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Abstract

Sample size estimation through power analysis is a fundamental tool in planning an ecological study, yet there

are currently no well-established procedures for when multivariate abundances are to be collected. A power analysis

procedure would need to address three challenges: designing a parsimonious simulation model that captures key

community data properties; measuring effect size in a realistic yet interpretable fashion; and ensuring computational

feasibility when simulation is used both for power estimation and significance testing. Here we propose a power

analysis procedure that meets these challenges with accompanying R software (ecopower). Our simulation model

uses a Gaussian copula model, and expert opinion is leveraged to simplify effect size specification into “increasers”,

“decreasers” or “no effect” taxa. Computational issues are addressed by using a critical value approach, reducing

computation time from days to minutes. The procedure is demonstrated by estimating the sample size required to

detect changes for fish abundances.
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Introduction

In planning any study it is important to consider how large an effect (“effect size”) can be detected by the intended study design

(Rosenthal et al., 1994; Fritz and MacKinnon, 2007; Kelley and Preacher, 2012). Such information is often obtained via a power

analysis of preliminary data, which can help design a study that has a good chance of detecting effects of ecological interest (Cohen,

1992, 2013). While texts for ecologists frequently discuss the importance of power analysis, and related techniques, in sample

size determination (Gerrodette, 1987; Johnson et al., 2015; Green and MacLeod, 2016), there is little guidance for the ecologist on

how to undertake such an analysis for multivariate data, i.e. multiple response variables measured per sample. This is particularly

the case if analysing abundance or presence-absence data simultaneously collected for many different taxa; hereafter (multivariate

abundances).

There are three key challenges that would need to be addressed in developing a power analysis procedure for multivariate abun-

dance data. Challenge 1 is to design a simulation model to randomly generate realistic multivariate abundance data, reflecting key

properties of the data to be collected. It should be possible to use pilot data, when available, to tune the settings of the simulation

model, to generate data that “looks like” the pilot data. Some simulation approaches are available in the literature (e.g. Xu et al.,

2010), however with limited ability to tune using pilot data. Other methods have also been developed using a Bray-Curtis distance

based approach (Irvine et al., 2011) or by considering the abundances as continuous random variables and calculating Euclidean

distances (Collins et al., 2000; Angeler et al., 2009). These approaches however ignore important mean-variance assumptions and

therefore subsequent analyses can be misleading (Warton et al., 2012). Multivariate modelling approaches have been developed

recently that could be used to address this, including Gaussian copulas (Popovic et al., 2018; Anderson et al., 2019) and hierarchical

models (Warton, Foster, Death, Stoklosa and Dunstan, 2015; Ovaskainen et al., 2017). Challenge 2 is measuring effect size. When

many taxa are to be sampled, many parameters need to be specified a priori that will capture the size and nature of the effect the

study has been designed to detect. Decisions about these parameters are to be made based on relatively little information, and need

to be captured by a relatively simple, interpretable effect size measure in order for results to be useful for study design (Kelley

and Preacher, 2012). Challenge 3 is making the power analysis procedure computationally efficient. Hypothesis testing procedures

for multivariate abundance data typically use resampling (Anderson, 2001; Wang et al., 2012), conventionally recalculating a test

statistic at least 1000 times across resampled datasets. A power analysis would require this to be done for each of say 1000 simulated

datasets, such that estimating power for a typical multivariate abundance dataset would take hours or days.

This paper proposes a power analysis procedure for multivariate abundance data that addresses each of the above three challenges.

Challenge 1 is addressed using a Gaussian copula-factor analysis model to simulate data in a parsimonious fashion, an approach for

which methods to tune the model using training data were only recently proposed (Popovic et al., 2018). Challenge 2 is addressed

using a simple parameterisation for effect size that requires a priori information only concerning taxa that are likely to be affected,

and the direction of the effect. Challenge 3 is addressed using a novel “critical value” approach to power analysis of resampled

statistics, which can reduce computation time from days to minutes. The procedure will be illustrated on a marine habitat restoration

project which involves regular monitoring of ecological communities, where we are interested in the number of samples required

for a future monitoring period in order to likely detect community differences in abundance across treatments, as well as the size of

effects that are able to be detected under different sampling designs.
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Materials and Methods

