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Abstract

Contemporary rates of biodiversity decline emphasize the need for reliable ecological forecasting, but current
methods vary in their ability to predict the declines of real-world populations. Acknowledging that stress
acts at the individual level, and that it is the sum of these individual-level effects which drives populations
to collapse, shifts the focus of predictive ecology away from using predominantly abundance data. Doing
so opens new opportunities to develop predictive frameworks which utilize increasingly available multi-
dimensional data which have previously been overlooked for ecological forecasting. Using this rational, we
propose that stressed populations will exhibit a predictable sequence of detectable changes through time: (i)
changes in individuals’ behaviour will occur as the first sign of increasing stress, followed by (ii) changes in
fitness related morphological traits, (iii) shifts in the dynamics (e.g. birth rates) of populations, and finally
(iv) abundance declines. We discuss how monitoring the sequential appearance of these signals supplies
information to discern whether a population becoming increasingly stressed risks collapse or is adapting
in the face of environmental change. Such a timeline of signals provides a new framework to implement
forecasting methods combining multidimensional data (e.g. behaviour, morphology, abundance) that may
increase the ability to predict population collapse.

INTRODUCTION

The extinction rates over the last century has been estimated to be higher than the historical background
rate (e.g. up to 100 times higher for vertebrates), with human activity identified as the predominant driver
of this “sixth mass extinction” (Ceballos et al. 2015). In addition to the positive effects of biodiversity
on human wellbeing and culture (Dereniowska & Meinard 2021), such declines undermine the stability and
resilience of ecological systems on which humanity relies for food, fresh water, and clean air (Maron et al.
2017). At the root of human induced extinctions are a suite of stressors - including habitat loss, pollution,
overharvesting, and climatic change (Tilmanet al. 2017) - which can drive declines and erode a population’s
ability to recover in the face of disturbances, increasing the probability of rapid collapses in the abundance of
the populations (van de Leemput et al. 2018). Indeed, anthropogenic pressure often creates scenarios where
negative biotic and abiotic stressors mutually reinforce one another and affect, through a domino effect,
multiple facets of populations, driving it precipitously to extinction — the so called extinction vortex (Fagan
& Holmes 2005; Williams et al.2021). Consequently, we are at a critical point for ecosystem management
where, to preserve biodiversity and ecosystem services, we need to reliably detect not only what systems are
being most impacted by anthropogenic stressors, but which are most at risk of collapse (Clements & Ozgul
2018).

This need has driven the development of numerous predictive methods that aim to forecast the risk of pop-
ulation collapse, ranging from classical Population Viability Analyses (PVA, Shaffer 1991) to more recently
developed Early Warning Signals (EWSs, Clements & Ozgul 2018). However, the difficultly of surveying
wild populations, together with economic limitations (Garduner et al. 2008), often results in noisy and short
abundance time series data which can detrimentally affect the accuracy of predictive frameworks such as the
EWSs (Clements et al. 2015). Moreover, this approach has neglected other potentially powerful diagnostic
features which theory and evidence suggest should be impacted by increasing stress, and thus could act as
additional indicators of increasing extinction risk. Indeed, the decline of a population to extinction is a
manifestation of a host of changes to the structure and dynamics of that population. Such changes occur
first at the individual level (e.g. decline in the body condition of an individual) which, when a high enough
proportion of the population exhibit similar changes of sufficiently high magnitude, affects the dynamics
of that population. Therefore, additional signatures of approaching collapse could include changes in the
behaviour of individuals (Berger-Tal et al. 2011), and value of morphological traits (Baruah et al. 2019),



alongside traditional abundance-based measures of extinction risk (Clements & Ozgul 2018). At the indi-
vidual level, many behaviours and morphological traits have a range of plasticity to maintain fitness in the
presence of environmental variability and stress (Fox et al. 2019); however, if conditions continue to change,
this adaptive plasticity may not be enough to maintain reproductive capacity and survival of individuals
(i.e. fitness), eventually affecting population abundance.

Thus, the effect of increasing stress on a population propagates from the individual level to the population
level via a successive series of reactions (or “signals of stress”) through time. Such individual level responses
necessarily take place (and are observable) over smaller time scales compared to population level signals;
an individuals’ behaviour or morphology can change during their lifespan, while the effect of stress at the
population dynamics (e.g. decreases in abundance) will happen after one or more generations. Incorpo-
rating this individual-to-population concept offers not only the opportunity to use individual responses to
stress as early indicators of change in population conditions, but to measure the impacts of this stress on
multiple-dimensions simultaneously. Such an approach expands on recent work in the field of EWSs, where
abundance based EWSs and shifts in the mean body size of the population are considered concurrently,
leading to an increase of the overall predictive power (Clements & Ozgul 2016; Clements et al. 2017). These
results suggested that integrating multi-dimensional data to predict population collapse has significant merit,
whereby signals of stress from a range of ecological disciplines may be combined to increase the reliability
of warning signals, decrease the length of the time series required to generate such signals, and increase the
time prior to collapse in which signals are detectable.

