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Abstract

The present work studies the inverse scattering transformation (IST) of the inhomogeneous fifth-order defocusing nonlinear

Schrodinger (ifoNLS) equation with zero boundary conditions (ZBCs) and non-zero boundary conditions (NZBCs). Firstly,

the bound-state (BS) solitons of the ifoNLS equation with ZBCs are derived by generalization of the residue theorem and the

Laurent’s series for the first time. Then combining with the robust IST, the matrix Riemann-Hilbert (RH) problem of the

ifoNLS equation with NZBCs are revealed. Based on the resulting RH problem, a new higher-order rogue wave (RW) solution

of the ifoNLS equation are found by the modified Darboux transformation. Finally, some corresponding graphs are given by

selecting appropriate parameters to further discuss the unreported dynamic behavior of the BS solitons and RW solutions,

which have not been reported before.
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(Some figures in this article are in colour only in the electronic version)

1 Introduction

As one of the current research focuses, the nonlinear evolution (NLE) equations with
zero boundary conditions (ZBCs) and nonzero boundary conditions (NZBCs) has
brought to the forefront of nonlinear systems in the past decades [1]−[4]. Many meth-
ods have been provided to find the solutions of NLE equations. In 1967, Gardner et
al. first proposed the inverse scattering transformation (IST) and applied it to the KdV
equation[5], which was the most effective method to solve the initial value problem
of the integrable system in soliton theory. The classical IST methods are generally s-
tudied on the basis of Gel’fand-Levitan-Marchenkoo integral equation. Subsequently,
Zakharov et al. appropriately simplified the IST method by issuing Riemann-Hilbert
(RH) formula [6], and used this method to obtain the soliton solutions of many N-
LE equations [7]−[11]. Thereby, the research on the RH formula made important
progress in the field of integrable systems, and it is still a hot topic today[13]−[22].

In recent years, the study of bound-state (BS) solitons and rogue wave (RW) solu-
tions based on the RH method has drawn much attention, thereby more and more BS
solitons and RW solutions of the NLE have been found. In 1972, Zakharov and Sha-
bat derived the multiple poles soliton solutions of the focused nonlinear Schrödinger
(NLS) equation [23]. Thereafter the increasing multiple-poles solitons of various non-
linear integrable equations have been solved, for example, the modified KdV equation
[24], the sine-Gordon (sG) equation [25], Sasa-Satsuma (SS) equation [26], Wadati-
Konno-Ichikawa (WKI) equation [27], the complex modified KdV equation [28]. In
addition, they discussed the asymptotic for multiple pole solitons [29,30]. Most im-
portantly, using the original IST method to solve the BS solitons requires a large
amount of calculation [24,25], and some relatively complex constraints need to be
solved. However, the RH problem with multipl poles can be directly expressed by
employing the residue theorem and Laurent’s series [27,28], which not only simpli-
fies the calculation, but also obtains the BS solitons. Subsequently, Bilman and Miller
found that the robust IST can be applied to solve the higher-order RW solutions of the
focusing NLS equation [31]. Simultaneously, this method is used to solve respiratory
wave solutions, rational W-type soliton solutions and so on. Afterwards, the robust
IST is used to solve more nonlinear integrable models of RWs, such as the fifth-order
NLS equation [32], the sixth-order NLS equation [33], the Hirota equation [34], the
quartic NLS equation [35], and the generalized NLS equation [36].

In this paper, we mainly study the inhomogeneous fifth-order NLS (ifoNLS) e-
quation [37]

iqt − iεqxxxxx − 10iε|q|2qxxx − 20iεqxq∗qxx − 30iε|q|4qx

− 10iε(|qx|
2q)x + qxx + 2q|q|2 − iqx = 0, (1)

where q = q(x, t) represents the complex functions of x and t, ε is the perturbation
parameter, and superscript ∗ is the complex conjugate. In 2015, Chen first constructed
the generalized Darboux transformation (DT) of the ifoNLS equation (1), and then
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obtained the RW solutions based on the generalized DT [37]. In 2019, Feng et al.
studied the determinant representation of the N-fold DT based on Lax pair. Moreover,
the higher-order solitary wave, breather wave (BW) and RW solutions the ifoNLS
equation (1) are obtained by using the N-fold DT [38]. In 2020, Yang et al. discussed
the ifoNLS equation (1) with NZBCs in detail. For the inverse scattering problem, For
the inverse scattering problem, they discussed simple zeros and double zeros cases
of scattering coefficients respectively, and further obtained their exact solutions [39].
However, the BS solitons of the equation (1) with zero boundary and the RW of the
equation (1) with non-zero boundary have not been analyzed. Therefore, we will use
the RH problem to obtain the BS solitons of the ifoNLS equation (1) with ZBCs.
Then the RH problem of the equation (1) with NZBCs is discussed. Finally, based on
the obtained RH problem and the DT method, the RW solution of the equation (1)
with NZBCs is obtained.

The ifoNLS equation (1) satisfies the following Lax pairs

Ψx = UΨ, Ψt = VΨ, (2)

where

U = −iλσ3 + Q,

V = −16iλ5εσ3 + 16λ4εQ − 8iλ3ε(Q2 + Qx)σ3 + 4λ2ε(2Q3 + QxQ − QQx − Qxx)

− 2iλ2σ3 − iλσ3 + 2λQ − 2iλε(3Q4 + 6Q2Qx + Q2
x − QQxx − QxxQ − Qxxx)σ3

− i(Q2 + Qx)σ3 + Q + ε(6Q5 − 6Q3Qx + 6Q2QxQ − 6QxQQx − 4Q2
xQ

− 2QQxxQ − 8Q2Qxx − QxQxx + QxxQx − QxxxQ + QQxxx + Qxxxx), (3)

with

σ3 =

(
1 0
0 −1

)
, Q =

(
0 q
−q∗ 0

)
. (4)

The structure of this paper is as follows: In Sec. 2, we construct the RH problem of
the ifoNLS equation (1) with ZBCs, and then derive the BS soliton with one higher-
order pole. In Sec. 3, we construct the RH problem of the ifoNLS equation (1) with
NZBCs by means of robust IST. Then combined with the modified DT method to
solve RH problem, the exact BW and RW solutions of the ifoNLS equation (1) with
NZBCs are obtained. In the last section, we give some conclusions.

