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Abstract

Grasses are cosmopolitan, existing in many biome and climate types from xeric to tropical. Traits that control physiological

responses to drought vary strongly among grass lineages, suggesting that tolerance strategies may differ with evolutionary

history. Here, we withheld water from 12 species representing 6 tribes of grasses to compare how tolerant and intolerant species

respond to drought in different grass lineages. We measured physiological, morphological, and microanatomical traits. Dominant

lineages from tropical savannas, like Andropogoneae, tolerated drought due to above and belowground morphological traits,

while temperate grasses utilized conservative leaf physiology (gas exchange) and microanatomy. Increased intrinsic water-use

efficiency (iWUE) coincided with a larger number of stomata, resulting in greater water loss (with inherently greater carbon

gain) and increased drought sensitivity. Inherent leaf and root economic strategies impacting drought response were observed

in all species, resulting in either high SLA or SRL, but not both. Our results indicate that grasses subjected to severe drought

were influenced by microanatomical traits (e.g., number of stomata and xylem area) which were shared within lineages. In

addition, grasses recovered at least 50% of physiological functioning across all lineages and 92% within Andropogoneae species,

illustrating how drought can influence functional responses across diverse grass lineages.
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ABSTRACT 16 

Grasses are cosmopolitan, existing in many biome and climate types from xeric to tropical. Traits 17 

that control physiological responses to drought vary strongly among grass lineages, suggesting 18 

that tolerance strategies may differ with evolutionary history. Here, we withheld water from 12 19 

species representing 6 tribes of grasses to compare how tolerant and intolerant species respond to 20 

drought in different grass lineages. We measured physiological, morphological, and 21 

microanatomical traits. Dominant lineages from tropical savannas, like Andropogoneae, tolerated 22 

drought due to above and belowground morphological traits, while temperate grasses utilized 23 

conservative leaf physiology (gas exchange) and microanatomy. Increased intrinsic water-use 24 

efficiency (iWUE) coincided with a larger number of stomata, resulting in greater water loss 25 

(with inherently greater carbon gain) and increased drought sensitivity.  Inherent leaf and root 26 

economic strategies impacting drought response were observed in all species, resul ting in either 27 

high SLA or SRL, but not both. Our results indicate that grasses subjected to severe drought were 28 

influenced by microanatomical traits (e.g., number of stomata and xylem area) which were 29 

shared within lineages. In addition, grasses recovered at least 50% of physiological functioning 30 

across all lineages and 92% within Andropogoneae species, illustrating how drought can 31 

influence functional responses across diverse grass lineages. 32 

 33 

Key words: Poaceae, Drought Response, Phylogeny, Plant Functional Traits, Microanatomy, 34 

Ecophysiology, Leaf Economic Spectrum.  35 
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INTRODUCTION 36 

Grasslands play a major role in regional carbon sequestration and water cycling because 37 

grasses invest in extensive rooting systems and storage organs (Pendall et al. 2018; Veldman et 38 

al. 2019). Carbon dynamics are highly influenced by water availability in grassland systems, 39 

evident in drought years that result in decreased productivity (Fay, Carlisle, Knapp, Blair & 40 

Collins 2003; Hoover & Rogers 2016; Carroll et al. 2021). Grasslands experiencing extreme 41 

droughts can have reduced physiological functioning (Cook, Ault & Smerdon 2015; Hoover, 42 

Duniway & Belnap 2015), increased invasibility from non-native species (Linder, Lehmann, 43 

Archibald, Osborne & Richardson 2018), disruption of fire intervals (Wilcox et al. 2020), and 44 

loss of ecosystem functioning (i.e. productivity & species composition) (Eters, Tarks & 45 

Ernandez 2014; Mainali et al. 2014; Knapp et al. 2020). While many grass species in grassland 46 

ecosystems have evolved in the context of an inherently variable climate, future climate 47 

projections emphasize large shifts in water availability, resulting in extreme drought and deluge 48 

events within the coming century (Stocker et al. 2013; Cook et al. 2015; Griffin-Nolan et al. 49 

2019; Post & Knapp 2019; Knapp et al. 2020). While it is widely accepted that grasslands will 50 

vary in drought response (ability to withstand shifts from equilibrium) and drought recovery 51 

(ability to regain equilibrium), modifications in precipitation seasonality and amount will have 52 

sizable and diverse impacts on ecosystem function (Hoover, Knapp & Smith 2014; Volaire 2018; 53 

Maurer, Hallmark, Brown, Sala & Collins 2020).  54 

Biophysical factors determining drought sensitivity in individual plant species include 55 

precipitation and temperature variability (Knapp et al. 2015), while biotic factors such as plant 56 

productivity, species richness (Burri, Niklaus, Grassow, Buchmann & Kahmen 2018), and 57 

potentially dominant species with associated functional traits, also play an important role (Avolio 58 

et al. 2019). Furthermore, the history of different drought exposure in plant lineages is likely to 59 

frame future drought responses within those lineages. For example, lineages of plant species 60 

from arid and semi-arid regions have functional traits (narrow leaves, strict stomatal regulation, 61 

absorptive rooting systems) that allow them to acquire and conserve water (Ocheltree et al. 62 