Here we develop a conceptual framework — the “timeline to collapse” — supported by case studies, where
we: i) describe how increasing environmental stress shapes different features of individuals across time, ii)
state the temporal sequence of observable stress signals from individual to population level along the path to
extinction, iii) show how this “timeline” of responses provides a signature to corroborate whether a population
is at risk of collapse and iv) outline methods to gather the data needed to implement such an approach.
Additionally, we will explore how the timeline provide information on individuals and population stress
buffering capacities. The feasibility of this framework relies on organisms showing measurable behavioural
plasticity, and thus within this review we will primarily consider animals as examples and case studies, but
where applicable we will highlight concepts that are relevant to non-animal species. Henceforth, we will refer
to “environmental stress” - or more in general to “stress” - as the presence of biotic and/or abiotic factors
(e.g. resource scarcity, pollution, invasive species etc.) that effects a population in a negative way. In the
following sections we will consider responses to stress observable over the short term (rapid changes;<<1
generation), medium term (intermediate speed changes; [?]1 generation) and long term (slow changes; >1
generation).

RAPID CHANGES

Behavioural changes are amongst the most rapid changes that individuals can perform to cope with sub-
optimal conditions (Greggor et al.2016). The potential range of behaviours individuals can present in the face
of stress is a result of evolved mechanisms that shape strategies to maximize fitness, intrinsic plasticity and the
past experiences of the individual (Tuomainen & Candolin 2011). Broadly, such behaviours comprehend those
related to movement and habitat use, foraging activities, and reproductive and social behaviours (Berger-
Tal et al. 2011). That different categories of behaviour can be modified by stress is well documented, with
many studies showing variation in e.g. foraging activity and dispersal of individuals in response to declining
resource availability (Couvillon et al. 2014; Fayet et al.2021), climatic change (Hamilton et al. 2015; Holt
& Jorgensen 2015; Gauzens et al. 2021), and invasive species (Lenda et al. 2013). Indeed, changes in the
movement patterns, speed, and position of individuals in their environment can be amongst the first signals
to manifest in response to increasing environmental stress, as individuals seek to minimise the impacts of,
say, declining food availability by moving to new foraging areas (e.g., increased foraging effort, Figure 1A)
or by reducing activity levels (depressing metabolism, Trites & Donnelly 2003). Such changes constitute
some of the most easily observed and measurable behavioural signals of increasing stress, as they can often
be captured remotely through e.g. GPS tracking or remote camera monitoring, techniques which bridge



taxa (vertebrate and invertebrates, Hertel et al. 2019, Tini et al. 2018) and realms (marine and terrestrial ,
Shimada et al.2021).

In addition to movement patterns, individuals may react to stress by altering rates of intra-and -interspecific
interactions, with effects observed also in social and communicative behaviours (Kunc & Schmidt 2021).
For instance, resource scarcity may lead individuals to prefer energy allocation in essential activities (e.g.
foraging), decreasing actions not linked to strict survival such as the engagement in territorial defense (e.g.
in coral fishes, Keith et al. 2018, Figure 1B). Similarly, acoustically active insects and amphibians may
change the acoustic properties of the mating signals in response to temperature stress (e.g. crickets call
speed increase at high temperature, Singhet al. 2020). Moreover, human disturbance (e.g. presence of boats)
can induce reductions in whistles and echolocation click rates of social cetaceans (Pellegrini et al. 2021).

Increases or decreases in behavioural metrics (foraging distance, prevalence of an interaction type, duration
in time of given actions etc.) will vary depending on species environmental tolerance, trophic level (e.g. prey
vs predator) and stressor type. Whilst a lack of resources may trigger increases in movement, the arrival of
an invasive predator in an ecosystem may induce a prey species to reduce movement (to reduce encounter
rates) or to shift microhabitat use toward a more shelter-oriented strategy (i.e. less time spent in open areas,
McMahan & Grabowski 2019). In addition to these directional changes, environmental stress may increase
the variance observed while monitoring behavioural metrics, e.g. poor environmental conditions enhanced
the variability of foraging trip duration in young albatrosses (Patricket al. 2021).