2 The IST with ZBCs and BS solution

In this section, we will study the BS soliton q(x, t) of the ifoNLS equation (1) with
ZBCs through infinity under the following conditions

lim
x→±∞

q(x, t) = 0. (5)

The next moment we will express the IST and BS soliton of equation (1) with
ZBCs through the research of RH problem.
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2.1 The structure of the RH problem with ZBCs

Let x→ ±∞, we can rewrite the Lax pair (2) into the following form

Ψx = U0Ψ = −iλσ3Ψ, Ψt = V0Ψ = (16λ4ε + 2λ + 1)U0Ψ, (6)

which satisfies the fundamental matrix solutions Ψ f d
± (x, t, λ), given by

Ψ
f d
± (x, t, λ) = e−iΞ(x,t,λ)σ3 ,

Ξ(x, t, λ) = λ[x + (16λ4ε + 2λ + 1)t]. (7)

We get the following Jost solutions Ψ±(x, t, λ)

Ψ±(x, t, λ)→ e−iΞ(x,t,λ)σ3 , as x→ ±∞. (8)

Then, the modified Jost solutions µ±(x, t, λ) are expressed as

µ±(x, t, λ) = Ψ±(x, t, λ)eiΞ(x,t,λ)σ3 , (9)

which results in µ±(x, t, λ)→ I as x→ ±∞, and satisfy the following Volterra integral
equations

µ−(x, t, λ) = I +

∫ x

−∞

eiλσ3(ξ−x)Q(y, t)µ−(y, t, λ)e−iλσ3(ξ−x)dξ,

µ+(x, t, λ) = I −

∫ +∞

x
eiλσ3(ξ−x)Q(y, t)µ+(y, t, λ)e−iλσ3(ξ−x)dξ. (10)

Let C+ = {λ ∈ C|Imλ > 0}, C− = {λ ∈ C|Imλ < 0}. Obviously the columns µ−,1
and µ+,2 are analytic in C+, and continuously extends to C+

⋃
R. The columns µ+,1

and µ−,2 are analyzed in C−, and continuously extended to C−
⋃
R.

These Jost solutions Ψ+(x, t, λ) and Ψ−(x, t, λ) are both solutions representing Lax
pair (2). Therefore, Ψ+(x, t, λ) and Ψ−(x, t, λ) can be connected by the constant scat-
tering matrix S (λ) = (si j(λ))2×2 in the following form

Ψ+(x, t, λ) = Ψ−(x, t, λ)S (λ), λ ∈ R, (11)

or

µ+(x, t, λ) = µ−(x, t, λ)e−iΞ(x,t,λ)σ3 S (λ)eiΞ(x,t,λ)σ3 , λ ∈ R, (12)

where µ±(x, t, λ) and S (λ) have the following symmetries

µ±(x, t, λ) = σ2µ
∗
±(x, t, λ∗)σ2, S (λ) = σ2S ∗(λ∗)σ2, (13)

with σ2 =

(
0 −i
i 0

)
. Furthermore, we can obtain

s11(λ) = s∗22(λ∗), s12(λ) = −s∗21(λ∗). (14)
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The scattering coefficient can be showed as the Wronskians determinant form

s11(λ) = W(Ψ+,1, Ψ−,2), s12(λ) = W(Ψ+,2, Ψ−,2),
s21(λ) = W(Ψ−,1, Ψ+,1), s22(λ) = W(Ψ−,1, Ψ+,2), (15)

we can get that s11 can be analytic continuation to C−, and similarly s22 can also be
analyzed in C+. In addition, s11, s22 → 1 as λ→ ∞ in C−,C+, respectively.

Next, we will construct the RH problem of the inverse spectral problem. First, we
need to consider the sectionally meromorphic matrices

M(x, t, λ) =


[
µ−,1,

µ+,2

s22

]
, λ ∈ C+,[

µ+,1

s11
, µ−,2

]
, λ ∈ C−.

(16)

Then, we obtain the following RH problem
Theorem 1. M(x, t, λ) solve the following RH problem

M(x, t, λ) is analytic in C \ R,

M+(x, t, λ) = M−(x, t, λ)J(x, t, λ), λ ∈ R,

M(x, t, λ)→ I, λ→ ∞,

(17)

where the jump matrix J(x, t, λ) is

J(x, t, λ) =

(
1 r(λ)e−2iΞ(x,t,λ)

r∗(λ∗)e2iΞ(x,t,λ) 1 + |r(λ)|2

)
, (18)

with r(λ) = s12
s22

.
From equations (13) and (14), we get M+(λ) = σ2M∗−(λ∗)σ2. Taking

M(x, t, λ) = I +
1
λ

M(1)(x, t, λ) + O(
1
λ2 ), λ→ ∞, (19)

then the potential q(x, t) of the ifoNLS equation (1) with ZBCs is given by is given
by the following formula

q(x, t) = 2iM(1)
12 (x, t, λ) = lim

λ→∞
2iλM12(x, t, λ). (20)

2.2 BS soliton with one higher-order pole

Generally, we assume that there are exactly discrete spectral points λ satisfying s22(λ) =

