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Abstract

Objective The aim of the present study was to develop a neural network to characterize the effect of aging on the ECG in healthy
volunteers. Moreover, the impact of the various ECG features on aging was evaluated. Methods & Results A total of 6228
healthy subjects without structural heart disease were included in this study. A neural network regression model was created
to predict age of the subjects based on their ECG; 577 parameters derived from a 12-lead ECG of each subject were used to
develop and validate the neural network; A ten fold cross-validation was performed, using 118 subjects for validation eacht fold.
Using SHapley Additive exPlanations values the impact of the individual features on the prediction of age was determined. Of
6228 subjects tested, 1808 (29%) were females and mean age was 34 years, range 18 — 75 years. Physiologic age was estimated
as a continuous variable with an average error of 6.9+5.6 years (R2= 0.72 £ 0.04) . The correlation was slightly stronger for
men (R2= 0.74) than for women (R2= 0.66). The most important features on the prediction of physiologic age were T wave
morphology indices in leads V4 and V5, and P wave amplitude in leads AVR and II. Conclusion The application of artificial
intelligence to the ECG using a neural network regression model, allows accurate estimation of physiologic cardiac age. This
technique could be used to pick up subtle age-related cardiac changes, but also estimate the reversing of these age-associated

effects by administered treatments.
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Abstract

Objective

The aim of the present study was to develop a neural network to characterize the effect of aging on the ECG
in healthy volunteers. Moreover, the impact of the various ECG features on aging was evaluated.

Methods & Results

A total of 6228 healthy subjects without structural heart disease were included in this study. A neural
network regression model was created to predict age of the subjects based on their ECG; 577 parameters
derived from a 12-lead ECG of each subject were used to develop and validate the neural network; A ten
fold cross-validation was performed, using 118 subjects for validation eacht fold. Using SHapley Additive
exPlanations values the impact of the individual features on the prediction of age was determined. Of 6228
subjects tested, 1808 (29%) were females and mean age was 34 years, range 18 — 75 years. Physiologic age was
estimated as a continuous variable with an average error of 6.945.6 years (R?= 0.72 + 0.04) . The correlation
was slightly stronger for men (R?= 0.74) than for women (R?= 0.66). The most important features on the
prediction of physiologic age were T wave morphology indices in leads V4 and V5, and P wave amplitude in
leads AVR and II.

Conclusion

The application of machine learning to the ECG using a neural network regression model, allows accurate
estimation of physiologic cardiac age. This technique could be used to pick up subtle age-related cardiac
changes, but also estimate the reversing of these age-associated effects by administered treatments.
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Introduction

Surface electrocardiograms (ECGs) are used frequently in routine clinical care, but also in investigational
studies examining the effects of pharmacological and non-pharmacological treatments on the heart. Readout
measures include the RR interval, PR interval, QRS duration and (corrected) QT interval. Typically, the
pharmacological treatment effects are mediated by recognized channels on the cardiac surface. [1]However,
there are cardiac effects that require a longer period of time to become visible on the surface ECG, such as
aging induced cardiac fibrosis, and it is largely unknown if these subtle effects can be visualized on a surface
ECG. [2, 3]

There has been a number of recent investigations regarding the prediction of physiological age using medical
records, vital signs and laboratory data, or epigenetic changes. [4-6] These investigations indicated the
existence of a gap between predicted physiological age and actual chronological age. Exploration of this
gap is clinically important as a serious gap difference has been shown to be associated with higher risks of



all-cause mortality, cardiovascular disease, obesity, earlier menopause, and frailty. [5, 7-11] Various previous
studies have already shown that the 12-lead ECG can be a reliable tool to estimate physiological aging. [5,
7-16]

Previous studies have applied artificial intelligence to the raw ECG data, allowing estimation of physiologic
ECG age, which was found to reflect aging and comorbidities. [17] However, these algorithms were based on
large hospital datasets, thus including patients that may have disease-induced abnormalities in their ECGs,
which makes the outcome difficult to interpret when applied to a healthy volunteer. Therefore, the aim of
the present analysis was to develop a neural network in healthy volunteers to characterize the effect of aging
on the ECG.