Previous experience may also play a critical role in determining an individual’s response to stress. Individuals
that have previously faced similar situations may cope better with a novel stress if cues share similar cha-
racteristics to those already experienced. For instance, compared to naive individuals, fishes with previous
experience of predation events showed stronger antipredator behaviours (e.g. decreasing swimming activity)
when they were represented with the chemical cues of the predator (Vilhunen et al. 2005). Likewise, the
evolutionary history of a population can shape an individuals’ capacity to react to environmental pressure.
A lizard prey species will likely recognize a new predatory snake introduced in its habitat as dangerous and
perform antipredatory behaviours if the lizard’s population have evolved with other snake species, especially
if the predators share similar features (shape, chemical cues etc.) with the introduced predator (Ortega et
al. 2017). On the other hand, lizards that have never seen predatory snake in their evolutionary past (e.g.
due to geographical isolation, (Durand et al. 2012)) are less likely to recognize an alien snake as dangerous,
and thus may suffer heavy predation (i.e. lack of antipredatory response). (Sih 2013; McMahan & Grabowski
2019). Consequently, a population’s ecological and biogeographical history must be considered when looking
for such behavioural signals of stress.

Such changes in individual’s behaviour can occur over short (<< 1 generation) timescales, as such shifts are
driven by physiological needs and immediate adaptative reactions which take place rapidly. For instance,
the micro-habitat use shift by an insect prey can happen overnight after a predator arrival (Pierce 1988);
similarly, an increase in movement of individuals due to food scarcity can be triggered after months, days, or
hours depending on the species life span and metabolism speed. Regardless, such fast behavioural changes
represent an individuals’ primary stress buffering response, and consequently will manifest as the first of the
suite of detectable warning signals.

INTERMEDIATE SPEED CHANGES

If rapid behavioural plasticity is not enough to mitigate the effects of increasing stress, individuals may
respond to maximize survival and reproductive output through changes in morphological traits related to
fitness (Fox et al. 2019). Such changes can include metabolic adjustments (e.g. reductions in body mass,
decreases in growth rate) as well as antipredatory morphological trait expression, and their plasticity shapes
an individual’s capacity to respond to rapid environmental change (Fox et al. 2019), thus governing the
vulnerability of populations to extinction (Olden et al. 2007).

Environmental stress substantially affects morphological trait distributions, both prior to or concurrent with
changes in the demography of the population (Pigeon et al. 2017; Baruah et al. 2019). For instance, the



reduction in body size of populations due to sub-optimal food consumption is a general response to resources
scarcity (Trites & Donnelly 2003). Reductions in body size are also directly and indirectly induced by
climatic change and habitat fragmentation, with such shifts being observed across numerous taxa (Lomolino
& Perault 2007; Gardner et al. 2011; Sheridan & Bickford 2011; Stirling & Derocher 2012; Thoral et al. 2021,
Figure 2A). Indeed, body size is a key trait that directly affects thermoregulation dynamics and rates of
energy and mass intake and utilization (Gardner et al. 2011), and has recently been suggested as a possible
measure of population stability (Clements & Ozgul 2016). For example, changes in body size of diatoms algae
preceded a regime shift in a lake ecosystem (Spanbauer et al. 2016), and experimental populations exhibit
the same pattern, showing that — when resources decrease — declines in average body size precede declines
in population size, and hence could be indicative of a future population collapse (Baruah et al. 2019).

In situations where measuring body size changes is inappropriate, change in individual growth rates can be
used as an even more accurate stress signal since growth rate will respond instantaneously to physiological
adjustments made by the individual in response to stress. For example, Bjorndal et al. 2017 reported a
decrease in growth rate of individuals of three sea turtle species in response to climatic stressors and an-
thropogenic degradation of their foraging areas. Similarly, environmental stress can lead to a decrease in
defensive morphological traits: e.g. light stress in pregnant individuals of a freshwater cladoceran crustacean
induced the reduction of antipredator spines dimensions in their offspring, with a consequent enhancement
of the predation risk for newborn individuals (Eshun-Wilson et al.2020).

Even if such reductions in the size of morphological traits are the most likely outcome of stress, particular
stressors may result in other patterns of change. For instance, the novel pressure that an invasive predator
species brings on a native population can trigger the increasing of body features (predator induced-defenses
, Zhang et al. 2017)) aimed to better escape negative interactions (attack/predation), if the alien predator
is perceived (via visual or chemical cues) as a threat (Thawley et al. 2019). Moreover, chemical pollution
has been found to increase the occurrence of fluctuating asymmetry in body traits linked to intraspecific
interaction (i.e. femoral pores, Figure 2B) in lacertids (Simbula et al.2021). Indeed, increase in fluctuating
asymmetry has been suggested as an indicator of the loss of genetic variation possibly occurring prior to
extinction (Leary & Allendorf 1989).

