = 0,a,,(t) = 0,a,5(t) =0, 20)

a9(t) =0,ky =0,k =0,p; =0, f(1) =0, h(r) = 0,b(r) = 0,

ay, a4, Gy, Ag, Ay, A1o, 413, A1, A1 A1gs Aogs Ay1, k;(3 < i < 5), p, are all constants. Both the dispersion term and the
higher-order dispersion term of Eq.(1) are zero. The exact solution of Eq.(1) can be obtained by transformation (5).

q>7
u7(x5 Y, t) = lP_’ (21)
7

where

O, = —4aza,7kyks cos(ag(t) + ap;x + agy + ayy) cosh(as(t) + apzx + ayy + agg) —
251%7k5(k3 cosh(a; (1) + a;py + a;,) + ay; + 1) sina,o(t) + a;7x + ajgy + ayy) — x
+a,,y + a¢) — 2ky sinh(a,5(t) + a;3x + auy + 016)((a%7 - a%) ks sin(ao(t) +
a;X + agy + ay)) — ai, (ks cosh (ay, (1) + aygy + ayy) + ay + 1)) — 2a3,k2 — 243,k

¥, = —kg cos (alg(t) +apx+agy+ azo) 24 ki cosh (als(t) +apx+apy+ a16) 24
2ks (ks cosh (ay,(t) + aygy + apy) + ay; + 1) sin (ay(t) + a7x + a;gy + ayy) +
2k, sinh (als(t) +apx+ayy+ alé) (ks sin (alg(t) +apx+agy+ azo) +
kycosh(ay (t) + ajgy + apy) + ay + 1)+ 2 (ay + 1) kycosh (a, (1) + ayoy + ayy)
+k3 cosh (aj () + aygy + ap) > + (ay + 1) > — k] + k2.

Case 8:

{ a, =0,a5(t) = as(t),a5 = 0,a,(t) = a;(t),a9g = 0,a,,(t) =0, 22)

a;5(t) =0,a,9(t) =0,k; =0,k, =0, f(z) =0,h() =0,b(t) =0,
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ay, a4, Ag, g, A1, A1p> Q135 A14, Q16> A17, Q18> Aog» Aa1» k;(3 < i £5), py, p, are all constants. Both the dispersion term and the
higher-order dispersion term of Eq.(1) are zero. The exact solution of Eq.(1) can be obtained by transformation (5).

g
ug(x, y,1) = v (23)
8

where

O, = e_”l(”3(’)+“2y+”4)(2af3k4 sinh (ay5(1) + ay3x + a4y + ay6) — 2a3,ks sin(ao(t)
+ay7X + ajgy + ay))) — 4a,3a,7kyks cos (ayo(1) + ay;x + aygy + ay) cosh(a;s(7)
+apsx + ayyy + agg) — 2a7,ks (ks cosh (ay, (1) + ayy + ay,) + ay ) sin(a;o(t) +
a7x + agy + ayy) + 2k, sinh(a5(t) + ap3x + ay + 1116)(((1%3 - a%7) ks sin(a,o(t) +
a;7x + agy + ay) + a%3(k3 cosh (an(t) +ay+ ‘112) +a,)) — 2a?7k§ - 2a%3ki,

W, = e n(aOFarta) ok sin (a19(t) + a17x + a\gy + ayy) + 2k, sinh(as(t) + aj3x
+a,4y + ay6) + 2ks cosh (ay, () + ayy + ay,) +2a,)) — k3 cos(ay (1) + ay;x +
a5y + ax)’ + ki cosh(a,s(t) + ay3x + ay,y + ayg)* + (2ksks cosh(a, () + a,oy +
ap,) + 2ay,ks) sin (a19(t) + ay7x + a1gy + ayy) + sinh (a,5(1) + aj3x + ayy + a56)
(2ksky sin (ayo(1) + ay7x + aygy + ayy) + 2kzkycosh (ay, (1) + ayoy + ayy) + 24y ky)
+2ay, ks cosh (ay,(1) + aygy + apy) + k2 cosh (ay, (1) + aygy + ay, ) 2 + e~ i(@Orar+a)
‘a5, — ki + k2.