Methods and Materials
Population

All data were collected at the Centre for Human Drug Research in Leiden, the Netherlands, a clinical research
organization specialized in early phase drug development studies. Data collected during the mandatory
medical screening to verify study eligibility for enrolment in the early phase drug development studies as a
volunteer between 2010 and 2019 were included in the present analysis. Ethical approvals from the Medical
Ethical Review Committee for the included studies were acquired and informed consent documents were
signed by the volunteers prior to any data collection. The present study was performed in accordance to
local regulations. All activities were performed in accordance with applicable standard operating procedures.

The medical screening consisted of a single visit to the clinical unit where a detailed history, a physical
examination, vital signs including blood pressure, temperature, weight and height measurement, body mass
index (BMI) calculation, and a 12-lead ECG were recorded. Additionally, haematology and chemistry blood
panels, urine dipstick, and a urine drug test were analysed.

Data collection for the model

ECG parameters of 6228 subjects with an age between 18 and 75 years were included in the present study.
From each subject ECG, 574 features were extracted by the MUSE system. Additionally, gender was used
as a feature. The age of the subjects was rounded in whole years. At least ten EGGs were available for each
age.

Data pre-processing and selection

As validation set two subjects of each age were kept apart as final test set. The rest of the data was used as
the training set.

To create a balanced training set the Synthetic Minority Oversampling Technique (SMOTE) algorithm was
applied on the training set to create ‘synthetic’ subjects for the less populated age groups based on the values
in the concerning age groups. [18]

Machine learning

A neural network was used as a machine learning model. The keras module v. 2.4.3 in python 3.8.5 was used
to build a model. Before training, internal cross validation (three-fold) within the training set was used to
optimize the model. The network was optimized for number of layers, number of nodes per layer, activation
function per layer for each layer and learning rate. A batch size of 300 was used. The number of epochs
(defined as the number of cycles through the full training dataset) for internal validation was determined
based on validation performance in the internal validation set. The number of epochs for final validation
was based on the median of the optimal number of epochs for the internal cross validations. This process
of optimization, training, and validation was repeated 10 times with different training and test sets. The
optimal models were evaluated on the test set with the R? score and mean absolute error. We also evaluated
the model performance with respect to gender.



To investigate how such a model could perform in groups of subjects or patients, the mean absolute error in
a group of 1 to 50 randomly selected subjects in the test sets was evaluated. This was repeated 10 times for
each fold (i.e. 100 times for each number of subjects).

To gain insight into the impact of the individual features on the predicted age, each fold SHapley Additive
exPlanations (SHAP) values were calculated [19] based on the training set. The importance of the features
was validated by means of permutation importance (defined as the decrease in a model score when a single
feature value is randomly shuffled).[20]

Results

Table 1 shows the clinical characteristics of the 6228 included subjects. The study population was divided
into ten chronological age groups of 6 years, starting from the age of 18 years. Each age group contained at
least 194 subjects, and younger age groups comprised up to 2282 subjects. A total of 1808 (29 %) volunteers
were female.

In Figure 1 ECG examples of a young 18 year old male (1A) and an elderly 74 year old male (1B) are shown.
Figure 1C shows an ECG of a young 19 year old female and figure 1D shows an ECG of an elderly 74 year
old female subject. Several differences between the young and older healthy subjects were discernable. In
elderly persons the heart rate was lower, the T wave had a lower (absolute) amplitude in leads LILIIT,AVR,
and AVL and the P-wave duration seemed shorter. However, these ECG differences showed considerable
variations in the healthy population.

In supplementary Tables 1 and 2, 54 features present in most leads and other ECG features used for the
machine learning model are shown, respectively. In addition, gender of each subject was also included in the
model.

The relation between the (predicted) physiologic age and the chronological age was assessed in 10 sets of 116
subjects. In Figure 2a, the relation between predicted physiologic age and chronological age of all 10 test
sets is shown. The average relationship of the models showed an R? of 0.72 £ 0.04 (mean 4 SD). The mean
absolute error of all predictions was 6.9 + 5.5 years.

On average, the predicted physiologic age was 0.3 years younger than the chronological age of the subjects.
The median deviation of all predicted ages was 5.6 years from the actual age, indicating that half of the
predictions was within the range of 5.6 years of chronical age.