These physiological responses, including (but not limited to) declining body mass/size, expression of chemical
induced antipredatory features, and asymmetry in meristic features will generally occur over longer time
periods than rapid behavioural changes described above, but may still occur within the life span of an
individual ( i.e. [?]1 generation), or be tracked across multiple sequential generations (e.g. Clements &
Ozgul 2016; Clements et al. 2017). For instance, the body size reductions induced by food scarcity can
be observed both during an individual’s life and across generations (e.g., seabird annual breeding season
(Fayet et al. 2021)), as the nutrient deficit of the parents is reflected by loss of condition in the hatchlings.
Likewise, toxic chemicals can accumulate in adult females inhabiting polluted habitats and be transferred
to their eggs, and the induced traits shift could appear in the offspring over a single reproductive season
(e.g. few months for lizards, Simbula et al. 2021). Therefore, after behavioural changes, morphological trait
shifts represent the next viable response to stress (i.e., second buffering level) of individuals, and should thus
occur as the second indicator of increasing stress on a population.

SLOW CHANGES

The signals discussed thus far represent the impacts of stress observable at the individual level; however, when
a high proportion of a population is similarly stressed, such individual level effects can propagate to alter
the structure and dynamics of a population through changes in births, deaths, immigration, and emigration.
Examples of fitness related phenotypic changes that shape an individual’s life history traits (e.g. shift in
fecundity (Boggs & Ross 1993)) and thus population dynamics are numerous in the literature. For example,
climatic change impacted the feeding activity of many polar bear populations, resulting first in body condition
reductions and subsequently in a decreases of reproductive rates and cubs survival (Stirling & Derocher
2012). Similarly, behavioural plasticity can impact population dynamics in the long term: a recent example
in humpback whales has shown that changes in behaviour (shifts in diet and seasonal movement) driven by



environmental change led to a subsequent decline in calving rates (Kershaw et al. 2021). Such decreases,
which necessarily reduce the lifetime reproductive success of an individual, represent some of the the last
stages of adaptive plasticity in life history, where resources are reallocated from reproduction to maintain the
survival of the individual whilst allowing for the possible exploitation of improved future conditions (Fleming
et al. 2016). Although such responses are carried out by the individuals during their lifetime, i.e. occurring
right after to or concurring with the morphological shifts, the resulting signals become observable over long
(>1 generation) time frames via changes in the abundance trends of a population. Indeed, such decreases
in reproductive success and increases in mortality will drive fluctuations significantly different from the
preceding stable periods (e.g., increasing variance EWS (Clements & Ozgul 2018)). However, these changes
will not necessarily trigger/drive continuous declines in the abundance until extinction (i.e. the population
could stabilize at a new carrying capacity level with lower resources quantity).

These slowly occurring changes represents the ultimate signals (last stress buffering level) a population may
show before the collapse starts. Indeed, such a state of low recruitment potential may be critical as the
plasticity of behaviours and body traits may have already been exhausted, and thus a population is more
vulnerable to fluctuations and collapse if stress continues to increase, or through stochastic factors (e.g.,
catastrophic events). At this point, if stress — be that abiotic or biotic — continues to increase then even this
last stress buffering level of the population will be overcome, death rate will increase, and abundance will
start to continuously drop until the ultimate extinction of the population.

THE TIMELINE TO COLLAPSE

The above changes — ranging from rapid behavioral responses to declines in the abundance of a population —
constitute a predictable succession of observable signals which we term the “timeline to collapse” (Figure 3).
The presence of these signals assumes a continuous increase in stress — be that biotic or abiotic — such that a
population is able to respond, rather than sudden step-shifts in a stressor which may eradicate a population
in the absence of any indicators (Clements & Ozgul 2018).

Whilst the time at which behavioral, morphological, and abundances shifts start (Tgs, Tys and Tag, Figure
3) are expected to be sequential, the time intervals over which such shifts occur (I, Iy and I, Figure 3) may
overlap. Indeed, for an organism, changing a behaviour above a given threshold may require the use of energy
reserves that may trigger a change in morphological traits. For example, for a seabird population (Figure 3),
increasing foraging distance may be the first response to decreasing food availability, and in normal conditions
the resources found in a further area may be enough to compensate this additional foraging effort; but if
the food is needed for recruitment (i.e. feeding chicks, (Fayet et al. 2021)) most of these resources will be
transferred to the offspring, and may not cover the individual’s energy cost of increasing flight distance.
Therefore, an individual will either i) fail to replenish energy stores (e.g. start to lose weight) or ii) decrease
feeding rate to offspring to ensure they have the energy needed to cope with the extended foraging distance
(Fayet et al. 2021). This will result in observing flight distance increasing together with declines in the body
weight of adults, offspring, or both. However, in other scenarios we could observe a clear temporal distinction
between signals of stress time (i.e. no overlap among Ig, Iy and In). For instance, in the presence of an
invasive predator a prey species can go through an initial fast and discrete behavioural change (e.g., a shift
in microhabitat use (Pierce 1988)), followed by a medium speed response (e.g., change in body size due to
different conditions in the new microhabitat, (Leibold & Tessier 1991)), without any overlap between these
two signals.