0 in C+ and those discrete spectral point λ∗ satisfying s11(λ∗) = 0 in C−. With-
out thinking simple poles, we assume that s22(λ) has N higher-order poles λn, n =

1, 2, 3, · · · ,N in C+, which means

s22(λ) = (λ − λ1)n1 (λ − λ2)n2 (λ − λ3)n3 × · · · × (λ − λN)nN s(0)
22 (λ),

s11(λ∗) = (λ − λ∗1)n1 (λ − λ∗2)n2 (λ − λ∗3)n3 × · · · × (λ − λ∗N)nN s(0)
11 (λ∗), (21)
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where s(0)
22 (λ) = s(0)

11 (λ∗) , 0 for all λ ∈ C+. According to the symmetric relation (14)
of the scattering matrix, we get the following results

s22(λn) = s11(λ∗n) = 0. (22)

Reλ

Imλ

0

λn

λ∗n

Figure 1. Depicts the discrete spectrum and the contours of the RH problem on complex λ-plane, C+

(gray) and region C− (white).

Therefore, the relevant discrete spectrum point set is represented as

Υ = {λn, λ
∗
n}

N
n=1, (23)

and its distributions are shown in Figure 1.
We obtain the explicit soliton solutions of the ifoNLS equation (1) with ZBCs by

considering the reflectionless potential, i.e. r(λ) = 0. In this section, we will discuss
the case of one higher-order pole. This means that s22(λ) has one Nth order zero point
on the upper half plane, i.e. s22(λ) = (λ − λ0)N s(0)

22 (λ) (Imλ > 0,N > 1, s(0)
22 (λ0) , 0).

Similarly, we obtain that M11(x, t, λ) has an Nth order pole at λ = λ∗0, and M12(x, t, λ)
has one Nth order pole at λ = λ0. Based on the normalization condition for matrix
M(x, t, λ), we write RH problem as follows

M11(x, t, λ) = 1 +

N∑
n=1

Fn(x, t)
(λ − λ∗0)n , M12(x, t, λ) =

N∑
n=1

Gn(x, t)
(λ − λ0)n . (24)

Simultaneously, defining

e−2iΞ(x,t,λ) =

+∞∑
s=0

fs(x, t)(λ − λ0)s, e2iΞ(x,t,λ) =

+∞∑
s=0

f ∗s (x, t)(λ − λ∗0)s,

M11(x, t, λ) =

+∞∑
s=0

ζs(x, t)(λ − λ0)s, M12(x, t, λ) =

+∞∑
s=0

ξs(x, t)(λ − λ∗0)s,

r(λ) = r0(λ) +

N∑
m=1

rm

(λ − λ0)m , r∗(λ∗) = r∗0(λ∗) +

N∑
m=1

r∗m
(λ − λ∗0)m , (25)
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where

fs(x, t) = lim
λ→λ0

1
s!
∂s

∂λs e−2iΞ(x,t,λ), ζs(x, t) = lim
λ→λ0

1
s!
∂s

∂λs M11(x, t, λ),

ξs(x, t) = lim
λ→λ∗0

1
s!
∂s

∂λs M12(x, t, λ), rm = lim
λ→λ0

1
(N − m)!

∂N−m

∂λN−m [(λ − λ0)Nr(λ)],

s = 0, 1, 2, 3, · · · , m = 1, 2, 3, 4, · · · ,N, (26)

and r0(λ) means analytic on the upper half plane.
On the basis of the Theorem 1, (24) and (25), then we collect the correlation

coefficients of (λ − λ0)−n and (λ − λ∗0)−n to get

Fn(x, t) = −

N∑
m=n

m−n∑
s=0

r∗m f ∗m−n−s(x, t)ξs(x, t),

Gn(x, t) =

N∑
m=n

m−n∑
s=0

rm fm−n−s(x, t)ζs(x, t), (27)

with n = 1, 2, 3, · · · ,N.
Similarly, putting (24) into (26), we get following results

ξs(x, t) =

N∑
l=1

 l + s − 1
s

 (−1)sGl(x, t)
(λ∗0 − λ0)l+s , s = 0, 1, 2, · · · ,

ζs(x, t) =


1 +

N∑
l=1

Fl(x, t)
(λ0 − λ

∗
0)l , s = 0,

N∑
l=1

 l + s − 1
s

 (−1)sFl(x, t)
(λ0 − λ

∗
0)l+s , s = 1, 2, 3, · · · .

(28)

Putting equations (28) into equations (27), we can obtain

Fn(x, t) = −

N∑
m=n

m−n∑
s=0

N∑
l=1

 l + s − 1
s

 (−1)sr∗m f ∗m−n−s(x, t)Gl

(λ∗0 − λ0)l+s ,

Gn(x, t) =

N∑
m=n

rm fm−n(x, t)

+

N∑
m=n

m−n∑
s=0

N∑
l=1

 l + s − 1
s

 (−1)srm fm−n−s(x, t)Fl

(λ0 − λ
∗
0)l+s ,

n = 1, 2, 3, · · · ,N. (29)

Subsequently, we can conclude the following theorem
Theorem 2. Based on the ZBCs at infinity given in (5), the Nth order BS soliton

of the ifoNLS equation (1) is

q(x, t) = 2i
(

det(I + Ω∗Ω + |η〉〈Y0|)
det(I + Ω∗Ω)

− 1
)
, (30)
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where 〈Y0| = [1, 0, 0, · · · , 0]1×N and

Ω = [Ωnl]N×N =

− N∑
m=n

m−n∑
s=0

 l + s − 1
s

 (−1)sr∗m f ∗m−n−s(x, t)
(λ∗0 − λ0)l+s


N×N

,

|η〉 = [η1, η2, η3, · · · , ηN]>, ηn =

N∑
m=n

rm fm−n(x, t),

n, l = 1, 2, 3, · · · ,N. (31)