Operation Crayweed Restoration Project

Researchers within the Operation Crayweed Restoration Project in Sydney are restoring the locally extinct macro-algae Phyllospora

comosa (“crayweed”: see Coleman et al., 2008; Campbell et al., 2014; Vergés et al., 2020) and are interested in the effect of this

restoration on associated ecological communities (Marzinelli et al., 2014, 2016; Wood et al., 2019). Pilot data have already been

collected, where the abundance of fish species in nine open ocean sites have been recorded. We are interested in observing if there is

a change in mean fish abundance between three treatments: control (sites in Sydney without crayweed), restored (similar to control

sites where crayweed has recently been planted) and reference (sites north and south of Sydney with extant crayweed forests), as in

Figure 1. There are plans to collect more data in the future, however there is an upper bound of approximately 24 possible spatially

independent restored or control coastal bays/sites within the Sydney region and surroundings.

We are interested in answering the following experimental design questions from the pilot data, which will act as the motivating

examples for this paper:

1. How many sites are required in order to likely detect 20% differences between treatments?

2. Under the maximum balanced sampling design of 12 sites for each treatment, what are the size of effects that are likely to be

detected?

Power analysis

Consider a situation where the objective of the study is to test a specific null hypothesis (H0) by looking for evidence of some alter-

native (H1). The effectiveness of any given study design and testing procedure can be evaluated using power, i.e. the probability of

rejecting the null hypothesis H0 given that a particular alternative hypothesis H1 is true. Power generally increases as sample size

and effect size increases, and variability decreases (Cohen, 2013). Thus, given an understanding of the variability to be expected in

the data, power can be used to work out how large a sample size is needed to detect an effect of a given size, or what sizes of effects

can be detected in study of a given sample size (Cohen, 1992, 2013).

In order to undertake a power analysis, it is necessary to work through the following steps:

1. Specify a model for data, which captures key properties of the data that are expected to be collected. For multivariate

abundances, as in Operation Crayweed, this is a non-trivial task (Challenge 1).

2. Decide on a measure of effect size that is ecologically meaningful. When there are many taxa, as for fish assemblages

sampled in Operation Crayweed, there are many different effect size parameters that need to be considered (Challenge 2).

3. Decide on the testing procedure. Hypothesis tests of multivariate abundance data typically use resampling to ensure valid

inference (Anderson, 2001; Wang et al., 2012); in this paper testing will make use of a generalised estimating equations

approach (Wang et al., 2012, using the mvabund package) that is increasingly common in ecology. For the crayweed

fish abundance data, we assumed abundances have a negative binomial distribution, with diagnostic plots suggesting this

adequately captured the mean-variance trend in the data (Figures 5 and 6 in Appendix).
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4. Estimate power. In some simpler settings this can be done analytically (Cohen, 2013), however for multivariate abundances

this needs to be done by simulation, generating data under the assumed model, then applying the testing procedure for each

simulated dataset, and recording the proportion of times the null hypothesis was rejected. When using a resampling-based

testing procedure, this involves two levels of simulation and will be very computationally intensive (Challenge 3).

The following sections detail the proposed solutions to the three challenges identified above.

Challenge 1 – Data generating model

A data generating model is needed that can capture key properties of multivariate abundance data that will be collected. Multivariate

abundances are discrete, with many zeros, and high dimensional, with a large number of responses p relative to the sample size n.

The ability to specify a parametric statistical model that can be fitted to multivariate abundances is a relatively recent development

(Popovic et al., 2018; Warton, Blanchet, OHara, Ovaskainen, Taskinen, Walker and Hui, 2015). This is an important advance be-

cause it allows the simulation model to be tuned to pilot data in order to generate data statistically similar to what will actually be

observed when the study is undertaken. In particular, power can be strongly affected by mean abundance, variability, and correlation

across taxa (Warton, 2011), all of which can vary considerably from one study to another. These data properties need to be tuned to

the study in question for a power analysis to be informative.