2020), whereas lineages from tropical regions may have wider leaves and altered stomatal traits 63 

that result in distinct water-use strategies (Liu et al. 2018; Buckley 2019). These evolutionary 64 

tradeoffs have shaped functional differences across lineages and directly impact ecological 65 

dynamics (Griffith et al. 2020). However, the extent of such evolutionary tradeoffs has not been 66 



4 

 

utilized to identify lineage-specific trait responses to extreme drought conditions. Even more 67 

uncommon are investigations that combine physiology, microanatomy, morphology, and 68 

structural data from grass species spanning several Poaceae tribes.  69 

Large interannual variation in precipitation is a feature of many grassland ecosystems 70 

and, in combination with CO2 and temperature, has played a major role in the evolution and 71 

biogeographic history of major grass lineages (Osborne 2008; Cleland et al. 2013; Cotton, 72 

Cerling, Hoppe, Mosier & Still 2016). Importantly, the varying evolutionary histories of 73 

grasslands have driven the evolution of different functional traits across the Poaceae phylogeny, 74 

likely accounting for differences in drought responses (Ocheltree et al. 2020; Knapp et al. 2020). 75 

For example, leaf-level microanatomical trait variation and convergent evolution has resulted in 76 

spatially separated photosynthetic tissues allowing for C4 photosynthesis, which is heavily 77 

expressed in Poaceae, and provides a physiological advantage that increases carbon assimilation 78 

while reducing water loss via stomatal regulation (Taylor et al. 2010; Zhou, Helliker, Huber, 79 

Dicks & Akçay 2018). While it is recognized that C4 species are not inherently more drought 80 

tolerant than C3 species (Ehleringer 2005; Nippert, Fay & Knapp 2007; Knapp et al. 2020), there 81 

is evidence that increased WUE (water-use efficiency), inherent to C4 species, can be 82 

advantageous when water is limiting (Lambert, Baer & Gibson 2011; Kimball, Gremer, Angert, 83 

Huxman & Venable 2012; Leakey et al. 2019). For example, native species in the arid American 84 

southwest, have the ability to initially tolerate the negative consequences of drought by 85 

maintaining physiological functioning for prolonged periods of time (Thomey, Collins, Friggens, 86 

Brown & Pockman 2014; Skelton, West & Dawson 2015). The ability of some species to 87 

maintain physiological functioning despite drying soils may be due to increased cuticle 88 

thickness, decreased stomatal size and densities, less negative turgor loss point , and more 89 

conservative growth strategies (specific leaf area, SLA; specific root length, SRL) (Reich 2014; 90 

Habermann et al. 2019; Bertolino, Caine & Gray 2019; Ocheltree et al. 2020). Alternatively, the 91 

production of cheaper leaves and roots (higher carbon to nitrogen ratio) and tight stomatal 92 

regulation is associated with the ability to avoid desiccation and quickly recover once drought 93 

breaks (Poorter, Niinemets, Poorter, Wright & Villar 2009; Lin et al. 2015; Garbowski et al. 94 

2020). The ability to quickly resume pre-drought physiological function via rapid recovery may 95 

or may not be associated with the ability to tolerate drought in the first place (Hoover et al. 2014; 96 

Volaire 2018).  97 
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During the evolutionary development of Poaceae, separate lineages have evolved 98 

different suites of traits, including fairly different water use strategies (Osborne 2008; Edwards, 99 

Osborne, Stromberg & Smith 2010). For instance, the two most abundant monophyletic groups 100 

of C4 grasses - Andropogoneae (water spenders) and Chloridoideae (water savers)  - vary in 101 

water-use strategies because of distinct biogeographic histories (Taub 2000; Grass Phylogeny 102 

Working  II 2012; Griffith et al. 2020). Species in these lineages occupy warmer climates but 103 

vary in global distribution as a function of precipitation availability: high in Andropogoneae and 104 

low in Cynodonteae (Williams, Wilsey, Mcnaughton & Banyikwa 1998; Liu & Osborne 2015; 105 

Lehmann et al. 2019). There are many characteristics impacting water-use and drought response 106 

associated with this ecological sorting, and they include morphological, physiological, and 107 

anatomical traits. Morphological strategies and traits associated with water relations include the 108 

production of fine roots to increase water absorption (McCormack et al. 2015; Roumet et al. 109 

2016; Iversen et al. 2017), leaf rolling to decrease irradiance (Cardoso, Pineda, Jiménez, Vergara 110 

& Rao 2015), and variations in growth form (caespitose and rhizomatous) (Blair, Nippert & 111 

Briggs 2014; Ott & Hartnett 2015). These traits are often related in terms of economics, 112 

reflecting plant investment of carbon and nitrogen in both leaf and root structures (Pérez-113 

Harguindeguy et al. 2013). More specifically, these morphological traits are framed by 114 

underlying structures at the microanatomical level in leaf and root tissues (John et al. 2017). 115 

Microanatomical leaf traits within and across families in Poaceae also have been observed to 116 

influence physiological responses most often associated with hydraulics (xylem area/diameter; 117 

resistance to cavitation) (Hacke, Sperry, Pockman, Davis & McCulloh 2001; Bachle & Nippert 118 