Proof First, we introduce

|F〉 = [F1, F2, F3, · · · , FN]>, |G〉 = [G1,G2,G3, · · · ,GN]>, (32)

where the superscript “>” means transposition. Subsequently, we can transform e-
quations (29) into the following form

|F〉 = Ω|G〉, |G〉 = |η〉 − Ω∗|F〉. (33)

Then, we can obtain

|F〉 = Ω(I + Ω∗Ω)−1|η〉, |G〉 = (I + Ω∗Ω)−1|η〉. (34)

Putting equations (34) into equations (24), we have

M11(x, t, λ) = 1 +

N∑
n=1

Fn(x, t)
(λ − λ∗0)n =

det(I + Ω∗Ω + |η〉〈Y(λ)|Ω)
det(I + Ω∗Ω)

,

M12(x, t, λ) =

N∑
n=1

Gn(x, t)
(λ − λ0)n =

det(I + Ω∗Ω + |η〉〈Y∗(λ∗)|)
det(I + Ω∗Ω)

− 1, (35)

where 〈Y(λ)| =

[
1

(λ−λ∗0) ,
1

(λ−λ∗0)2 , · · · ,
1

(λ−λ∗0)N

]
. According to the expression (20), the

Theorem 2.2 is finally proved. 2
When N = 2, λ = λ0 is the second-order zero point of s22, then r(λ) rewrite it as

follows

r(λ) = r0(λ) +
r1

λ − λ0
+

r2

(λ − λ0)2 , (36)

and Ω11, Ω12, Ω21 and Ω22 are expressed as

Ω11 = −
r∗1 f ∗0
λ∗0 − λ0

−
r∗2 f ∗1
λ∗0 − λ0

+
r∗2 f ∗0

(λ∗0 − λ0)2 ,

Ω12 = −
r∗1 f ∗0

(λ∗0 − λ0)2 −
r∗2 f ∗1

(λ∗0 − λ0)2 +
2r∗2 f ∗0

(λ∗0 − λ0)3 ,

Ω21 = −
r∗2 f ∗0
λ∗0 − λ0

, Ω22 = −
r∗2 f ∗0

(λ∗0 − λ0)2 , (37)
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|η〉 is a column vector in the following form

η1 = r1 f0 + r2 f1, η2 = r2 f0, (38)

and 〈Y0| = [1, 0]. Furthermore, on the basis of Theorem 2, let r1 = r2 = 1, λ0 = a+bi,
we obtain that the second-order BS soliton solution of the ifoNLS equation (1) is

q(x, t) = −
32ib3

(
$1e−2i(a+bi)$2 +$3e$4

)
(
$5 + e4b$6

)
e4b$6 + 258b8 , (39)

where

$1 =
(
2560 ia4b5ε − 15360 ia2b7ε + 2560 ib9ε − 10240 a3b6ε + 10240 ab8ε + 128 iab5

+32 ib5 − 128 b6
)

t + 32 ib5x − 16 b5,

$2 = 16 b4tε − 64 iab3tε − 96 a2b2tε + 64 ia3btε + 16 a4tε + 2 ibt + 2 at + t + x,

$3 =
(
−160 ia4bε + 960 ia2b3ε − 160 ib5ε − 640 a3b2ε + 640 ab4ε − 8 iab − 2 ib − 8 b2

)
t

− 2 ibx + 2 i − b,

$4 =
(
−32 ia5ε + 320 ia3b2ε − 160 iab4ε + 480 a4bε − 960 a2b3ε + 96 b5ε − 4 ia2 + 4 ib2

−2 ia + 24 ab + 6 b) t − 2 iax + 6 bx,

$5 =
(
1638400 a8b6ε2 + 6553600 a6b8ε2 + 9830400 a4b10ε2 + 6553600 a2b12ε2

+1638400 b14ε2 + 163840 a5b6ε − 327680 a3b8ε − 491520 ab10ε + 40960 a4b6ε

−245760 a2b8ε + 40960 b10ε + 4096 a2b6 + 4096 b8 + 2048 ab6 + 256 b6
)

t2

+
(
40960 a4b6ε − 245760 a2b8ε + 40960 b10ε + 2048 ab6 + 512 b6

)
xt

+(81920 a3b7ε − 81920 ab9ε − 20480 a4b5ε + 122880 a2b7ε − 20480 b9ε + 1024 b7

−1024 ab5 − 256 b5
)

t + 256 b6x2 + 64 b6 − 256 b5x + 96 b4,

$6 =
(
80 a4ε − 160 a2b2ε + 16 b4ε + 4 a + 1

)
t + x. (40)

(a) (b)
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(c) (d)

Figure 2. The density plots of the BS soliton solutions (39) for the ifoNLS equation (1) with the parame-
ters a = 1

3 , b = 2
3 and (a) ε = 1

2 ; (b) ε = 1
3 ; (c) ε = 1

4 ; (d) ε = 1
6 .

The BS soliton solution (39) means the interaction between two soliton solutions,
in which the high peak is caused by the interaction of two solitons with related eigen-
values. The relevant evolution process for the solutions (39) at different coefficient ε
are counseled in Figs. 2. We can find that the change of parameter ε affects the phase
for the two solitons in Figs. 2.

3 The IST with NZBCs and RW

In this section, we will study the RW solution q(x, t) of the ifoNLS equation (1) with
NZBCs through infinity under the following conditions

lim
x→±∞

q(x, t) = Bei(ωx+νt), (41)

where ω and B > 0 expressions all real constants, ν = (30B4ω − 20B2ω3 + ω5)ε +

2B2 − ω2 + ω.