This paper adopts a Gaussian copula approach. To date, copulas have rarely been used in ecology (Popovic et al., 2018; Anderson

et al., 2019; Popovic et al., 2019). A specific advantage of a copula approach is that it specifies a marginal (unconditional) model,

making parameters more interpretable. For example, if we set an effect size parameter that ensures a two-fold change in mean abun-

dance between treatment and control groups, we can be sure that there will in fact be a two-fold change. In hierarchical models this

does not always happen, because they operate as conditional models, which can induce some surprising behaviour when interpreted

marginally (Breslow and Lin, 1995; Lin and Breslow, 1996; Gurka et al., 2011). A nice feature of the copula model is that it assumes

the same marginal model as the testing procedure to be used here (Wang et al., 2012), and so is a suitable simulation model when

using a Generalised Estimating Equation (GEE) procedure. Copulas are also used in Anderson et al. (2019), although to compare

different test procedures, rather than for sample size determination.

A discrete Gaussion copula (Popovic et al., 2018, 2019) can model correlated discrete data yij using latent Gaussian variables

zij ,

Yij = F−1
j (Φ(Zij)) (1)

Where Fj is the marginal distribution for taxon j (e.g. Poisson with mean λ = exp(XB)). Φ is a multivariate Gaussian distribution

with zero mean and covariance structure Σ,

zij ∼ Np(0,Σ).

This model is estimated using maximum likelihood to obtain F̂j and Σ̂. To simulate new multivariate abundances we simply simu-
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late new latent variables zij ∼ Np(0, Σ̂) and then obtain abundances by transformation yij = F ∗−1
j (Φ(zij)), where F̂ ∗j has been

parameterised via an effect of interest.

One difficulty with this approach however is estimating a covariance structure across responses. With p taxa, there are p(p − 1)/2

pairwise correlations to estimate, and these will typically be estimated from a small amount of pilot data. Thus a parsimonious

method of modelling correlations is needed if the simulation model is to be trained using pilot data. This issue is addressed here

by assuming the p variables are driven by a shared response to a few (q � p) unobserved latent variables through the use of factor

analysis. These latent variables can be interpreted as unobserved environmental covariates (Warton, Blanchet, OHara, Ovaskainen,

Taskinen, Walker and Hui, 2015). This approach requires p(q+ 1)− q(q− 1)/2 elements to be estimated to formulate a covariance

matrix ΣFA, which can be much smaller than p(p− 1)/2. For our fish abundance data set with p = 34 species, if we take 1, 2 or 3

factors we have 68, 101 or 133 covariance parameters to estimate, which is much less than the 561 parameters that would otherwise

have been needed.

This process has been implemented within the ecopower package, using an internal function called extend. This function takes

a cord object (obtained by fitting a Gaussian copula to a manyglm object using the cord function from the ecocopula package;

Popovic et al., 2021) and simulates N multivariate abundances using the above procedure (to date, it can handle Poisson, negative

binomial and binomial distributions). The function then refits the simulated responses to a manyglm object with a data frame that

is ’extended’ in a manner that preserves the original or pre-specified design (Box 2).

Challenge 2 – Specifying an interpretable measure of effect size

With a large number of taxa, there are a large number of ways that these taxa can respond to a treatment. In order to undergo a

power analysis, an effect needs to be specified in a way that is interpretable, such that the researcher can understand how large the

effect is in the context of their study, thus helping to understand whether or not it is necessary to increase the sample size. This

interpretable measure of effect size also needs to be specified with relatively little a priori information, which is generally lacking

in an ecological setting (at least in comparison to the possible complex relations that the taxa can respond to a treatment).

A simple approach proposed here is to decide on:

1. Which species/response variables are expected to be (i) positively related to a given treatment (e.g. species that increase in

abundance;“increasers”), (ii) those expected to be negatively related (species that decrease in abundance; “decreasers”), or

(iii) those not related to the treatment at all.

2. The size of effect (ρ) that is negatively or positively related to the mean abundance µ of taxa, on the proportional scale. That

is, ρ = 2 means that the mean abundance doubles for increasers, and halves for decreasers.