Case 9:

{ al = 0, a3(t) = a3(t), as = 0, a7(t) = (17(1‘), all(t) = 0, 013 = O, als(t) = als(t), (24)

a(t) =0,k =0,k =0,p; =0, f(1) =0, @) = 0,b(r) =0,
ay, ay, Ay, Ag, Ay, A1g, A1a, A1as Q16> Q17> A13- Aogs Aoy, k;(3 < i < 5), p, are all constants. Both the dispersion term and the
higher-order dispersion term of Eq.(1) are zero. The exact solution of Eq.(1) can be obtained by transformation (5).

q)9
u9(x’ Vs l) = lP_’ (25)
9

where
D, =-2 (a21 + 1) a%7k5 sin (alg(t) +apx+agy+ azo) —4aga;ksks cos(ag(t) + a;;x
+agy + ay,) sinh (a“(t) +agx + agy + a,2) + 2k; cosh (a“(t) +agx + agy + a,z)
((ag - 0%7) ks sin (alg(t) +apx+agy+ a20) + (021 + 1) ag) - 2a%7k§ + 2a§k§,
Wy =2 (a5 + 1) ks sin (a;9(t) + ay7x + a1gy + ayy) — k2 cos (a19(t) + ay7x + a1gy + ay)
+k§ cosh (a”(t) +agx +a;gy + 012) 2 4 2k, cosh (a“(t) +agx + a)gy + 012)
(k5 sin (alg(t) +apx+agy+ azo) +ay + 1) + (a21 + 1) 2+ kg.

Case 10:

(26)

a;, =0,a, =0,a5(t) = 0,a5 = 0,a,) = %,a“(r) =0,a;; =0,
alS(t) = alS(t)s a19(t) = O’ k] = O, k2 = O, k4 = 09 f(t) = Os h(t) = h(t),

a4, Gg, Ag, Ay, A1n, A4, A1, 417, A13, Aogs Gy1» k3, ks, py, p, are all constants. a; is not equal to zero for the constant, Eq.(1)
the high order dispersion is zero, the relationship between a linear dispersion b(¢) = —'”Z—(t). The exact solution of Eq.(1) can

be obtained by transformation (5). 7

Dy
u]()(X, »t) = ‘P_’ 27
10

where
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@, = —2a7 ks (e‘pl(“3(’)+“4) + a21) sin (a9(1) + ay7x + aygy + ay) —

aza,,(t) + ay; (agx + ayy) + agagy :
2k cosh < ( ) (a3, = a3) ks sin(ayo(r) + ayyx
apy

2 —
+agy + ay)) — ag(e™” (as(D+as) 4 ay))) — 4aga,;ksks cos (al9(t) +apx+agy+ azo)
) (a”a”(t) +ay7 (agx + ayy) + agaygy
sinh

2.2 2,2
p ) = 2ay,ks + 2a5ks5,
17

¥, = 2ks <e‘”1(“3(’)+"4) + a21> sin (a;(t) + ay7x + a1gy + ay) +

apan () +ay; (agx +ap,) +agagy
2k3c0sh< ( )

, ) (ks sin (alg(t) +ap;;x +agy+ azo)
17

tepi(astar) ay) — kg cos (alg(t) +apx+agy+ azo) 24

12 cosh <“17“11(’) + a7 (agx +ap) + “9“18y> 2 4 2ay e P (@0%a) 4 o2 (a0)a)

3
apy
2 2
+a;, + k5'

Case 11:

a

a, = 0, a3(t) = a3(t), as = 0, 07([) = a7([),alo = agimaa“(t) = 0,013 =0,
a;s(t) = ays(),a;9() =0,k; =0,k, =0,ky =0,p; =0, f(1) =0, @) = h(2),

(28)

ay, 4y, g, g, g, A15, A1y, A1, A7, A13, Ao, Ay1, k3, ks, p, are all constants. a; is not equal to zero for the constant, Eq.(1)
the high order dispersion is zero, the relationship between a linear dispersion b(¢) = —H‘Z—m. The exact solution of Eq.(1) can
17

be obtained by transformation (5).

w1y 7.1 = L
11\ A ) - T
¥y
where
D, =-2 (a21 + 1) af7k5 sin (alg(t) +ap;;x +agy+ azo) —4aga ;k;ks cos(ag(t) + ap;x
) aza,,(1) + ay; (a9x +ay) +agagy
+a,g3y + ay) sinh +
apy
ay7a,,(t) + ay; (agx + ay, ) + aga gy .
2k5 cosh ( ( ) (a3 — a3,) ks sin(ayo(t) + a;7x +
apg
a;gy + ayy) + (a21 + 1) ag) - 2a%7k§ + 2a§k§,
¥Y,=2 (a21 + l) ks sin (alg(t) +apx+agy+ azo) - kg cos (alg(t) +apx+agy+ azo) 2
apa () +ap; (agx +ap,) +agagy
+k§ cosh 7 7 ( ) 24
i ayy
aj7a,,(t) + ay; (agx + ayy) + aga gy .
2k cosh < ( ) (ks sin (alg(t) +apx+agy+ azo)
apg
tay + D+ (ay + 1) +k2.
Case 12:

a, =0,a3(t) =— /at aéazh(s) ds,as =0,a;(t) = a;(t),a,,(t) = 4/; agf(s) ds,a;3=0,a,7 =0,