The timeline can act as novel tool to discriminate populations tending toward extinction from those simply
adapting in the face of change. For instance, focus on a single feature such as behaviour cannot discern a
population where individuals’ behavioural shifts are sufficient to cope with stress (maintain fitness) from a
population where individuals reach the maximum level of behavioural plasticity and then start to compensate
the fitness loss with changes in morphological traits (e.g. decrease in body size). In both cases, the monitoring
would demonstrate a significant change in behaviour. Instead, observing the temporal sequence of changes in
all the facets (behaviour, morphological traits, changes in the variances of abundance, and finally abundance
declines) represent the key indicator that the stress gradually overcomes individual and population level



reactions, and thus collapse is approaching.

These temporal pattern in signals of stress will necessarily be across time scales relevant to the study
organism, i.e. lifespans and generations rather than absolute time periods. For small invertebrates, fast
response that may be observable over hours (e.g., Daphniadepth shift, Oram & Spitze 2013) while slow
signals will occur over days. For larger vertebrates, medium speed response may take place over months
(e.g., Steller sea lions weight loss, Trites & Donnelly 2003) whilst EWSs occurrence and subsequent abundance
declines may occur over years. Regardless of the direction of the shifts and the stress type, we expect the
temporal sequence in the typology of signals (behavioural, morphological, abundance; Figure 3) to remain
broadly consistent.

Data requirements

The conceptual development of the timeline to collapse offers hope that multiple data streams can be synthe-
sized into a single predictive tool which incorporates both the timing of changes in signals of stress, and the
order in which such signals occur. To apply such a framework to at risk populations would require simulta-
neous monitoring of the behaviour, morphological and/or life history traits, and abundance of populations.
Whilst such multivariate data may seem challenging to gather in real world situations, recent technological
advancements in data-collection methods provide the opportunity to generate high throughput information
on these multiple features of populations with a relatively low cost/benefit ratio (Thompson 2013; Ward et
al. 2017). Indeed, GPS tracking, biologging, acoustic monitoring, and photographic analysis are now able
to extract data on behaviours and morphological traits, providing invaluable data even from a subset of the
population, (Desjonqueres et al. 2020; Williams et al. 2020; Sequeiraet al. 2021; Shimada et al. 2021),
and such approaches have been implemented in vertebrates (both terrestrial and marine) and invertebrates
(Table 1). Biologging sensor are becoming rapidly more affordable, and research to reduce the relative mass
of these devices ameliorates the ethical implications of weight and invasiveness (Portugal & White 2018).
Current biologger models can already collect, among other information, data on geographical location, body
movement (e.g. posture, rotation, heading), physiological rates (e.g. heartbeat, temperature, reproductive
periods) and acoustic data (e.g. vocalizations, external soundscape), widening the possibilities to observe
behavioural stress responses simultaneously in several aspects of the individuals’ life (Table 1, Williams et
al. 2020). Similarly, for sound-emitting species, passive acoustic monitoring allows the assessment of indi-
viduals’ behaviour, health status, distribution, and population dynamics (Gibb et al. 2019; Desjonqueres
et al. 2020). Acoustic sensors (microphones and hydrophones) are relatively easy to deploy, can be used in
low visibility environments such as dense forests or deep-water and be leftin situ for long times, and have
the advantage of being non-invasive and able to survey a broad taxonomic range spanning from vertebrates
(e.g., cetaceans Sousa-Lima et al. 2018; bats, Tuneu-Corral et al. 2020; birds and amphibians, Deichmannet
al. 2017; Table 1) to insects (e.g. Orthopterans (Singh et al. 2020)). Moreover, unmanned aircraft systems
(e.g. dromes) now allow to perform precise photogrammetric measurements of species that are challenging
to sample: drones photography can take measurements of big marine mammals like pinnipeds and whales
(also good ecosystem health indicators, Krause et al. 2017; Kershaw et al. 2021)) and estimate their mass
and body condition, thus providing data on possible shifts in body size (Clements et al. 2018).

Similarly, abundance estimates are being improved through new tools and statistical models that comple-
ment classic approaches like direct sampling and capture-mark-recapture methods (Seber & Schofield 2019).
Camera traps, and aerial and satellite images can be analyzed with machine learning techniques to obtain
accurate population counts even for multiple species systems (Linchant et al. 2015; Norouzzadehet al. 2018),
and citizen science projects can help to gather and process such image data (e.g. Penguin Watch (Jones
et al.2020)). Moreover, the recent explosion in environmental DNA (eDNA) analyses can provide a cost-
effective way to estimate populations that is applicable to a large number of systems and taxa (Yates et
al.2019). This broad suite of cutting-edge methodologies means that data on multiple facets of a population
will become increasingly available, much of which has been largely overlooked by predictive ecology but
which can be leveraged under the timeline to collapse framework.