This is a relatively simplistic scenario, however it enables the effect size to be captured in a single coefficient ρ, and for expert opin-

ion to inform the way in which different taxa are likely affected. Being on the proportional scale it also allows regression coefficients

for simulated models to be easily specified, for example with log link; log ρ = log
µ̂Treat=1

µ̂Cont=0
= β1j for species that increase in
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abundance and log 1/ρ = − log
µ̂Treat=1

µ̂Cont=0
= −β1j for species that decrease in abundance in the treatment group, relative to the

control.

For the Crayweed Restoration Project, we believe that restored sites will lie somewhere between reference and control sites (e.g.

because the extent of crayweed restored is still small relative to extant, natural populations; Layton et al., 2020), and by using

existing data of fish surveys along the NSW coastline, as well as results from Curley et al. (2002), assumptions were made as to

which fish species will be expected to change in sites with crayweed (reference and restored), compared to those without crayweed

(control). This allows the desired parameterisation of three types of fish species, whose mean abundances increase, decrease or do

not change in reference and restored sites relative to control sites (Figure 2, with the magnitude of these effects being specified with

ρ for changes between restored and control sites, and ρ2 for changes between reference and control sites).

By using pilot data to estimate mean abundance of each species, then taking for example ρ = 1.2 to specify effects across different

treatments, the mean abundances of data to be simulated from marginal distributions Fj can be specified as in Figure 2. ρ − 1 can

also be interpreted as the % change in mean abundance across treatments, so to answer our first experimental design question, we

simply specify ρ = 1.2.

This approach has been implemented within the ecopower package, with the effect alt function. Users input a manyglm

object, the name of the predictor of interest (term), an effect size of interest (effect size) and a list of taxon that are

“increasers” or “decreasers”. The function then returns a parameterised coefficient matrix that can be used in ensuing

power simulations, where taxa not specified as “increasers” or “decreasers” are assumed to not be affected. There are also

options to specify more complicated effect sizes for effects that change over multiple levels of a categorical predictor. To produce

the coefficient matrix in Figure 2 we would use the code in Box 1.

> library(ecopower)

> fit <- manyglm(fish˜ Site.Type, family="negative.binomial",data = X)

> increasers <- c("Aplodactylus.lophodon","Atypichthys.strigatus",

+ "Cheilodactylus.fuscus","Olisthops.cyanomelas",

+ "Pictilabrius.laticlavius" )

> decreasers <- c("Abudefduf.sp","Acanthurus.nigrofuscus","Chromis.hypsilepis",

+ "Naso.unicornis","Parma.microlepis","Parupeneus.signatus",

+ "Pempheris.compressa","Scorpis.lineolatus","Trachinops.taeniatus")

> coeff.alt <- effect_alt(fit,effect_size=1.2,increasers,decreasers,

+ term="Site.Type")

Box 1: Code used to generate the effect size specification in Figure 2.
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Challenge 3 – Managing computation time

Power at significance level α can be estimated from a set of npower simulated datasets, where the ith dataset returned P -value pi,

as follows:

P̂ower =
1

npower

npower∑
i=1

I{pi≤α},

where I{·} is the indicator function. That is, we estimate the power at significance level α as the sample proportion of P -values

pi less than or equal to α. In order to get a reliable Monte Carlo estimate of power we would conventionally use approximately

npower = 1000 datasets. In a multivariate abundance setting, the significance of multivariate Wald or score GEE test statistics

is calculated via resampling techniques (Wang et al., 2012). The standard asymptotic chi-squared techniques we would otherwise

use are not suitable here because they assume large sample size (n) and a fixed number of responses (p), however for multivariate

abundances, p is rarely small compared to n. Nevertheless, if resampling is used for testing, then for each npower simulated data

set we would have to resample an additional nresamp ≈ 1000 times to estimate a simulated p-value pi as p̂i. Each of these test

statistics involve fitting a model to p correlated taxa, which will involve fitting p × (npower + npower × nresamp) GLMs overall

and takes approximately 1.3 hours for a small data set of size n = 21 and p = 34 taxa, using parallel computing on a standard

processing computer with 12 logical processes.