3.1 The structure of the RH problem with NZBCs

According to the robust IST, we obtain the RH problem of the ifoNLS equation (1)
with NZBCs. For any time t, as x → ±∞, q(x, t) will tend to plane wave Bei(ωx+νt).
Based on the gauge transformation Ψ (x, t) = ei(ωx+νt) σ3

2 ψ(x, t), Lax pair (2) will be
converted to

ψx = Xψ, ψt = Tψ, (42)

where

X = −i(λ +
ω

2
)σ3 + Q1, Q1 =

(
0 qe−i(ωx+νt)

−q∗ei(ωx+νt) 0

)
,

T = e−i(ωx+νt) σ3
2 (V −

iν
2
σ3)ei(ωx+νt) σ3

2 . (43)

Using the NZBCs (41), we can rewrite the above Lax pair (42) into the following
form

ψ±x = X±ψ±, ψ±t = T±ψ±, (44)
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where

X± = −i(λ +
ω

2
)σ3 + Q0, Q0 =

(
0 B
−B 0

)
,

T± = δ(λ)X± =
[
16 λ4ε − 8 λ3ω ε +

(
−8 B2ε + 4ω2ε

)
λ2 +

(
12 B2ω ε − 2ω3ε + 2

)
λ

+6 B4ε − 12 B2ω2ε + ω4ε − ω + 1
]

X±. (45)

According to the Lax pair (44), we can get the following solution

ψ±(λ, x, t) = Y(λ)e−iθ(λ,x,t)σ3 , Y(λ) = n(λ)

 1 i(λ+ ω
2 −ρ)

B
i(λ+ ω

2 −ρ)
B 1

 ,
(46)

where

n(λ)2 =
λ + ω

2 + ρ

2ρ
, θ(λ, x, t) = ρ(λ)[x + δ(λ)t], (47)

and ρ(λ)2 = (λ+ ω
2 )2 + B2, which is a two-sheeted Riemann surface for λ with branch

points being λ = −ω2 ± iB, ρ(λ) = λ+ O(λ−1), and det(Y(λ)) = 1 for λ , −ω2 ± iB. The
branch cut of ρ(λ) is η = η− ∪ η+ with η− =

[
−iB − ω

2 ,−
ω
2

]
and η+ =

[
iB − ω

2 ,−
ω
2

]
,

and η is oriented upward. (see Fig.3)

R

iB − ω
2

η+

η−

−ω2

−iB − ω
2

η−

Figure 3. The contour Σ0 = R ∪ η of the basic RH problem.
We assume that Φ±(λ, x, t) are also the solution of the Lax pair (44) and satis-

fies the asymptotic conditions Φ±(λ, x, t) → ψ±(λ, x, t) as x → ±∞. Then, taking
transformation

µ±(λ, x, t) = Φ±(λ, x, t)eiθ(λ,x,t)σ3 , (48)

with

µ±(λ, x, t)→ Y(λ), x→ ±∞. (49)

Then we can immediately calculate that µ± satisfies the following expression

(Y−1µ±)x − iρ
[
Y−1µ±, σ3

]
= Y−1(Q1 − Q0)µ±,

(Y−1µ±)t − iρδ
[
Y−1µ±, σ3

]
= Y−1(T − T±)µ±, (50)
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and satisfy the following Volterra integral equations

µ−(x, t, λ) = Y +

∫ x

−∞

Yeiρσ3(ξ−x)
[
Y−1(Q1 − Q0)µ−(ξ, t, λ)

]
e−iρσ3(ξ−x)dξ,

µ+(x, t, λ) = Y −
∫ +∞

x
Yeiρσ3(ξ−x)

[
Y−1(Q1 − Q0)µ+(ξ, t, λ)

]
e−iρσ3(ξ−x)dξ. (51)

Firstly, we will use the robust IST proposed by Bilman and Miller to construct RH
problem [31]. Let we assume q(x, t) − Be(ωx+νt) ∈ L1(R) and µ± = [µ±1, µ±2]. Since
µ−1 contains the exponential function e−2iρ(ξ−x), it can be verified that µ−1 is analytical
on C+ \ η+ (where C+ = {λ : Imλ > 0}). Using the similar method, we can find that
µ−2 is analytical on C− \ η− (where C− = {λ : Imλ < 0}). In summary, µ−1 and µ+2
are analytically continuous to C+ \ η+, while µ+1 and µ−2 are analytically continuous
to C− \ η−.

Since Φ±(λ, x, t) satisfy the Lax pair (42) for λ ∈ Σ0 \ {−
ω
2 ± iB}, we can give the

scattering relation by scattering matrix S (λ)

Φ+(λ, x, t) = Φ−(λ, x, t)S (λ), λ ∈ Σ0 \ {−
ω

2
± iB}, (52)

the scattering matrix S (λ) is shown as

S (λ) =

(
S 11(λ) S 12(λ)
S 21(λ) S 22(λ)

)
, det(S (λ)) = 1, (53)

where S 11(λ) = S ∗22(λ∗), S 12(λ) = −S ∗21(λ∗). Furthermore, the Beals-Coifman (BC)
simultaneous solution of the Lax pair (42) is obtained

φBC(x, t, λ) =


[
Φ−,1(λ, x, t),

Φ+,2(λ, x, t)
S 22(λ)

]
, λ ∈ C+ \ η+,[

Φ+,1(λ, x, t)
S 11(λ)

, Φ−,2(λ, x, t)
]
, λ ∈ C− \ η−.