{ a;s(t) = a;s(t), a4(t) = —/al agalgh(s) ds,k;, =0,k; =0,ky, =0,p, =0, f(t) =0, h(t) = h(?),

(29)

(30)
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ay, a4, dg, Ag, A1, A1a, A14. A6, Q13> Ga» Go1, k3, ks, p, are all constants. aq is a constant that is not equal to zero, and the

_ 243 f (1)+a,h(t)
a

relation between the dispersion term of Eq.(1) and the higher-order dispersion term is b(t) = . The exact solution

of Eq.(1) can be obtained by transformation (5).

Uy 1) = 212, G1)
IPIZ

where
D, = 2a§k3((k5 sin (al9(t) +agy+ azo) + 021) cosh (a“(t) +agx +apy + 012) +
e PO+ @y cosh (ay, (1) + agx + aygy + ap) + k),
W, = e P (GOt k. cosh(ay (1) + agx + ay,y + a;,) + 2ks sin(aye(1) + a5y
+a,) + 2a,,) + k% cosh (a“(t) + agx + agy + a12) 24 (2ksk; sin (a19(t) +ay+ azo)
+2ay,ks) cosh (ay, (1) + agx + aygy + ap,) + 2ay,ks sin(ayo(t) + aggy +

ay9) — k2 cos (ayo() + ajgy + ay) > + e 2 (@Oraytay) aj, + k.
Case 13:

(32)

a; =0,a;3() = as(1), taS =0,a;(t) = a;(t),a,,(t) = 4/; agf(s) ds,a;3 =0,a;5(0) = a;5(),
a;;=0,a,4(t) = —fa agalgh(s) ds,k;, =0,ky =0,k, =0,p, =0, f(t) =0, h(?) = h(1),

a,, ay, ag, Ag, g, A1a, A1a, Q16> A13. dog» Ay, K3, ks, p, are all constants. aq is a constant that is not equal to zero, and the
5a) f(D+ay (D)
a

9

relation between the dispersion term of Eq.(1) and the higher-order dispersion term is b(t) = . The exact solution

of Eq.(1) can be obtained by transformation (5).

_ D5
upz(x,y,t) = v (33)
13

where
;= 2a§k3 ((k5 sin (alg(t) +apgy+ ‘120) +a, + 1) cosh (a“(t) +agx +a;gy+ alz) + k3) ,
Y= k% cosh (a“(t) +agx + agy + ‘112) 24 2k, (ks sin (alg(t) +agy+ ‘120) +a, + 1)
cosh (ay;(t) + agx + a;gy + ap,) +2 (ay + 1) ks sin (ao(t) + a5y + ayy) —
k? cos (alg(t) +a;y+ azo) 2+ (a21 + 1) 2+ k?.

Case 14:

t t
a, =0,a;(t) = - fa a%azh(s) ds,as =0,a:(t) = a;(t),a9 = 0,a,,(t) = — /a a%aloh(s) ds,
t
a;3=0,a5() = 4/(1 a%azf(s) ds,a;; =0,a,9(t) = a19(t), k; =0,k, =0,ks =0, (34)
J(@®) =0,h(®) = h(1),
a,, a4, G, Ag, A1, A3, A1a, A1, Q13> Aog» Aa1> k3, K4, Py, P, are all constants. a5 is a constant that is not equal to zero, and the
_Sal, f(+aysh()
a

13

relation between the dispersion term of Eq.(1) and the higher-order dispersion term is b(t) = . The exact solution

of Eq.(1) can be obtained by transformation (5).

_ q)14
u[4(x’ Vs t) - lP_’ (35)
14

where
(D14 = 2(1%3/(4((/(3 COSh (all(t) + aloy + alz) + 021) Slnh (als(t) + a13x + al4y + a16) +
e—pl(a3(t)+azy+a4) Slnh (015(1) + 013x + al4y + 016) - k4),
Y,, = (k, sinh (als(t) +apx+ay+ a16> + ks cosh (a”(t) +a,y+ 012) +

e~ P (a;()+ayy+ay) + ay, )2.
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The above 14 groups of equations can be divided into three categories:

The first type ofiu (x, ¥, 1), uy(x, y,1), uz(x, y, 1), uy(x, y, 1), u;3(x, y,t) can obtain the relationship between the higher order
dispersion term and the linear dispersion term.