2018, 2021). However, the aforementioned physiological, morphological, and anatomical traits 119 

may not convey equal benefits in drought response or recovery across and within Poaceae 120 

lineages. For these reasons, it is increasingly important to understand how diverse lineages of 121 

grass species that vary in climate niches and evolutionary histories will respond to extreme 122 

drought conditions 123 

Here, we conducted a robust assessment of physiological and anatomical traits from 124 

multiple grass lineages in response to and following recovery from drought. The species under 125 

investigation were selected based on divergent drought responses within lineages. We performed 126 

a dry-down experiment to impose severe drought on 12 species of grasses across 6 tribes within 127 

the Poaceae lineage. We withheld water in order to assess various physiological, morphological, 128 
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and microanatomical trait responses to drought, as well as (above and belowground) productivity 129 

data, to capture both drought response and recovery. We hypothesized that: (1) species within 130 

tribes will exhibit a similar response to drought sensitivity (duration in drought), based on similar 131 

evolutionary histories and drought traits specific to withstanding long periods of low water 132 

availability; (2) species within tribes will also exhibit similar responses in drought recovery, 133 

based on shared evolutionary histories and functional traits that serve to quickly utilize resources 134 

when available; and (3) leaf-level microanatomical traits would best describe species (within and 135 

across tribes) response to, and recovery from drought due to the constraints of structures that 136 

influence water transport and availability.  137 

 138 

MATERIALS AND METHODS 139 

Twelve grass species from six tribes were grown from seeds obtained from the USDA 140 

Germplasm Resources Information Network or locally sourced from the Konza Prairie 141 

Biological Station. Species include: Paspalum juergensii, Paspalum notatum, Festuca ovina, 142 

Panicum virgatum, Setaria viridis, Urochloa ruziziensis, Andropogon gerardii, Sorghastrum 143 

nutans, Danthonia spicata, Rytidosperma semiannulare, Bouteloua dactyloides, and Bouteloua 144 

gracilis (accession information in Supplemental table 1). Species were selected to represent 145 

different major lineages of the family Poaceae (Cynodonteae, Andropogoneae, Paniceae, 146 

Danthonieae, Poeae, and Paspaleae), and included both C3 (BEP and PACMAD clades) and a 147 

range of C4 species. In addition, we intentionally chose species (within the same tribe) that were 148 

previously reported to have varying responses (tolerant and sensitive) to low soil moisture. Seeds 149 

were germinated in 868.5 cm3 size pots with a mix of potting soil and general-purpose sand with 150 

a ratio of 2:1 soil to sand and placed in a Kansas State University greenhouse under ambient 151 

conditions and raised to maturity throughout 2016 – 2018. Each pot was inoculated with a 152 

handful of Konza Prairie soil. After reaching maturity, the samples were subjected to 100% 153 

water reduction (referred to ‘dry-down’), simulating an extreme drought, as previously described 154 

(Qiu, Bachle, Nippert & Ungerer 2020b; Qiu et al. 2020a). During the dry-down, samples were 155 

monitored daily and placed into categorical conditions based on their physiological state: 156 

“Initial”, “Stressed”, and “Recovery”. Physiological leaf traits were monitored daily and 157 

included: leaf-level net photosynthetic rates (An; µmol m-2 s-1), stomatal conductance (gs; mol m-2 158 

s-1), transpiration (E: mmol m-2 s-1), and instantaneous water use efficiency (iWUE; An/E) 159 
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calculated as the ratio between An and E). Data was collected with a LI-6400 system (LiCOR 160 

Biosciences Inc., Lincoln, NE, USA) equipped with an LED light source (light intensity 161 

maintained at 2000 μmol m-2s-1) CO2 concentration at 400 μmol mol-1, and relative humidity at 162 

ambient levels (35-50%). Physiological states were determined by relative rates of An. The 163 

condition: “Initial” was measured on Day 1 (first day of drought after being watered the previous 164 

day) in order to avoid biased measurements from saturated soils. When samples reached near 165 

stomatal closure and extremely low photosynthetic rates (An < 25%) of Day 1 An (“Initial”), they 166 

were categorized into the new condition “Stressed”. At this point, water was re-applied to soil 167 

saturation after the pertinent data were collected. Plants were allowed two days to recover before 168 

post-drought physiological data was collected (“Recovery”).  169 

 170 

Economic trait measurements 171 

After physiological data were collected in the “Recovery” period, above and 172 

belowground tissues were harvested to determine productivity of all species and samples that 173 

were subjected to dry-down conditions. Leaf-level economic and microanatomical data were 174 

collected from samples that included all non-droughted individuals but excluded P. juergensii, P. 175 

notatum, or F. ovina due to the lack of samples. The leaf tissue data included: Leaf area (LA; 176 

cm2), specific leaf area (SLA, leaf area divided by dry mass; cm2 g-1), and leaf dry-matter content 177 

(LDMC, fresh leaf mass divided by dry mass; g g-1). SLA and LDMC were analyzed with the 178 

standardized rehydration method (Garnier, Shipley, Roumet & Laurent 2001; Pérez-179 

Harguindeguy et al. 2013), while LA data were obtained by processing images in ImageJ 180 

(Rasband 1997). Roots were washed and cleaned of debris for digital root imaging; analysis of 181 

root images was completed with a root imaging software (WinRhizo; Regent Instruments, Inc., 182 

Nepean, Ontario, Canada). Root imaging provided the following traits: total root length (cm), 183 

root diameter (mm), and specific root length (SRL, root length divided by dry mass; cm g-1). 184 