(54)

Let MBC(x, t, λ) = φBC(x, t, λ)eiθσ3 , the jumping curve for MBC(x, t, λ) is R ∪ η.
According to the similar calculation shown in [40,41], we derived another similar
solution of the Lax pair (42) for the smaller λ (here we assume that ε). In order that
this solution has no singularities, we define

φ(x, t, λ) =

 φBC(x, t, λ), λ ∈ D+ ∪ D−,

φin(x, t, λ), λ ∈ D0,
(55)

where φBC(x, t, λ) means the BC simultaneous solution. φin(x, t, λ) represents a com-
plete function, which is redefined as φ(x, t, λ)φ(L, 0, λ)−1. D0 represents an open disk
with a boundary of Σ+∪Σ− and radius of ε. It is worth noting that we choose the appro-
priate ε to further make the scattering data S 11(λ), S 22(λ) are not equal to zero outside
the disk. Concurrently, the branch cut η is included in this disk. In addition, the relat-
ed domains D± = {λ ∈ C :| λ |≥ ε, Imλ ≷ 0} and Σ = (−∞,−ε] ∪ [ε,+∞) ∪ Σ+ ∪ Σ−
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are shown in Fig.4. Set M(x, t, λ) = φ(x, t, λ)eiθσ3 , then the RH problem of the ifoNLS
equation (1) with NZBCs are

Theorem 3. M(x, t, λ) solves the following RH problem
M(x, t, λ) is analytic in C \ {Σ ∪ η},

M+(x, t, λ) =

 M−(x, t, λ)e−iθσ3 J(x, t, λ)eiθσ3 , λ ∈ Σ,

M−(x, t, λ)e2iρ+(λ)[x+δ(λ)t]σ3 , λ ∈ η,

M(x, t, λ)→ I, λ→ ∞,

(56)

where the jump matrix J(x, t, λ) is

J(x, t, λ) =



[
Φ−,1(L, 0, λ),

Φ+,2(L, 0, λ)
S 22(λ)

]
, λ ∈ Σ+,[

Φ+,1(L, 0, λ)
S 11(λ)

, Φ−,2(L, 0, λ)
]
, λ ∈ Σ−,[

1 R(λ)
R∗(λ∗) 1 + |R(λ)|2

]
, λ ∈ (−∞,−ε] ∪ [ε,+∞),

(57)

with L is a fixed real number, R(λ) =
S 12(λ)
S 22(λ) and the corresponding contour is shown

in Figure .4. Then, we can deduce that the solution of the ifoNLS equation (1) is

q(x, t) = lim
λ→∞

2iλM12(x, t, λ)ei(ωx+νt). (58)

Reλ

Imλ

D0
−ε ε

Σ+

Σ−

D+

D−

η+

η−

iB − ω
2

−iB − ω
2

Figure 4. Definitions of the regions D±, D0 and Σ±, η.

3.2 RW of the ifoNLS equation

In this section, we will use the modified DT for the Theorem 1 to obtain the higher-
order RW of the ifoNLS equation (1). We make the following specification transfor-
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mation

φ̃(x, t, λ) =

 T(x, t, λ)φ(x, t, λ), λ ∈ D+ ∪ D−,

T(x, t, λ)φ(x, t, λ)T(L, 0, λ)−1, λ ∈ D0,
(59)

where φ(x, t, λ) satisfies the above Lax pair (42) and obtain φ(L, 0, λ) = I for λ ∈ D0.
The T is expressed as

T(x, t, λ) = I +
H(x, t)
λ − ς

+
Y(x, t)
λ − ς∗

, (60)

for any point λ ∈ D0 with H(x, t) and Y(x, t) being written as

H(x, t) =
4β2(1 − ϑ∗(x, t))s(x, t)s>(x, t)σ2 + 2iβN(x, t)σ2s∗(x, t)s>(x, t)σ2

4β2|1 − ϑ(x, t)|2 +N2(x, t)
,

Y(x, t) =
4β2(ϑ(x, t) − 1)σ2s∗(x, t)s†(x, t) − 2iβN(x, t)s(x, t)s†(x, t)

4β2|1 − ϑ(x, t)|2 +N2(x, t)
, (61)

where β = Im(ς), s(x, t) = φ(x, t)c, N(x, t) = s†(x, t)s(x, t), ϑ(x, t) = s>(x, t)σ2s′ (x, t)
and c = (c1, c2)> means an arbitrary column vector. Then the homologous jump
condition of matrix M̃(x, t, λ) = φ̃(x, t, λ)eiρσ3 changes at λ ∈ Σ+ ∪ Σ−, and the ho-
mologous jump matrix J(λ) is rewritten as

J̃(x, t, λ) =

 T(L, 0, λ)J(x, t, λ), λ ∈ Σ+,

J(x, t, λ)T(L, 0, λ)−1, λ ∈ Σ−.
(62)

Then, we can get the potential function q̃(x, t) from the new RH problem M̃(x, t, λ),
namely

q̃(x, t) = lim
λ→∞

2iλM̃12(x, t, λ)ei(ωx+νt) = q(x, t) + 2i(H12 −H∗21)ei(ωx+νt). (63)

Furthermore, when we change c into the form ε−1c∞, where c∞ ∈ C2 \{0} represents a
fixed vector, and lead ε to 0, the matrix T(x, t, λ) is also represented as a limit process,
that is

T∞(x, t, λ) = I +
H∞(x, t)
λ − ς

+
Y∞(x, t)
λ − ς∗

, (64)

where H∞(x, t) = limε→0 H(x, t) and Y∞(x, t) = limε→0 Y(x, t).
Given the vector s(x, t), we can solve the ifoNLS equation (1) in combination

with the DT. We regard the background eigenvector matrix φbg(x, t, λ) = ψ±(x, t, λ),
φin

bg(x, t, λ) = φbg(x, t, λ)φbg(0, 0, λ)−1 represents the basic solutions, then we have the
following results