Forecasting



The timeline to collapse provides a conceptual framework to synthesize multiple types of data to aid predicting
the future dynamics of ecological systems (Clements & Ozgul 2016). However, to apply the timeline to
collapse concept requires identifying appropriate data to monitor (behaviours, traits), measuring baselines
against which change can be quantified, developing statistical tools to provide robust detections of increasing
stress.

Whilst some behaviours and morphological signals may provide general indicators of increasing stress (e.g.
increased dispersal), selecting signals which are relevant to the taxa of interest remains key (McClanahan
et al. 2020). Expert knowledge can aid in this (Reside et al. 2019), identifying which behaviours and
traits are most likely to change given the nature of the stressor, or — in cases when the identity of the
stress is unknown — what can provide general indicators of an individual’s condition. After choosing what
to monitor, a quantitative and/or qualitative definition of “normal” values for the identified behavioural,
morphological, and abundance indicators is needed, from which we expect to observe significant deviations
when environmental stress starts to increase (Figure 3). Defining such values in wild populations ideally
requires long term monitoring data (Wauchopeet al. 2021) on the multiple features of a population under
stable conditions. Such data will become progressively more available as remote sensing and technological
advancements continue to automate data collection at large scales (Krause et al. 2017; Sequeira et al. 2021).
Alternatively, a comparative approach between populations experiencing different levels of stress can provide
baseline values such as along a stress gradient (Ingram et al. 2021) — a so-called space-for-time substitution
(Keith et al. 2018); Fayet et al. 2021). Such data on non-stressed populations can characterize the range of
variation in the selected behaviours and morphological traits that, together with the abundance fluctuations,
can be analyzed to obtain means and upper and lower confidence intervals. In the absence of such long-term
monitoring data, methods such as Dynamic Energy Budget Models (DEMs) could help to set baselines using
more general population life history data. DEMs describe in a single framework how individuals’ energy is
distributed for growth, somatic maintenance, development, maturity, and reproduction (Baas et al. 2018).
Standard life-cycle data that can be obtained over shorter periods of time (e.g. Body length and weight at
birth, growth rate, maximum reproduction rate, lifespan etc.) feed into the model that derive quantitative
parameters describing the organisms energetics. Trait information can also be incorporated into the model
to provide taxa specific estimates (Baas et al. 2018). Parameterizing such DEMs with life history data from
populations in stable conditions could represent a viable and generalizable baseline distribution from which
one can compare observed changes (Lika et al. 2011).

Regardless of how a baseline is defined, comparing these multivariate estimates to observed changes in
behaviours, traits, and abundances is non-trivial. Recently developed statistical tools provide options to
achieve this; multivariate time series modelling (Wei 2018) may offer a strong method for analyzing the
timeline data (time series of behaviour, traits, and abundance), whereby the trends of the different variables
can be analyzed through time while taking into account the inter-dependencies between them (e.g. behaviour
and morphology). For example, Multivariate Autoregressive State Space (MARSS) models (Holmeset al.
2012) can use information on historical trajectories of multiple variables to forecast future values while
accounting for multiple sources of uncertainty, and thus could represent another valuable option to predict
shifts in, for example, behavioural indicators (Zhu et al. 2018). Alternatively, deep learning networks such
as recurrent neural networks and temporal convolutional neural networks (Lai et al. 2018; Bury et al. 2021;
Lara-Benitez et al. 2021) could provide an even more powerful approach to forecast future trends or state
changes in such variables (Guo et al. 2020), though these tools will require large amounts of training data.
Such approaches could be performed for single populations but may be stronger at the landscape scale,
whereby one could combine inputs from multiple populations under different conditions and use the data
to train the deep learning algorithms to then perform generic predictions in new cases. Therefore, despite
the complexity of analyzing multivariate data, these new tools offer the opportunity to try to implement the
timeline forecasting capacity.

Ecological insights

Whilst the temporal order of signals provides information on the population’s future, the magnitude of the



shifts in behavioural, morphological, and abundance-based metrics may provide measures of a populations
ability to resist stress. For instance, for individuals of a population suffering from resource loss (Figure 4),
increasing their foraging distance can initially compensate against the increased stressor levels’ (i.e. buffering
a given quantity of stress). However, above a threshold (Figure 4, Point 1), expanding such behaviour is
insufficient to maintain fitness, and the animals’ body size is impacted. Body size will also ultimately decrease
if stress growth persists, until a physiological limit is encountered, beyond which the reproductive ability of
a population is impacted (Figure 4, Point 2). Therefore, the variation from the average value of pre-stress
(stable) conditions, measured in the behaviour and morphological trait prior the onset of the next signal of
stress, represents an intrinsic stress buffering capacity (C): a measure of the magnitude of stress tolerable
before transitioning to the subsequent stress buffering level along the timeline. If we define By and Mg as
the average values of a monitored behavioural metric and morphological trait during stable conditions, and
By and Mytheir respective values at the onset of the next buffering signal/level (Figure 4, Point 1 and 2),
we may calculate Cy,(behaviour C) and C,, (morphological trait C) as follows:

Cp=|Bs — Bx|; Cn=|M; — My|.