The second type ofThe higher order dispersion terms of u,(x, y, ), ug(x, y,1), ug(x, y,t) are zero, and the relation between
linear dispersion terms can be obtained.

The third type ofius(x, y,1), ug(x, y,1), u19(x, ¥, 1), uy;(x, y,1), uj5(x, ¥, 1), u4(x, y,t) of high-order dispersion and linear
dispersion is zero.

According to the above three cases, the corresponding types of images are drawn by mathematical software for analysis.

When y = 10,y = =5,y =0, y = 4, y = —10, the equation of the physical properties and dynamic structure, as shown in
Fig.1. The parameters of u,(x, y, t) are selected as the 3D image and contour map of a, — 1, a;(¢) = sin(t), a, = =2.3, a9 = 1,
ag=1la,=ta,=1a,=23,a,;5) =cost),a;s =1,a,; =2.2,a,3 = 1.5, ao(t) = sin(t), a,, = 1.3, a,; = —1.2.

AAAAAA
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(©) y=0

Fig.1 Wheny=10,y=4,y=0,y= -5,y =-10, u;(x, y,t) interaction solution of three-dimensional and contour figures.

It can be observed from Fig.1 that when different parameter values are selected for spatial variable Y and time variable t, the
image is an unsmooth solitary spiky wave, and its maximum peaks are all equal. Fig.1(a) to Fig.2(c) Solitary wave behavior is
gradually moving in the direction of + — 40, and the maximum wave peak is upward. This solitary wave behavior of plasma
is bright wave.

Wheny =10,y =4,y = -1,y = -5, y = —16, the equation of the physical properties and dynamic structure, as shown
in Fig.2. The parameters of us(x, y, ) are selected as the 3D image and contour map of a;(t) = sin(?), ag = 1.2, a5 = 1,
a; (t) = cos(t), a, =1,a,;, =0.5, ajg = =0.06, a|y(t) = sin(t), a,, = 1, a,; = —1.5.

M er——

-15

(b) y=4 (d) y=-5 () y=-16

Fig2 Wheny=10,y=4,y=0, y = -5, y = —16, u5(x, y, t) interaction solution of three-dimensional and contour figures.



AUTHOR ONE ET AL | n

By observing the Fig.2 can be dynamic images were observed in x — ¢ flat level, higher order Lump cross kink wave solutions
and periodic solutions of interaction force from strong to weak to strong, and solitary wave solution, are mutual inelastic collision
between amplitude and shape all happen very big change, peak shape isolated sharp wave tapering and reach maximum peak.

4 | RESONANT MULTISOLITON SOLUTION

Finally, applying the principle of linear superposition, the bilinear generalized variable coefficient KdV equation is assumed to
have the following solution form

N N
g= 20 £ = Za £, exp(0,). (36)

where g; = exp(¢;) = exp(&;x + A,y + 7;1), 1 <i < N,and &, 4;, 7; are all constants.Substituting the above Eq.(36) into the
bilinear Eq.(6), using the bilinear equation identities, we can obtain
N
P(D,,D,,D,) = 2 g€, P& — &, — 4,7, — ;) explo; + 0))- 37)
i,j=1
So we can draw the double linear equation solution of g if and only if P(§; — &, 4, — 4;, 7, — 7;) exp(o; + 0;) = 0.
According to the above linear superposition principle, the polynomial corresponding to bilinear Eq.(6) is

P(x,y,1) = xt + b(t)x* + f()x° + h(H)x7y. (38)
Substituting Eq.(38) into Eq.(37), we get
& — §j)(Ti - Tj) +b(1)(&; — 5])4 + (& — 5])6 + h(@®)(&; — ng)3(ii - }*j) =0. (39)
By simplifying Eq.(39), we will get the following sets of solutions. We choose two cases as examples:
Case 1: &, =¢&,,4; = —% T =—f (t).ff. The resonant multisolitons of Eq.(1) can be obtained by transformation (5)
N neiy N néiy
Y 265 Talfog Y& 55 08y
i=1 i=1
us(x,y,1) =2 ~ -2 ~ (40)
3y R TR AU 5 effx—b(,',f;'y—f(t)éft)z

i=1 i=1

Incase I,N=3,6,andy = -5,y = -2,y =0, y = 2, y = 7 equation when the physical properties of structure and dynamics, as
shown in figure 3 and Fig.4, when u,5(x, y, t) parameters selection N = 3, f(¢) = sint, h(t) = tant, b(t) =1,&, = —-1.3,&;, = 1.1
and N =6, f(t) =cost, h(t) =sint, b(t) =, &, =1,& =12, &, =1.1,§, = 0.5, & = —0.25, & = 2.1 three-dimensional figure
and contour map.