After scans were completed, above and belowground biomass samples were dried for 48 hours at 185 

65˚C and weighed for productivity comparisons.  186 

 187 

Microanatomy trait measurements 188 

The newest mature leaf was used for microanatomical analysis prior to the initiation of 189 

drought from the following species: Setaria viridis, Urochloa ruziziensis, Danthonia spicata, 190 
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Rytidosperma semiannulare, Bouteloua dactyloides, and Bouteloua gracilis. Sorghastrum 191 

nutans, Andropogon gerardii, and Panicum virgatum were collected from parent populations in 192 

the field at peak physiological performance. Festuca ovina, Paspalum notatum, and Paspalum 193 

juergensii samples were not included in these analyses due to sample loss. Microanatomical 194 

samples, roughly 30 mm in length, were collected (4 - 8 samples per species; n = 33) by clipping 195 

leaf tissue and placing them into a fixative FAA (10% formalin / 5% glacial acetic acid / 50% 196 

ethanol (use 95% EtOH) / 35% DI water) under a vacuum. Tissues were then cut (cross 197 

sectioned) to 4µm in thickness with a Leica RM2135 microtome (Leica Biosystems, Newcastle, 198 

UK), and mounted in paraffin at Kansas State’s College of Veterinary Medicine Histopathology 199 

lab. Tissue was stained with Safranin-O and Fast Green (Ruzin 2000), cover slipped, and imaged 200 

on a Zeiss 880 confocal microscope (Carl Zeiss, Walldorf, Germany) at 10X and 20X when 201 

necessary with a multitrack configuration, digital dual-bypass filters and a GaAsP detector (Fig. 202 

1). Microanatomical data were collected using IMAGEJ software (Rasband 1997) by analyzing 203 

two tissue regions from either side of the midrib between two major vascular bundles which 204 

were then averaged together from each leaf sample (Bachle & Nippert 2018, 2021). Here, the 205 

total subsampled area is referred to as the cross - sectional area or the area between two major 206 

vascular bundles (CSA). Microanatomical traits collected from subsamples include: xylem area 207 

(Xarea; µm-2),  xylem diameter (Xdiameter; µm), t/b (xylem wall thickness/Xdiameter; xylem resistance 208 

to cavitation; µm µm-1); while stomatal count (Scount) was collected from the whole-leaf cross 209 

section. In this study, we did not collect stomatal densities - as that would entail epithelial peels 210 

or impressions, therefore we do not equate density measurements and interpretations with the 211 

Scount. Instead, we utilized Scount to inform how many stomata are serving major and minor 212 

vascular bundles within the whole-leaf cross section. 213 

 214 

Data analysis 215 

The selected traits were averaged by species and separated into the three physiological 216 

‘stages’ (Initial, Stressed, and Recovery) based on physiological responses. We included tribe as 217 

a factor to investigate differences among lineages. We considered using a phylogenetic 218 

generalized linear mixed model (PGLMM), however, our goal was to not control for phylogeny, 219 

but rather to determine if lineages with different traits have evolved different drought tolerance 220 

strategies. All data were checked to meet assumptions of normality before analyses began. 221 
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Comparisons among tribes and dry-down ‘stages’ were analyzed using mixed-effect model 222 

ANOVA with physiological data used as the response variables and tribe and condition as 223 

predictor variables. Tests were performed with the lmer function within the lme4 package (Bates, 224 

Maechler, Bolker & Walker 2015). To assess bivariate relationships between plant functional 225 

traits, we performed simple regression analyses (using the ‘lm’ function). Non-parametric data 226 

were analyzed via Kruskal-Wallis rank sum test paired with a post hoc pairwise Wilcox test. We 227 

also used Akaike’s information criterion, adjusted for small sample size AICc model selection to 228 

determine the most impactful trait parameters determining drought response using the “MuMIn” 229 

package (Grueber, Nakagawa, Laws & Jamieson 2011; Bartoń 2018). All data were analyzed in 230 

the statistical program R V3.5.3 (R Core Team 2020). In order to summarize the relationships 231 

and range of physiological, functional, and microanatomical diversity represented in our dry-232 

down sample, we conducted a Principal Component Analysis (PCA) using the “prcomp” 233 

function within the “stats” library on the mean trait data across species, which cumulatively 234 

explained 72% of the variation in traits (Fig. 2). Not all traits were measured for every species, 235 

and so we focused on key traits coming from each of the data types we measured. The purpose of 236 

the PCA was to visually explore the multivariate relationships among species in multivariate 237 

space, and only includes species that had all functional trait data (excluding P. notatum, P. 238 

juergensii, and F. ovina). 239 

 240 

RESULTS 241 

 Drought responses differed among species to the experimentally induced dry-down. 242 

Physiological viability, defined as maintaining at least 25% of the initial photosynthetic rate, 243 

ranged from 4-33 days (Fig. 3A). Drought duration (days in drought before re-watering) was 244 

similar among species within tribes, but varied significantly across tribes (Fig. 3A, P < 0.001). 245 

Species within the tribe Cynodonteae (B. dactyloides & B. gracilis) were physiologically viable 246 

for the longest time during the dry-down, reaching the “stressed” stage after 30 days in drought 247 