The average prediction line is presented in figure 2b. The average predicted age of the 20 subjects per
chronological age had a mean absolute error of 3.4 + 3.0 years (R?= 0.93). For subjects between 30 and 60
years old the mean absolute error of the average predicted age per chronological age was 1.6 4 1.1 years.

Figure 3 shows how such models could perform in new patient groups. It can be seen that the average
absolute prediction error is declining fast when multiple subjects are tested. For example, a cohort of 10
healthy subjects with age ranging from 18 to 75 years would have an average absolute error of 2.7 + 2.1
years. The mean absolute error of a test group of 30 subjects would be only 1.7 4+ 1.2 years.

In order to study gender differences, the predicted physiological ages of the male and female subjects in the
test sets were separated and are presented in Figure 4. The predicted ages of the male subjects were more
accurate (R?= 0.74) than the predictions of the female subjects (R2= 0.66).

Figure 5 shows the SHAP values of the 40 most important ECG features used in the prediction model. So,
the impact of each individual feature on the model output and physiologic aging can be seen. Some of the
most important features on the prediction of physiologic age were T top abnormalities in leads V4 and V5,
P top amplitude in leads AVR and II and atrial rate.

An increase of P peak amplitude in lead II for example, indicates a younger physiological age (a long red
bar to the left). A longer PR interval both indicate an older physiologic age (longer red bar to the right). A
higher atrial rate indicates a younger physiologic age ( large red bar to the left). The impact of gender was



only of minor importance with SHAP values ranging from -1.2 to 0.9. The order of the feature permutation
importance is similar to the order of the SHAP values, confirming the impact of the features.

Discussion

In this study we developed machine learning models that allow accurate prediction of physiologic cardiac
age of healthy subjects based on 12-lead surface ECG parameters. Using a neural network we were able
to estimate the age of a healthy subject with an error of 7 years and to analyze the impact of the ECG
features. The created models of the present study may serve as a benchmark for testing the effects of new
pharmacological drugs on potential decline or improvement of physiologic health of the heart.

Application of Machine Learning

Attia et al. recently sought to determine whether the application of machine learning algorithms, including
convolutional neural networks, to a large ECG patient data set would be capable of predicting age and
sex reported by patients, independent of additional clinical data [17]. They further investigated whether
discrepancies between ECG age and chronological age might be a marker of physiological health. When
the convolutional neural network-predicted age exceeded a patient’s actual age by at least 7 years, there
was a higher incidence of cardiovascular comorbidities, potentially suggesting that the convolutional neural
network-predicted age from 12-lead ECGs may correlate with physiological health. Their findings suggested
that physiological age is distinct from chronological age, and may have useful clinical applications. For
example, if a patient’s biologic age is 60 but their ECG age predicts that they are 70, it may indicate
underlying cardiovascular disease and potential risk. A limitation of their study was, as also recognized by
the authors, that all individuals included were patients, and thus an ECG was obtained for a certain clinical
indication. It was questioned by the authors whether their results are similarly accurate among an ostensibly
healthy population is unknown, and revalidation in such a cohort will therefore be critical.

The same holds true for the study by Hirota et al., who studied biological age, physiological age, and all-
cause mortality by 12-lead ECG in patients without structural heart disease. [21] Their data showed that the
gap between ECG-predicted physiological and biological age allowed estimation of increased risk of all-cause
mortality. Although their study subjects were assumed to have no structural heart diseases, it was stated by
the authors that it will be necessary to validate the results of their study in populations of healthy subjects.
In our study, we only studied healthy individuals, giving the advantage of being a much needed benchmark
study, which enables the validation of future studies in patients versus our data.

Performance of the model

The relation between chronological and predicted physiologic age was associated with an R? of 0.72. Although
with a smaller dataset than used by Attia et al., our predictions have a similar performance, probably because
of the healthy population in our study, which we expect reduces the variability of the association. Given
the large number of influencing factors that can affect ECG parameters the R? of 0.72 of our models seems
sufficient to detect a pharmacodynamic effect in a cohort of subjects. Use of the entire dataset with a larger
number of subjects may improve future performance of the model.

In the present study, the impact of physiologic aging on the various ECG features was analyzed using
SHAP values. Several changes are clearly visible in the ECG figures. Some of these are already well known
in clinical practice, such as prolongation of PR and QT interval and deceleration of heart rate.[12] Other
changes, however, could only be recognized by using machine learning, while these may be evenly important
Moreover, when multiple features change at the same time, it becomes difficult to judge whether the change
in the ECG is good or bad without using machine learning. By means of machine learning techniques a
combination of various ECG changes allows a more accurate insight into the physiologic health changes of
the heart.