A key innovation proposed in this paper is to use a critical value approach to estimate power, globally testing the significance of

npower simulated test statistics T1i using a critical value ĉα. The critical value can be estimated as the upper 1 − α qauntile of

simulated test statistics under the null hypothesis T0j ∈ H0 satisfying

1

nresamp

nresamp∑
j=1

P(T0j > ĉα) = α,

and power can then be estimated as

P̂owercrit =
1

npower

npower∑
i=1

I{T1i
>ĉα}.

In this approach power is estimated using test statistics T1i from simulated data, rather than P -values. This means that there is

no longer a need to resample the simulated datasets, leading to a huge computational saving. The above approach involves only

npower + nresamp ≈ 2000 simulated or resampled datasets, a reduction by a factor of 500, and reducing computation time for the

Crayweed restoration dataset from over an hour to just 42 seconds. Note this is an approximation to power, essentially, because we

are assuming that ĉα is constant across all simulated datasets, when it may vary slightly. As sample size increases the accuracy of

this approximation will improve, with the simulations below investigating how well this approximation works in our context.

The critical value approach to estimating power is implemented in the ecopower package, through the powersim function

(which calls the internal extend function). It takes a cord object, a coefficient matrix (coeffs) that can be specified using the

effect alt function, a total sample size N, the name of the predictor of interest (term), number of simulations (nsim) and

returns a power estimate. Computation time is also reduced by running simulations in parallel over a series of clusters (ncores),

which defaults to one less then the number of cores available on your machine. To estimate power, for a sample size of N =
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100, using the pre-specified effect of ρ = 1.2 from coeff.alt, we would use the code in Box 2 (computation time is in

seconds).

> fit_factors.cord = cord(fit)

> powersim(fit_factors.cord,N=100,coeff.alt,term="Site.Type",nsim=1000)

Power Comp time

0.43700 42.02651

Box 2: ecopower code to obtain a power estimate over nsim=1000 simulations for a sample size of N=100 using the powersim

function by first fitting a copula model from our manyglm object using the cord function and then using the effect size (coeff.alt)

generated in Box 1.

Results

Validating method

The effectiveness of estimating P̂ower as P̂owercrit can be observed through direct application with simulations. Both methods are

applied to answer our first experimental design question. That is, to find the number of samples required in order to likely detect an

effect size of 20% change in mean abundance of fish species between the three treatments (where some species have been specified

to increase, decrease or not change across the treatments, Figure 2).

As can be seen in Figure 3, the use of critical test statistics approximates power quite well, even for small study designs. Both

approaches recommended at least n∗ = 57 sites per treatment group in order to likely detect 20% changes in mean abundances. The

critical value approach also reduced computation time from over 3 days to just 11 minutes. It tended to give slightly more variable

power estimates, which could be overcome by increasing the number of resamples (nresamp) or simulations (npower) at the cost

of increased computation time. The critical value approach would still however be appreciably faster (unless nresamp and npower

were increased to 500, 000!).

Example

While Figure 3 suggests n∗ = 57 sites per treatment group, we note this is not feasible under a balanced experimental design,

because only 24 control or restored sites are available within the region where this restoration project was undertaken. Hence, it is

unlikely that we will detect 20% changes in the mean abundances of fish species between the treatment levels. This is most likely

due to the variability of the observed fish abundances creating a lot of noise in the data and the large (66%) proportion of zero counts

observed in the data.

The second experimental design question we are interested in is: what effect sizes are likely to be observed at 12 sites per
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treatment? In order to answer this question, we can simply plot power curves over a range of effect size specifications. We

actually plotted power curves as a function of sample size n for a broader perspective (Figure 4), for effect size specifications

ρ10% = 1.1, ρ20% = 1.2, ρ30% = 1.3, ρ40% = 1.4, ρ50% = 1.5, ρ60% = 1.6, ρ70% = 1.7, ρ80% = 1.8. Computing each power

curve took approximately 5 minutes of computation time on a computer with 12 logical processors, less time than for Figure 3,

because the sample sizes under consideration here were smaller. We observe as expected that as we increase the effect size specifi-

cations, we increase the power of each experimental design (Figure 4), since larger effect sizes are easier to detect. Importantly, we

observe that under the maximum balanced sample size of n∗ = 12 sites per treatment, the smallest effect size likely to be observable

is ρ50% = 1.5, or equivalently 50% changes in the mean abundances of fish species. The pilot survey included n = 6 sites per

treatment, which would only be able to detect quite extreme effects.