(Fig. 3A, Supporting Table S2), whereas the most drought-sensitive species were within 248 

Paspaleae and Poeae. These tribes were similar (P > 0.05), reaching the ‘stressed’ stage more 249 

than 20 days before the Cynodonteae tribe (Fig. 3A, Supporting Table S2). The recovery of grass 250 

species and tribes following re-watering displayed a more variable response (Fig. 3B). There 251 

were no statistical differences among tribes in their recovery dynamics (P > 0.05), though 252 
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significant differences were observed among species and within tribes (P < 0.05). S. nutans and 253 

B. gracilis were the only species that that exceeded pre-drought photosynthesis levels after 254 

recovery (114% and 121% of initial An, respectively - Fig. 3B). Festuca ovina and B. dactyloides 255 

were the only species that did not regain at least 50% of ‘Initial’ physiological measurements. 256 

Several species within Paspaleae, Paniceae, Danthoneae, and Andropogoneae lineages did not 257 

fully recover (100%) to ‘Initial’ physiological levels within the experimental timeframe. 258 

However, all recovered to at least 50% of Day 1 measurements (Fig. 3B). Andropogoneae 259 

species displayed the highest drought recovery, regaining on average over 92% of physiological 260 

functioning while the only species measured in Poeae (F. ovina) was the least resilient, with only 261 

42% recovery of pre-drought An following re-watering.  262 

Leaf economic trait data were collected at the conclusion of the dry-down when recovery 263 

data was collected for each individual sample. Production of aboveground biomass was observed 264 

to vary significantly at both tribe and species level (Supporting Table S4, S5; P < 0.001). SLA 265 

was statistically similar within Andropogoneae, Cynodonteae, and Danthonieae (P > 0.05) while 266 

SLA within Paniceae species displayed significant variation (P < 0.05), ranging from 29 cm2 g-1 267 

(P. virgatum) – 143 cm2 g-1 (U. ruziziensis). Similarly, LDMC was statistically similar across 268 

tribes, except for two species within Paniceae (P < 0.05) (S. viridis and U. ruziziensis) 269 

(Supporting Table S2). The production of fine root length (diameter < 0.5 mm) differed among 270 

tribe (P < 0.0001) and species (P < 0.0001). Significant differences in SRL were observed across 271 

tribes and species as well (P < 0.001, Supporting Table S2). All species within their respective 272 

tribes were found to have statistically similar SRL except for species in Paniceae (P < 0.05), 273 

Paspaleae (P < 0.05), and Danthonieae (P < 0.01) due to the 294.99 cm g-1 difference in SRL. 274 

Most microanatomical traits displayed significant differences among species across tribes 275 

(P < 0.05) but typically had reduced variability between species within the same tribe Xarea was 276 

statistically different between tribes (P < 0.001) with the exception of Danthonieae and 277 

Cynodonteae (P = 0.485). Andropogoneae (589.308 µm2) had the largest Xarea and was 5x larger 278 

than the smallest Xarea found in Cynodonteae (108.957 µm2) (P < 0.01; Supporting Table S3). 279 

While there were significant species differences found across all tribes (P < 0.001; Supporting 280 

Table S3) there were no observable species differences within tribe (P > 0.05). Xdiameter reflected 281 

a similar pattern to that of Xarea: significant differences between tribes (P < 0.001) and 282 

statistically similar values within tribes (P > 0.15; Supporting Table S3) (consistent with 283 
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phylogenetic niche conservatism). Xylem resistance to cavitation (t/b) differed significantly 284 

across tribes (P < 0.001), species (P < 0.001), but not among species within a tribe (P > 0.05; 285 

Supporting Table S3). Stomata within the subsampled area (Scount) showed high variation; the 286 

significant differences among tribes (P < 0.01) are likely attributed to Paniceae, which had higher 287 

Scount (Supporting Table S3).  288 

There were few statistically significant relationships explaining drought responses and 289 

recovery among tribes (Supporting Fig. S1), except for Xarea and Scount. Surprisingly, given the 290 

large volume of literature designating iWUE as a pivotal functional trait reflecting drought 291 

tolerance, there was no statistically significant correlation of iWUE with drought resistance or 292 

resilience (P > 0.05). However, stomatal number was significantly negatively correlated with 293 

drought duration (P < 0.01) (Fig. 4), Xarea (P < 0.05), and iWUE (P < 0.05) (Supporting Fig. S1). 294 

Results also indicate a differentiation between sample productivity and economic growth 295 

strategies (Fig 5). A significant relationship was observed when comparing above and 296 

belowground biomass (Fig 5A), yielding a tight positive relationship (P < 0.001; r2 = 0.825). Yet, 297 

when above and belowground economic strategies (SLA and SRL, respectively) were calculated, 298 

a breakdown in the previous relationship was observed (P > 0.05; r2 = 0.008) (Fig. 5B). While 299 

SLA displayed no bivariate relationships with other traits, LDMC correlated with t/b (P < 0.01) 300 

and Scount (P < 0.05) (Supporting Fig. S1). The AICc model selection process indicated how the 301 

selected functional traits influence both drought resistance and resilience. The model explaining 302 

the greatest variation in drought sensitivity included Tribe, Scount, iWUE, LDMC, and SLA. 303 