From this framework, average values of Cy, and Cy, of individuals can thus be calculated for particular be-
haviours or traits that can undergo continuous shifts and compared among different species and populations.
For instance, nematodes and rotifers show extreme plasticity in morphology (reduction of up to one-thirds
of original body size (Rebecchi et al. 2020)) to cope with long periods of stress (e.g. exsiccation of habi-
tat), and thus they would display higher values of C,, compared to e.g. amphibians species with limited
drought resistance. Such high value of C, reflects the large amount of stress they can buffer by changing
morphology before the eventual occurrence of abundance EWSs in the population. Therefore, such buffering
capacities may be compared among different species to indicate which life history traits (group living vs
solitary animals, bigger vs smaller dimensions, specialist vs generalist etc.) lead to species more resistant to
stress. Additionally, average Cy, and C,, may vary among populations of the same species, due to difference
in biogeographic history and genetic structure (e.g. allelic heterozygosity (Hansson & Westerberg 2002)),
which may provide information on how such factors shape stress buffering capacity.

Caveats

The timeline to collapse concept necessarily makes assumptions about how stressors will impact populations.
The main assumption is that stressors will increase over time (Figure 4), allowing populations to respond
gradually to increases in stress. However, as with EWSs and PVA, sudden and/or catastrophic stress
(drought, storms, fires etc.) may lead to significant changes in the abundance or distribution of a population
without any warning. Moreover, even in cases where stress increases continuously, the mutable nature of
biological systems may create situations where the sequence of signals may be different (e.g. body traits
shift occurs first, triggering then behavioural shift, or concomitant abundance and trait change (Burant et
al. 2021). Finally, whilst it is possible to apply parts of the timeline concept (and indeed doing so has been
shown to improve the predictive accuracy of forecasting tools (Clements & Ozgul 2016, 2018)), applying the
entire framework requires studying species that show quantifiable behaviours and morphological traits, where
gathering data is easier at the individual perspective, and thus it may not be fully applicable to animals such
as sessile (e.g. Anthozoa), obligate parasite species or to plants and fungi species. Nevertheless, we believe
that in such cases a partial application of the timeline concept (e.g., monitoring morphological traits and
abundance data) will improve the predictive horizon of eventual collapses compared to considering only one
type of data.

CONCLUSIONS

Considering how anthropogenic stressors impact populations via changes in individual-level features pro-
vides a key step forward in predicting populations extinction. Doing so allows us to develop a conceptual
framework, the timeline to collapse, where the temporal aspect of signals of stress can act as an additional
corroborative tool to infer risk of population collapse. The timeline to collapse approach also provides a
framework for the development of monitoring programs, highlighting what data might be collected to help



enhance biodiversity monitoring, and how technological innovation might help to increase the amount of data
available (Pimm et al. 2015, Table 1). A holistic view of how the behaviours, morphological features, and
dynamics of populations change as they become increasingly stressed will improve the identification of what
observable signals precede declines in the abundance of populations, thus strengthening the tool arsenal for
fighting biodiversity loss.
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Tablel . Overview on data acquisition methods usable to collect the signals of the timeline to collapse.

Signal
Method Tools Species category Information Ref.
GPS GPS-GSM Ursus arctos Behaviour range of (Hertel et al.
tracking /bio- neck collars movement, 2019)
logging diel activity,
habitat
selection
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Signal

Method Tools Species category Information Ref.
GPS collars with ~ Ovibos Behaviour + movements, (Chimienti et al.
integrated 3D moschatus morphological energy allocation  2021)
accelerometer and life history patterns,
sensors + traits parturition
vaginal implant events and body
transmitters + temperature
machine learning
techniques
GPS-GSM Halichoerus Behaviour Horizontal (Carter et al.
tags grypus movement and 2017)
diving
behaviours
GPS-UHF Falco Behaviour Movement (Lopez-
biologgers naumanni speed, Ricaurte et al.
distance, and 2021)
duration.
Radio- Radio Lucanus Behaviour Dispersal (Tini et al.
telemetry transmitters cervus ability and 2018)
space use
Passive Hydrophones Physeter Behaviour Seasonal (Miller &
acoustic + Click macrocephalus occupancy, Miller 2018)
monitoring Detector diel activity,
modules
Microphones Arthroleptella Abundance Population (Measey et al.
+ Spatially lightfooti. estimates 2017)
Explicit (density)
Capture—
Recapture
models
Camera traps Motion-sensor Multiple Behaviour + Identification (Norouzzadeh
camera Trap species abundance of species, et al. 2018)
+ deep neural counts,
network behaviours
learning
Drones Aerial Megaptera Morphological Body (Christiansen
photographs novaeangliae traits condition et al. 2016)
(photogram-
metric
measurements)
Aerial Hydrurga Morphological Mass and body (Krause et al.
photographs leptonyz traits condition (pho- 2017)
togrammetric
measurements).
Aerial Sterna Abundance Population (Chabot et al.
photographs hirundo estimates (n 2015)
individuals)
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Signal