DISCUSSION

Here we have described a sample size estimation procedure for multivariate abundance data. Techniques and software for this are

much needed in ecology, however the problem is rather difficult technically, given the three aforementioned challenges. The main

innovations of our procedure are to: specify a joint data generating model through discrete margin copulas that is able to be tuned to

the properties of the pilot data; implement a simple and interpretable approach to specifying an effect size for complex multivariate

effects; reduce computation time by a factor of 500, which was achieved using a “critical value” approach to power estimation.

The procedure has been coded in R with general purpose functions in the ecopower package, which can be downloaded from

Cran (Maslen and Lim, 2021). This procedure can be applied to a vast range of ecological studies with multivariate abundance

data to answer experimental design questions and give sample size recommendations, an important yet technically difficult task not

previously addressed in the literature.

Being a general-purpose procedure, power can also be estimated for more complex designs. For instance, the methods proposed here

(and the software tools in the ecopower package) can estimate power for effects on both categorical and quantitative predictors,

handle the most common distributions for handling abundance or presence-absence data (to date; Poisson, negative binomial and bi-

nomial distributions) and handle designs with multiple covariates. It can also investigate unbalanced designs. In our fish abundance

example, we could study the change in power when fixing the number of control and restored sites at n1 = n2 = 12, but varying

the number of reference sites, as more of these are available regionally. It is also possible to use ecopower to specify different and

potentially more complicated effect size structures, if desired. Note however that all effect size parameters need to be set a priori,

and the more intricate the scenario, the more a priori decisions would be needed.

It would be interesting to apply this procedure to other study designs and consider whether the patterns seen here apply elsewhere

too. Specifically, this study’s intended sampling design (n = 6) was underpowered for the size of effects that we would like to

detect. Is this more generally true – do ecological monitoring studies tend not to sample enough sites to detect effects of practical

interest?
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Figures

(a) Control (b) Restored (c) Reference

Figure 1: Images of characterised environments from each treatment level. Control sites are characterised as urchin barren habitats
in Sydney shallow rocky reefs where crayweed has been lost. Restored sites are similar to control sites where crayweed has recently
been transplanted. Reference sites are shallow rocky reefs outside of the Sydney region with extant crayweed populations.
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Figure 2: Plot of mean abundance proportions in restored and reference sites relative to the control sites for a specified effect size
of ρ = 1.2.

0.2

0.4

0.6

0.8

1.0

3 12 21 30 39 48 57 66 75 84

n

P
o
w

e
r

Method

Nested

Critical Value

Figure 3: In blue; power curve utilising a critical value approach P̂owercrit (taking 11 minutes to compute with nresamp+npower =
2000 simulated models). In gold; power curve utilising nresamp = 1000 and npower = 1000 simulated models with a nested
approach to estimating power P̂ower (taking over 3 days to compute with (nresamp + 1)npower = 1, 001, 000 simulated models).
Power has been estimated for a fish abundance data set (p = 34 species) and an effect size specification of 20% changes between
three treatments. ‘n’ is the number of samples per group, not the total sample size.
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Figure 4: Power curves for a range of effect size specifications ρ10% = 1.1, ρ20% = 1.2, ρ30% = 1.3, ρ40% = 1.4, ρ50% =
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Figure 5: Mean-variance plot of fish abundances for p=34 species. The red line depicts the mean-variance assumption under a
Poisson model (mean=variance). The variance appears larger than the mean for species with larger abundances, indicating over-
dispersion relative to the Poisson distribution, with the negative binomial distribution being preferred for this dataset.
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Figure 6: Diagnostic plot of a negative binomial model fitted to the fish abundance data from the Crayweed Restoration Project
using manyglm. The large cluster of data on the left hand side of this graph refers to observations predicted to have zero abundance
in a treatment. The lack of fan shape in the residual vs. fitted plot implies the negative binomial distribution has adequately accounted
for the mean-variance relationship in the data shown in Figure 5.
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