However, the best explanation for variation in drought resilience included a single anatomical 304 

trait: Scount.   305 

 306 

DISCUSSION 307 

 Historically, water use efficiency (WUE) has been used as a seminal physiological trait to 308 

explain why some species persist and others succumb to drought (Fay et al. 2002; Leakey et al. 309 

2019; Lavergne et al. 2019; Yang et al. 2021). However, the data presented here illustrate that 310 

using this physiological trait by itself may misconstrue the interpretation of drought responses in 311 

grass species (Fig. 3A; Supporting Fig. S1) (Morgan et al. 2011). Physiological, morphological 312 

(SLA, SRL, LDMC), and anatomical data (xylem area, stomata number, t/b) in combination help 313 

provide a more nuanced perspective on grass responses to drought, and should be integrated in 314 
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order to more appropriately identify mechanisms of water stress across diverse grass lineages . 315 

Shared phylogenetic and biogeographic histories have resulted in unique adaptations and trait 316 

development in Poaceae that are reflected in the patterns of global distribution and subsequent 317 

responses to drought (Christin, Freckleton & Osborne 2010; Liu & Osborne 2015; 318 

Watcharamongkol, Christin & Osborne 2018). Here, we show considerable variation in 319 

functional traits among diverse species within Poaceae in response to drought and recovery. In 320 

addition, these data illustrate that the traits and adaptations that confer an ability to withstand 321 

extreme drought conditions are not the same as the traits and adaptations that confer an ability to 322 

recover from drought, as they are driven by the coordination of different factors (Fig. 2; Fig. 3).  323 

The grass species measured here displayed variable sensitivity to the dry-down, visible in 324 

both drought response and recovery (Fig. 3). The physiological responses observed during the 325 

dry-down were statistically related to variability in anatomical features, mainly those influencing 326 

water relations at the leaf level (Fig. 4). We also found a separation between productivity and 327 

economic strategies in both above and belowground tissues of the selected Poaceae species (Fig. 328 

5), reflecting a trade-off in leaf and root growth economic strategies. Differences in economic 329 

traits indicated water-use strategies varied in drought responses (Funk et al. 2017; Reich & 330 

Flores-Moreno 2017; Cui, Weng, Yan & Xia 2020). For example, plants with lower SLA and 331 

higher SRL traits are likely to have lower metabolic costs and grow in resource-poor 332 

environments with an increased ability to acquire resources (Cornelissen et al. 2003; Pérez-333 

Harguindeguy et al. 2013). These trait strategies should allow for sustained physiological 334 

tolerance and quicker drought conditions. While evolutionary relatedness guides physiological, 335 

morphological, and anatomical traits in determining drought responses, drought recovery was 336 

mainly driven by Scount
 alone. The number of stomata within the subsampled cross-sectional area 337 

(CSA) should not be interpreted as a stomatal density measurement because the subsampling 338 

method we used was not limited to a defined leaf area. Instead, Scount indicates the number of 339 

stomata that are supplying CO2 to major and minor vascular bundles, which may be a more 340 

direct mechanistic comparison to that of stomatal densities. Stomatal density, rather, considers a 341 

leaf’s surface as a uniform and homogeneous surface and has little to no consideration for 342 

microanatomical traits. Such microanatomical trait measurements (i.e., mesophyll area, bundle 343 

sheath area, and the diffusion distance through mesophyll) are important to consider due to their 344 
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influence on carbon assimilation and subsequent water loss (Esau 1953; Sack & Frole 2006; 345 

Ocheltree, Nippert & Prasad 2011; Lundgren et al. 2019).       346 

Low soil moisture negatively impacts growth, increases xylem tension, and decreases 347 

carbon assimilation (Lemoine, Griffin-Nolan, Lock & Knapp 2018; Jardine, Thomas & Osborne 348 

2021). The ability to mitigate and recover from drought is based on anatomical and physiological 349 

traits (Taylor, Ripley, Woodward & Osborne 2011; Olson, Anfodillo, Gleason & McCulloh 350 

2020). While the impacts of severe drought on the physiology of grassland species have been 351 

observed in previous research, few studies combined physiological, whole-leaf, and 352 

microanatomical trait data (Fry et al. 2013; Liu & Osborne 2015). As was previously mentioned, 353 

we intentionally chose species (within the same tribe) that were previously reported to have 354 

varying responses to low soil moisture. However, our results indicate that closely related grasses 355 

can respond similarly to decreasing soil moisture (Fig. 3A; Fig. 4) but display variable responses 356 

when water becomes available (Fig. 3B). This variability supports previous claims that drought 357 

responses within a functional type (i.e. C4 grasses) are not uniform and vary due to a myriad of 358 

reasons ( i.e. evolutionary histories, functional trait, etc.)(Liu & Osborne 2015; Griffith et al. 359 

2020). The diversity in physiological responses among species has been observed to protect 360 

individuals and populations while protecting ecosystem functioning from detrimental effects of 361 

drought (Mori, Furukawa & Sasaki 2013; Kreyling et al. 2017; Roberts, Twidwell, Angeler & 362 

Allen 2019).  363 

Given the fundamental role that past evolutionary histories have played in shaping 364 

current species distributions (Fox et al. 2018; Folk, Siniscalchi & Soltis 2020), species that 365 

exhibit variable responses to ecosystem disturbances would benefit more than species that 366 

maintain static responses (Isbell & Wilsey 2011; Isbell et al. 2015). For instance, species that 367 

were more drought resistant (Cynodonteae) are broadly represented in the mixed and shortgrass 368 

prairies of North America, regions that are known to have less rainfall and more frequent drought 369 

