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Abstract

Pulmonary arterial hypertension (PAH) is a chronic disease that is characterized as mean pulmonary artery
hypertension (mPAP) > 25 mmHg. PAH is caused by progressive obliteration of small pulmonary arteries
due to known or unknown etiologies. The effect of traditional therapy is suboptimal because it can only
improve symptoms but cannot cure the disease, and therefore, scientists have turned their attention to
stem cell therapy for efficacious treatments. In recent years, accumulating evidences have demonstrated
that endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) are closely related with the
occurrence of PAH and have the ability to prevent and reverse this disease. In this review, we turn our
attention to a novel therapy for PAH, stem cell therapy, through comparing effect of preclinical research on
cells and animals and evaluating the feasibility and potential difficulties of clinical application.
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Introduction

Pulmonary arterial hypertension (PAH) is a chronic disease that is characterized as mean pulmonary artery
hypertension (mPAP)> 25 mmHg(Southgate, Machado, Graf, & Morrell, 2020). According to an investiga-
tion by the World Health Organization (WHO), the morbidity of PAH is approximately 1% for the world
population, which equals approximately 100 million deaths(Schermuly, Ghofrani, Wilkins, & Grimminger,
2011). For people over 65 years of age, this number significantly increases to 10%, and a statistic of concern
is that more than 80% of patients with PAH originate from developing countries(Mandras, Mehta, & Vaidya,
2020). There are numerous subcategories of PAH, and similar pathological changes occur in almost all of
them, including the destruction of endothelial cells (ECs) and proliferation of pulmonary artery mesenchy-
mal stem cells (PASMCs). Over time, the affected blood vessels become stiffer and thicker, which finally
leads to PAH. Until now, there has been no existing radical therapy for PAH(Schermuly et al., 2011). Cur-
rent treatment options include targeted therapies, such as endothelial receptor antagonist, guanylate cyclase
antagonist, type 5 phosphodiesterase inhibitor, and prostaglandin drugs. The purpose of these drugs is
only to block PAH pathways and delay the progression of disease, but these treatments do not significantly
reduce mortality, which still remains at approximately 50% at five years(Schermuly et al., 2011). In this
review, we attempt to provide a stem cell therapy that may potentially reverse the occurrence of PAH and
effectively reduce its mortality. To analyze the unique advantages and potential challenges, we will discuss
five aspects of therapy: (i) classification, (ii) mechanism, (iii) correlation, (iv) preclinical research, and (v)
clinical research.

According to the process of differentiation, there are 5 different types of stem cells: (i) totipotent, (ii)
pluripotent, (iii) multipotent, (iv) oligopotent, and (v) unipotent precursor cells(Toshner et al., 2009) (Figure
1). Totipotent stem cells have the strongest replication and differentiation capacity, and can differentiate to
three germ layers and the trophectoderm (TE, such as the placenta). The most common example of totipotent
stem cells is a zygote. Thus, totipotent stem cells are capable of forming every organ, including an entity
under the correct support environment. Then, the inner cell mass (ICM), a part of the embryoblast, finally
becomes pluripotent stem cells after a session of replication and differentiation(Mitalipov & Wolf, 2009).
Pluripotent stem cells also are able to differentiate to three germ layers, but they cannot differentiate to
the trophectoderm because the source of pluripotent stem cells is the inner cell mass but not a trophoblast.
Therefore, totipotent stem cells can form an entire entity, while pluripotent stem cells can only form mature
cells derived from three germ layers. Of course, there are well-known examples of pluripotent stem cells, such
as embryonic stem cells (ESCs) and induced-pluripotent stem cells (iPSCs). After differentiation, pluripotent



stem cells become next stage, multipotent stem cells(Ulloa-Montoya, Verfaillie, & Hu, 2005). Multipotent
stem cells still possess a strong capacity for replication and differentiation, and these cells can differentiate
to a specific germ layer. Therefore, different types of multipotent stem cells have specific names depending
on their differentiation orientation, such as hematopoietic stem cells, mesenchymal stem cells, neural stem
cells, and skin stem cells.