φin
bg(x, t, λ) = (x + δ(λ)t)

sin(θ(λ, x, t))
θ(λ, x, t)

X± + cos(θ(λ, x, t))I. (65)

Furthermore, we can get

s(x, t, ς) = φin
bg(x, t, ς)c = iι(x, t, ς)

[
−(ς +

ω

2
)σ3c + Bσ2c

]
+ χ(x, t, ς)c, (66)
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where

ι(x, t, ς) = (x + δ(ς)t)
sin(θ(ς, x, t))
θ(ς, x, t)

, χ(x, t, ς) = cos(θ(ς, x, t)), (67)

and

N(x, t) =s†(x, t)s(x, t) =

[
|ι|2(ς +

ω

2
)(ς∗ +

ω

2
) + |χ|2 + |ι|2B2

]
c†c

+

[
iι∗χ(ς∗ +

ω

2
) − iιχ∗(ς +

ω

2
)
]

c†σ3c + (iιBχ∗ − iι∗Bχ)c†σ2c

+ i|ι|2(ς∗ − ς)Bc†σ1c, (68)

ϑ(x, t) =s>(x, t)σ2s
′

(x, t) =

[
ι
′

χ(ς +
ω

2
) − ιχ

′

(ς +
ω

2
) + ιχ

]
c>σ1c +

[
ιι
′

(ς +
ω

2
)2

+ι2(ς +
ω

2
) + ιι

′

B2 + χχ
′
]

c>σ2c + (iι
′

χB − iιχ
′

B)c>c − ι2Bc>σ3c. (69)

Finally, the solutions of the ifoNLS equation (1) are

q̃(x, t) =
[
B + 2i(H12 −H∗21)

]
ei(ωx+νt)

=

B +
8β2[(1 − ϑ∗)s2

1 − (1 − ϑ)s∗
2

2 ] + 8βN s1s∗2
4β2|1 − ϑ|2 +N2

 ei(ωx+νt), (70)

where s = (s1, s2)>, N and ϑ are given in expressions (66), (68) and (69). Further-
more, setting c = c∞ε−1 with ε→ 0, the solution (70) can be rewritten as follows

q̃∞(x, t) =

B − 8β2(ϑ∗∞s2
∞1 − ϑ∞s∗

2

∞2) − 8βN∞s∞1s∗
∞2

4β2|ϑ∞|2 +N2
∞

 ei(ωx+νt), (71)

where s∞, N∞ and ϑ∞ are given in expressions (66), (68) and (69) with c substituted
by c∞, respectively.

(a) (b) (c)

Figure 5. The temporal-spatial periodic BW solutions (70) for the ifoNLS equation (1) with the param-
eters B = 1, ω = 1

10 , ε = 0.0005, c1 = i, c2 = i + 1, ` = 4
3 . (a) Three dimensional plot; (b) The density

plot; (c) The wave propagation along the x-axis with t = −10 (long-dashed line), t = 0 (solid line), t = 10
(dash-dotted line).

According to the spectral analysis theorem, when selecting different ς, the prop-
erties of the corresponding solutions will change. When ς = −ω2 + i`B with |`| > 1,
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it becomes the temporal-spatial periodic BW, which can be verified by Fig. 5. But
when|`| < 1, it becomes a spatial periodic BW and can be verified from Fig. 6.

(a) (b) (c)

Figure 6. The spatial periodic BW solutions (70) for the ifoNLS equation (1) with the parameters B = 1,
ω = 1

10 , ε = 0.005, c1 = i, c2 = i + 1, ` = 2
3 . (a) Three dimensional plot; (b) The density plot; (c) The wave

propagation along the x-axis with t = −1 (long-dashed line), t = 0 (solid line), t = 1 (dash-dotted line).

We obtain the RW of the ifoNLS equation (1) by making ς = −ω2 ± iB. For
convenience, we only calculate the case of ς = −ω2 + iB (ς = −ω2 − iB can perform
similar calculations). Furthermore, we obtain

s(x, t) =

 c1 + B(c1 + c2)(x + δ(ς)t)
c2 − B(c1 + c2)(x + δ(ς)t)

 , (72)

s
′

(x, t) =


−

1
3

iB
[
B(x + δt)3 + 3i(x + δt)

′
]

(c1 + c2) − ic1(x + δt) [B(x + δt) + 1]

1
3

iB
[
B(x + δt)3 + 3i(x + δt)

′
]

(c1 + c2) − ic2(x + δt) [B(x + δt) − 1]

 ,
(73)

N = |c1|
2 + |c2|

2 + 2Re{B(c1 − c2)∗(c1 + c2)(x + δt)} + 2B2|c1 + c2|
2|x + δt|2, (74)

ϑ = −
1
3

B[2B(x + δt)3 − 3i(x + δt)
′

](c1 + c2)2 + 2c1c2(x + δt) − B(x + δt)2(c2
1 − c2

2).