-
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Fig3 When N =3, y=-5,y=-2,y=0,y=2,y =7, u;5(x, y,t) interaction solution of three-dimensional and contour
figures.

When N = 3,6, we can observe that the ratio of linear dispersion terms and the higher-order dispersion terms increase with
the increase of t — +o0. As can be seen from the contour diagram in Fig.3, the initial enlarged eWe image gradually shrinks
and then gradually expands, and the isolated peak wave gradually increases and then decreases with the ratio of linear dispersion
terms and the transformation of higher-order dispersion terms. The dynamic behavior is always bright. It can be observed from
the contour line in Fig.4 that peak-like isolated sharp waves move slowly toward ¢+ — +co with the increase of the ratio of linear
dispersion terms and the increase of higher-order dispersion terms, and elastic collision occurs. The amplitude and maximum
peak value of isolated waves remain unchanged.

PR = PaEY -

(@) y=-5 (b) y=-2 (©) y=0 (d)y=2

Fig4 When N =6,y=-5,y=-2,y=0,y=2,y =7, u;5(x, y,t) interaction solution of three-dimensional and contour
figures

Case2:§, =&, 4, =(2—- %)é?, T, = -2+ b(t)):f?.The resonant multisolitons of Eq.(1) can be obtained by transformation (5)

N ey N ey
30 JOGY Se3 3 ) 3. TOSGY Sp3, 3
Y éize.f,x+2§‘. V- =28} -b(nE > éieg,xufi V=S =28} 1-b(0E; 1)2
i=1 i=1
Ug(x, y,1) =2 - -2 - 41
L CR Ay L ERr Ay
STV T i i (Z ST T T i i )2

i=1 i=1
Incase 2,N=2,3,6,andy = -5,y = -2,y = 0, y = 2, y = 7 equation when the physical properties of structure and dynamics,
as shown in Fig.5 and Fig.6, when u,4(x, y, ) parameters selection N = 2, f(¢f) = cost, h(t) = sint, b(t) = sint, § = 0.25,
& =18and N =3, f(t) = cost, h(t) = sint, b(t) = cost, & = %, & =-025,4=13and N =6, f(t) = cost, h(t) = sint,
b(t) =cost, & = %, & =-0258=13,£ =05,& = -0.25, & = 2.1 three-dimensional figure and contour map.
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Fig5 When N =2,y=-5,y=-2,y=0,y=2,y =7, uj4(x, y,t) interaction solution of three-dimensional and contour

(a) y=-5

figures.

(b) y=-2

(c) y=0

(d)y=2

6 y=7

Fig6 When N =3,y=-5,y=-2,y=0,y=2,y =7, u,4(x, y,t) interaction solution of three-dimensional and contour

(@) y=-5

figures.

(©) y=0

2
Al Y

4

(d)y=2

3

) y=7

Fig7 When N =6,y=-5,y=-2,y=0,y=2,y =7, uj4(x, y, 1) interaction solution of three-dimensional and contour

figures.

When N = 2,3,6, we can observe that the ratio of linear dispersion terms and the higher-order dispersion terms decrease
with the increase of t — +o0. It can be observed from the contour diagram in Fig.5 and Fig.7 that the soliton gradually decreases
from the initial concentrated distribution to x-t with a fast speed. The peak isolated sharp wave also gradually decreases with the
ratio of linear dispersion terms and the transformation of higher-order dispersion terms, and inelastic collisions occur between

multiple solitons.
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In this paper, the interaction solutions and resonant multisolitons of the generalized variable coefficient KdV equation with
higher order dispersion terms are studied. Contain nonlinear partial differential equation of higher order dispersion in some
complicated cases play a very important role, this makes the study of this equation is very important, first of all, we through
the proper variable transformation makes five order variable coefficient KdV equations into linear equations, then structure
are four function, quadratic function, exponential function and hyperbolic function of interaction in the form of a solution,
Several kinds of interaction solutions of KdV equation with fifth order variable coefficients are obtained by using the constructed
auxiliary functions. In addition, we also solved the resonance multi-soliton solution of the equation through the principle of
linear superposition. When the values of N are different, the images formed are compared and analyzed. This paper further
improves the study of the fifth order KdV equation with variable coefficients.
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