(Carroll et al. 2021). In contrast, the drought-sensitive species (Paspalum) are from tropical 370 

locations where moisture is typically not the most limiting resource. In addition, Cynodonteae 371 

were also observed to have fewer stomata and decreased gas exchange rates compared to 372 

Paniceae and Paspalum species, leading to less water loss (Fig. 4; Supporting Table S2, S3). 373 

Therefore, it stands to reason that phylogenetically dissimilar species evolving under different 374 

environmental constraints would exhibit disparate drought response to the imposed dry-down, 375 
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while more closely related species would respond more uniformly (Fig. 3A; Fig. 4). Our data 376 

also displays a clear indication of an evolved plasticity in physiological responses to variable 377 

climate conditions, as native grasses typically occupy regions with similar climate variability 378 

(Bachle, Griffith & Nippert 2018). Grasses sampled in this experiment were severely desiccated 379 

and recovered >50% of pre-drought physiological functioning and in several cases, physiological 380 

rates that were 20-30% higher than the initial state (Fig. 3B), highlighting a potentially unique 381 

characteristic of grasses across lineages. The ability to quickly acquire water and other nutrients 382 

following drought disturbances likely facilitates grasses competing with other neighboring 383 

functional types with deeper access to water (Holdo, Nippert & Mack 2018; Kulmatiski, Beard, 384 

Holdrege & February 2020). 385 

Water availability directly impacts plant physiological responses, which are constrained 386 

by internal anatomical machinery (Fig. 1) (Christin et al. 2013; Bachle & Nippert 2021). For 387 

example, the spatial separation of C4 photosynthesis allows for a reduced stomatal conductance 388 

and decreased water loss, leading to higher water-use efficiencies (Farquhar & Sharkey 1982; 389 

Ehleringer & Monson 1993; Berry & Patel 2008; Way, Katul, Manzoni & Vico 2014). This 390 

characteristic is often assumed to underlie success under conditions of increased aridity. Our 391 

findings, however, do not support this claim (Supporting Fig. S1). iWUE was not observed to 392 

directly aid in drought sensitivity or recovery of grasses in this study but it was positively related 393 

to the number of stomata (Supporting Fig. S1), indicating here, that the presence of more stomata 394 

is associated with higher iWUE. This counterintuitive result does not indicate a more drought 395 

tolerant strategy, rather, it communicates higher gas exchange rates resulting in greater loss of 396 

water leading to desiccation (Xu & Zhou 2008; Bertolino et al. 2019; Knapp et al. 2020). 397 

However, previous research has indicated that stomatal patterning, morphology, and densities 398 

can greatly influence/alter physiological responses to water stress (Nunes, Zhang & Raissig 399 

2020; Harrison, Arce Cubas, Gray & Hepworth 2020). Figure 4 clearly indicates species with 400 

more stomata have an increased sensitivity (decreased resistance) to drought, which may requi re 401 

reevaluations of previously held claims regarding the functional significance of WUE (Condon 402 

2004). 403 

Xylem characteristics have also been previously shown to impact an individual’s water–404 

use (Wahl & Ryser 2000; He et al. 2020; Olson et al. 2020). Xylem area is a commonly 405 

measured trait because it corresponds with the amount of water that can be transported at any 406 
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given time. Here, our results indicate two water transport strategies. Larger xylem (Xarea) 407 

decreases drought resistance while displaying a positive relationship with recovery, when 408 

excluding A. gerardii and S. nutans (Supporting Fig. S1). This strategy enables individuals with 409 

larger Xarea to transport greater amounts of water, when available (seen in recovery). But, 410 

drought conditions can lead to increased tension on the water column inside xylem vessels, 411 

ultimately increasing the potential for embolism formation during drought conditions (McCulloh, 412 

Domec, Johnson, Smith & Meinzer 2019). Previous research has highlighted how increased 413 

thickness of xylem wall tissue with smaller diameter lumen (t/b) can protect from embolism 414 

events in water limiting conditions (Blackman et al. 2018; Guérin et al. 2020); however, our data 415 

do not corroborate such findings (Supporting Fig. S1). Anatomical traits were observed to 416 

contain large variation, which we can contribute to two main factors: (1) Our sample size was 417 

relatively small, due to the time - consuming nature of anatomical studies; and (2) 418 

microanatomical traits are complex in nature and have large variability among individuals and 419 

within grass leaves (Fig. 1) (Ocheltree et al. 2011; Bachle & Nippert 2021).  420 

While microanatomical traits and leaf-level physiological rates provide key mechanistic 421 

insights into drought sensitivity and resilience, whole-plant traits are more easily observable and 422 

require less detailed scientific instrumentation and training (John et al. 2017; Reich & Flores-423 