Method Tools Species category Information Ref.
Satellite GeoEye-1 Multiple Abundance Population (Yang et al.
imagery satellite species estimates (n 2014)
images + individuals)
artificial

neural network

Figure captions:

Figure 1 . Examples of stress induced behavioural shifts. A) Mean values of dive duration and distance
travelled of individuals of ringed seal (Pusa hispida ) in Svalbard (Norway) before and after a significant
decline in sea-ice extension, and thus in their habitat quality. Both behaviours showed significant increases
in response to the stress. Bars indicate standard error. Data adapted from Hamilton et al. (2015). B)
Probability of aggressive encounters between heterospecific and conspecific butterflyfishes (Chetodon spp.)
calculated in 4 regions across the central Indo-Pacific, before and after a mass coral bleaching event in 2006
(reduction in food resources for the fishes). Both behaviours showed significant decreases. Data adapted
from Keith et al. (2018). Bars are 95% confidence intervals. *Coral cover % change showed refers only to
one of the four sites (Christmas Island site, Indian Ocean; 105.6° E, 10.4° S) for simplicity.

Figure 2 . Examples of stress induced shifts in morphological traits. A) Mean estimated body mass of
female polar bear individuals (Ursus maritimus ) in western Hudson Bay from 1980 through 2007 (dashed
line indicates fit of linear regression [r=-0.549, p<0.01], bars indicate standard error); the area experienced
progressively earlier dates of sea-ice breakup, that is a decline in duration of the favorite sea-ice habitat
of polar bears. Data adapted from Stirling & Derocher 2012. B) Comparison of the mean of individual
asymmetry index for femoral pores among Italian wall lizard (Podarcis siculus ) sampled in hazelnut orchards
with no history of pesticide use (control) vs orchards regularly treated with pesticides (treatment). The
pollution stress induced an increase in the fluctuating asymmetry for femoral pores (bars indicate standard
error). Data adapted from Simbula et al. 2021.

Figure 3. Theoretical example of a timeline to collapse. Here we posit a population of seabirds inhabiting an
area where prey resources (e.g. fish stocks) begin a continuous decline (A). The curves in B and C represent
average values of a behavioural (B) and morphological trait (C) calculated from a pool of individuals in the
population through time. The red curve in D shows the abundance of the population. First a shift is observed
in the behaviour (time point Tgs), where the average foraging distance increases compared to the average
measured during stable conditions By (B). The foraging distance will increase until it reaches a physiological
limit (time point Tpe), defining the time interval where a continuous change is observable (Ig). After, or
during such time, we will observe a decrease in average body size compared to that measured during stable
conditions My (C), at time Tys. The body size will change until its physiological limit (Tye), defining the
time interval where such continuous change is observable (I). Later, the abundance trend of population
will show alterations in the pre-decline indicators such as Early Warning Signals (EWSs), that will start to
be observable at time point Tag, and will last until Tae, defining the time interval I5. Subsequently, the
continuous decreases to extinction (D) will begin at time point Tgs, and end will end with the extinction of
the population Tge, lasting the time interval Ig. The first occurrence of the signals projected on the lower
Time axes shows the sequence in the category of observable signals of stress starting at the individuals’ level
(B, C) and propagating to the population level (D).

Figure 4. Theoretical example of a timeline to collapse. The grey curve represents a continuous growth of
a given environmental stress on the population. The blue and green curves represent average values of a
behavioural and morphological trait calculated from a pool of individuals in the population. The red curve
represents the number of individuals. By and My are respectively the average measure of the considered
behavioural and morphological traits in stable conditions. The small black dotted lines project the starting

17



point of the shifts in morphological traits and abundance dynamics on the behaviour (point 1) and morpho-
logical trait (point 2) curves. Projected on the vertical axis, those points identify By and My: the values of
behavioural and morphological metrics at the time of the onset of the next signal along the timeline. The
interval of change (brackets) from the average values defines the intrinsic buffering capacities of behaviour
(Cp,) and morphological traits (Cp, ).
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