Gender differences

The accuracy of predicting physiologic age was found to be higher in males than in the female subjects.
This may be due to the somewhat smaller female study population, but it may also reflect the atypical ECG
repolarization patterns which are known to occur frequently in women.[22] The SHAP values show that
impact of gender on physiologic age prediction was only of minor importance.

Pharmaceutical drug testing and potential implications

The prediction of the physiologic age for one single person is less relevant in this model. However for larger
groups or cohorts of multiple subjects, the prediction is more accurate. For example, for a group of 30
test subjects, the average deviation is only less than two years from average physiologic age. Therefore,
our models could be particularly suitable as benchmark for testing new pharmaceutical drugs or other
interventions which may have impact on cardiac health in the near future. Differences between physiologic
ECG age and chronological age have been shown to predict all-cause and cardiovascular mortality and reflect
physiologic age, cardiovascular health and long term outcomes. [23]

The proper use of a model - trained on the entire dataset - in early drug development can provide important
information that can be used to make a go/no-go decision regarding further development of new drugs.
Similarly, this can be used to guide the decision-making process regarding the dosage range to be used in
phase II studies, determining a therapeutic window, and even identifying the target study population [24].
This way novel pharmacological drugs could be tested for effect on cardiac physiologic aging in the early
phase of development.

Limitations

Our population consisted of only 29% female subjects. This may have influenced the accuracy of the model,
but SHAP value analysis showed that gender only had a minimal impact on the predictions of physiologic
age.

ECG changes do not need to have a purely cardiac cause, but they may also be caused by effects of age on
the position of the heart in the thorax, the presence of fat layers around the heart, and the shape of the
thorax shape. Therefore, the found relationship does not necessarily mean older heart per se, but can also
mean an older body.

Conclusion

The application of machine learning to the ECG using a neural network regression model, allows estimation
of physiologic cardiac age. This technique could be used to pick up subtle age-related cardiac changes, but
also estimate the reversing of these age-associated effects by administered treatments.
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Table 1. Age characteristics of the 6228 healthy subjects

Subject age ( years) N % female

18 - 23 2282 29
24 - 29 1563 26
30 - 35 449 20
36 - 40 247 17
41- 46 245 24
46 - 52 339 35
53 - 57 241 38
58- 63 194 42
63 - 69 393 40
69 - 75 275 35

Figure 1. ECG samples of young and elderly male and female healthy subjects.A: ECG of a young 18 year
old male subject. B: ECG of an elderly 74 year old male subject.C: ECG of a young 19 year old female
subject. D: ECG of an elderly 74 year old female subject
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Figure 2. Relationship between predicted) physiologic age and chronological age for 1180 healthy adults (10
test sets, Figure 2a, left). The average prediction line is shown in figure 2b (right).
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Figure 5. SHAP values of the 40 most important features for predicting physiologic age. High values of the
features are represented in red. Low values are represented in blue. On the x-axis, the predicted physiologic
age. Shorter bars mean less impact on physiologic aging .
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Supplementary Table 1. ECG features present in most leads extracted by the Muse system included in the
model. P’, R’, S’, and T’ indicate the second components of P, R, S, and T wave, respectively, which could
be positive or negative polarity.
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Supplementary Table 2. Other ECG features extracted by the Muse system included in the model.

Features per lead

max r amplitude
max s amplitude
maximum st level
minimum st level
p area

p area full

p duration

p offset

p onset

p onset amplitude
p peak amplitude
p peak time

p’ area

p’ duration

p’ peak amplitude
p’ peak time

q area

q duration

q peak amplitude
q peak time

qrs area

qrs balance

qrs deflection

qrs intrinsicoid
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R DURATION

R PEAK TIME
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R’ PEAK AMPLITUDE
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ST END ST
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ST MID ST

S” AREA

S’ DURATION
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T END
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T’ DURATION
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Features per ECG

atrial rate P AXIS Q OFFSET QT INTERVAL QTC BAZETT Q ONSET R AXIS Number of qrs complexes T AXIS T O
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