Moreno 2017). Whole-plant traits illustrate broader growth strategies by the individual, such as 424 

resistance or avoidance of detrimental growth conditions. Our results indicate a linear 425 

relationship between above and belowground productivity (Fig. 5A), indicating a constant 426 

proportional investment by the selected grasses. However, when comparing two widely utilized 427 

traits within the leaf and root economic spectrum (SLA and SRL), the previous relationship 428 

breaks down to reveal tradeoffs in grass growth strategies (Fig. 5B). Individuals that invest in a 429 

root system designed for quick absorption of water and nutrients (high SRL) can only produce an 430 

inexpensive leaf (low SLA), while more ‘expensive’ leaves (high SLA) appear to be associated 431 

with a less economically efficient rooting strategy (Fig. 5A). This finding highlights the inability 432 

of grasses to produce tissues at the upper limits of the leaf and root economic spectrum. 433 

However, it's important to recognize and consider the potential for convoluted interpretations of 434 

economic traits, as they are the amalgamation of several underlying traits (Pérez-Harguindeguy 435 

et al. 2013; Bachle & Nippert 2021). In addition, there could be grasses, which were not 436 

investigated here, that invest in high SLA and SRL.  One of these complex traits is leaf dry matter 437 
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content (LDMC), which was correlated with the thickening of xylem vessel walls or xylem 438 

reinforcement: t/b. This thickening of water transport tissues (or xylem reinforcement) increases 439 

the strength at which the water column can be under tension, allowing for a more negative water 440 

potential while decreasing the likelihood of cavitation, a physiological indicator of drought stress 441 

(McCulloh et al. 2019).  442 

There is currently a dearth of available functional trait data in grasses, an 443 

underrepresented functional type in trait databases given the importance of grass species for food 444 

and forage and their geographical coverage. Results from this study indicate the need for 445 

increased collection of grass functional traits across a diverse assemblage of species within a 446 

functional type. Plant functional types are often used in ecosystem models to more easily group 447 

plants by common features; however, as our results indicate, this may lead to poor 448 

parameterization and model output as such functional types do not account for phylogenetic 449 

relatedness. Our AICc selection indicates that microanatomical traits (specifically stomatal 450 

count), physiological, economic traits, and phylogeny were essential to understanding species 451 

ability to withstand drought, while stomatal count was the best explanation for recovery 452 

responses. The trait data from these lineage-specific responses to drought have potential 453 

consequences for how different grasslands are represented and forecast in Earth System Models 454 

(Still, Cotton & Griffith 2018; Griffith et al. 2020).  455 

The evolutionary histories of lineages within Poaceae have led to the development of 456 

unique morphology (leaves and roots), anatomy (stomatal shape and photosynthetic tissue 457 

arrangement), and physiology; these traits have allowed this functional type to dominate much of 458 

the surface cover on every continent (excluding Antarctica). Phylogenetic divergences and 459 

subsequent trait adaptations have led to contrasting responses and recovery from drought (Fig. 460 

3). Anatomical traits were key in explaining physiological drought response and recovery, 461 

specifically traits concerned with water usage. Surprisingly, species that exhibited increased 462 

iWUE were more prone to quicker desiccation, which is most likely due to the same individuals 463 

maintaining larger numbers of stomata and higher overall rates of gas exchange (Supporting Fig. 464 

S1). Interestingly this same trait (Scount) was responsible for recovery from drought, which did 465 

allow for faster drought recovery. This study underscores the importance of collecting a myriad 466 

of in-depth trait data from several Poaceae lineages to better understand the mechanisms that 467 

describe drought responses and recovery.   468 

469 
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Figure Legends 752 

Figure 1: Leaf cross-sections of each major grass tribe stained with Safranin Red and Fast 753 

Green. Top left, Andropogoneae; top right, Cynodonteae; bottom left, Danthonieae; bottom right, 754 

Paniceae. Image taken with a Zeiss 880 confocal microscope.  755 

Figure 2: Principal components analysis (PCA) of mean trait values (in red text) of species in 756 

the dry down phase of the experiment. This PCA provides a summary of species in multivariate 757 

trait space using the first two PC axes, which together account for 72% of the trait variation. PC1 758 

was most associated with variation in water use and rooting strategies whereas PC2 was 759 

primarily associated with photosynthetic rate. Information concerning PCA axes importance and 760 

subsequent loadings are located in Supporting Table 6. Andropogoneae (light red), Cynodonteae 761 

(grey), Danthonieae (green), and Paniceae (blue); each point is a species mean.  762 

Figure 3: A) Number of days each species and tribe lasted before stomatal closure and 763 

rewatering occurred. B) The physiological recovery (An) compared to Day 0 or Initial physiology 764 

(measured here as a percent). Dashed line signifies a complete 100% recovery of physiological 765 

function (i.e., An at or above its initial value). Andropogoneae (light red), Cynodonteae (grey), 766 

Danthonieae (green), Paniceae (blue), Paspaleae (yellow), Poeae (red); each point is a species 767 

mean and ± SE. 768 

Figure 4. Relationship between stomatal count per entire leaf cross-section and days in drought 769 

before “Recovery”. Andropogoneae (light), Cynodonteae (grey), Danthonieae (green), and 770 

Paniceae (blue); each point is a species mean and ± SE.  771 

Figure 5: A) The relationship between leaf biomass and root biomass. B) Specific leaf area 772 

against specific root length. Andropogoneae (light red), Cynodonteae (grey), Danthonieae 773 

(green), Paniceae (blue), Paspaleae (yellow), Poeae (red); each point is a species mean and ± SE.  774 
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