(75)

Then we can find that the first-order RW can be deduced at c1 + c2 = 0.
(a) For c1 = −c2 = 1 , we obtain the first-order RW solution as (see Fig.7)

q̃(x, t) =

(
B +

4B2[(x + δt)∗ − (x + δt)] − 4B
B2 [

1 + 2(x + δt) + 2(x + δt)∗ + 4|x + δt|2
]
+ 1

)
ei(ωx+νt). (76)

(b) For c∞ = (c,−c)>, we obtain the first-order RW solution with its (see Fig.8)

q̃(x, t) =

B
[
4B2|x + δt|2 + 4B(x + δt)∗ − 4B(x + δt) − 3

]
4B2|x + δt|2 + 1

 ei(ωx+νt). (77)
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(c) For c1 + c2 , 0 e.g. c1 = c + $
2 , c2 = −c + $

2 with c ∈ C \ {0} and $ � 1. Let
x = x

|$|
, t = t

|$|
, if (x, t) ∈ R2 is also fixed, and then we obtain

s(x, t) =

 c + eiarg($)B(x + δt)

− c − eiarg($)B(x + δt)

 + O($), (78)

N = 2|c|2 + 4Re{Bc∗eiarg($)(x + δt)} + 2B2(x2
+ |δ|2t2) + O($), (79)

ϑ =
1
|$|

[
−

2
3

B2e2iarg($)(x + δt)3 − 2cBeiarg($)(x + δt)2 − 2c2(x + δt)
]

+ O(1). (80)

Further, we can get q̃(x, t) ≈ 1, unless the leading term in ϑ proportional to 1
|$|

is
cancelled, these terms will form a cubic equation of n = x + δt, and its three roots are
n = 0 and 1

2 c(B$)−1(−3 ± i
√

3), respectively (see Fig.9).
(d) For c∞ = (1, 1)>, we can obtain the second-order RW

q̃(x, t) =

(
B − 12B

P

Q

)
ei(ωx+νt), (81)

where

P =16B5(x + δt)3(x + δt)∗2 − 16B5(x + δt)2(x + δt)∗3 + 24iB3(x + δt)
′

(x + δt)∗

− 6iB2(x + δt)∗
′

− 16B4(x + δt)3(x + δt)∗ + 48B4(x + δt)2(x + δt)∗2 − 6iB2(x + δt)
′

− 16B4(x + δt)(x + δt)∗3 − 24iB3(x + δt)(x + δt)∗
′

− 12B3(x + δt)2(x + δt)∗

+ 12B3(x + δt)(x + δt)∗2 + 4B3(x + δt)3 − 4B3(x + δt)∗3 − 24iB4(x + δt)2(x + δt)∗
′

− 24iB4(x + δt)∗2(x + δt)
′

+ 24B2(x + δt)(x + δt)∗ − 9B(x + δt) + 9B(x + δt)∗ − 3,

Q =64B6(x + δt)3(x + δt)∗3 + 96iB5(x + δt)3(x + δt)∗
′

− 96iB5(x + δt)∗3(x + δt)
′

− 48B4(x + δt)3(x + δt)∗ + 144B4(x + δt)2(x + δt)∗2 − 48B4(x + δt)(x + δt)∗3

+ 144B4(x + δt)
′

(x + δt)∗
′

− 72iB3(x + δt)(x + δt)∗
′

+ 72iB3(x + δt)∗(x + δt)
′

+ 108B2(x + δt)(x + δt)∗ + 9. (82)

Fig. 10 shows solution (81) with different parameters.

(a) (b) (c)



18 Jin-Jin Mao et al.

Figure 7. The first-order RW solutions (76) for the ifoNLS equation (1) with the parameters B = 1,ω = 1
2 ,

ε = 0.005, c1 = 1, c2 = −1. (a) Three dimensional plot; (b) The density plot; (c) The wave propagation
along the x-axis with t = 0.

(a) (b) (c)

Figure 8. The first-order RW solutions (77) for the ifoNLS equation (1) with the parameters B = 1,ω = 3
5 ,

ε = 0.05, c1 = 1, c2 = −1. (a) Three dimensional plot; (b) The density plot; (c) The wave propagation
along the x-axis with t = 0.

(a) (b) (c)

Figure 9. The first-order RW solutions (76) for the ifoNLS equation (1) with the parameters B = 1,
ω = 1

2 , ε = 1
1000 , c1 = cos( 1

2 ), c2 = −1. (a) Three dimensional plot; (b) The density plot; (c) The wave
propagation along the x-axis with t = −4 (long-dashed line), t = 0 (solid line), t = 4 (dash-dotted line).

(a) (b) (c)

Figure 10. The second-order RW solutions (81) for the ifoNLS equation (1) with the parameters B = 1,
ω = 1

20 , ε = 0.0005, c1 = 1, c2 = 1. (a) Three dimensional plot; (b) The density plot; (c) The wave
propagation along the x-axis with t = −2 (long-dashed line), t = 0 (solid line), t = 2 (dash-dotted line).
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4 Conclusions

The present work studied the BS soliton and RW solutions of the ifoNLS equation
(1) with ZBCs and NZBCs by the RH problem. In this context, the RH problem of
the ifoNLS equation (1) is constructed, and the Nth order BS solitons of the equation
(1) with ZBCs are obtained by the Laurent’s series and the residue theorem. Also,
some dynamic behaviors of the second-order BS soliton solution were analyzed for
the equation (1) in the form of images. It is manifested that parameters can change
the shape and size between the two waves (Fig. 2). In the meantime, the RH problem
of the ifoNLS equation (1) with NZBCs are constructed by robust IST (Sec. 3). Then
the solution of the ifoNLS equation (1) obtained via a one-fold DT. The graphs of
the temporal-spatial periodic BWs and the spatial periodic BWs were drawn, which
revealed that parameter ς had a certain influence on the BW solution. Finally, the first-
order and the second-order RW were obtained by modulating parameters in equation
(1).

Although the exact solutions of the equation (1) with NZBCs is derived in Ref.
[39], and the RW solutions of the equation is studied by DT in Ref. [38]. However,
in this paper, we mainly study the BS solitons of the equation (1) with ZBCs and the
RW solutions of the equation with NZBCs, which makes the obtained solutions have
more extensive significance and richer content. In addition, the proposed method in
this paper can be further extended to identify some other nonlinear systems, and the
method can be optimized to improve the results in future.
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