Along with the process of differentiation, multipotent stem cells gradually lose the capacity to differentiate
to a germ layer, and they finally become oligopotent stem cells. Oligopotent stem cells have the capacity to
differentiate to a specific category of tissue, but they cannot become other type of cells. For example, myeloid
cells can only become granulocytes, and not red blood cells. Unipotent stem cells have the weakest capacity
of replication and differentiation. Although this type of cell can only differentiate to specific cells, they
possess the ability to self-renewal, which distinguishes them from non-stem cells (e.g., progenitor cells)(M.
Xu, He, Zhang, Xu, & Wang, 2019). Some studies found that a small proportion of multipotent stem cells
and unipotent stem cells could revert to a trophectoderm or pluripotent stem cells, respectively, and the
reason for this phenomenon may be attributed to the redifferentiation process. This discovery may provide
a novel method that can be used to broaden the applications of stem cell therapy(Y. Yang et al., 2018).

2. Characterization and Classification
2.1 Endothelial progenitor cells (EPCs)

The controversy surrounding EPC definition are beginning from the first observations of blood vessel devel-
opment in 1917, but after a long period of discussion, the precise definition of EPC are still unclear(Ferkowicz
& Yoder, 2005). The most accessed definition of EPC is that progenitor cells are a heterogeneous population
which includes different origins and several residing sites at different maturity stages(Yang, Pan, Wang,
Qiu, & Mao, 2018). Due to the different features of cells, it is difficult to produce a worldwide accepted
characterization of EPCs(Richardson & Yoder, 2011). Additionally, due to the different characterizations
of EPCs, some contrary results have emerged(Harper et al., 2019; Toshner et al., 2009; Zhou et al., 2013).
Balistreri et al. argued that EPCs are a type of stem cell(Bianconi et al., 2018; Prokopi & Mayr, 2011). In
their opinion, progenitor cells are an intermediate stage between multipotent stem cells and mature cells,
and both stem cells and progenitor cells have the ability to replicate and differentiate to mature cells, and
even have the same biological markers(Brown & McGuire, 2012). EPCs can adhere to matrix molecules
such as fibronectin and demonstrate dual positivity to acetylated low-density lipoprotein (acLDL) and Ulex
europaeusagglutinin I (UEA-1) lectin(Yang, Pan, Zhao, & Wang, 2013). These types of cells commonly have
some common positive protein such as CD34+ and CD133+ (which are two unique markers of hematopoi-
etic stem cells), vascular endothelial growth factor receptor-2 (VEGFR2+, also called kinase insert domain
receptor (KDR)/fetal liver kinase-1 (Flk-1), which is an important regulator of development of ECs and vas-
culature), and von Willebrand factor+ (vWF+), CD31+, CD144+, CD146+, and endothelial nitric oxide
synthase+(eNOS+).

EPCs in different classifications are characterized by different abilities and affinities. According to the num-
ber of culture days after monocytes are extracted from blood(Hansmann et al., 2011), EPCs can be divided
into early-outgrowth EPCs and late-outgrowth EPCs(Pelosi, Castelli, & Testa, 2014; Prokopi & Mayr, 2011).
Early-outgrowth EPCs, also called circulatory angiogenic cells (CACs)(Basile & Yoder, 2014; Prater, Case,
Ingram, & Yoder, 2007), are a spindle-shaped cell that emerges after culturing for 4-7 days(Murohara, 2010).
Its name indicates that this type of EPC possesses little differentiation capacity, and thus, these cells cannot
become mature cells(Paneni, Costantino, Kriinkel, Cosentino, & Liischer, 2016). However, early-outgrowth
EPCs have a significant capacity to release several cell growth factors and cytokines such as vascular endothe-
lial growth factor (VEGF), hepatocyte growth factor (HGF), granulocyte colony stimulating factor (G-CSF),
granulocyte/macrophage colony-stimulating factor (GM-CSF), and interleukin (IL)-8(Guber, Ebrahimian,
Heidari, Eliopoulos, & Lehoux, 2018; J. X. Yang et al., 2018). Due to their unique biological behaviors, early-
outgrowth EPCs exert their function mainly by secreting growth factors and cytokines to support the growth
of adherent cells and surrounding late-outgrowth EPCs. Except for custom EPC markers, early-outgrowth
EPCs also express CD45 and CD14(S. J. Zhang et al., 2006).



Other cell groups emerged after 14-21 days of culture, and these cobblestone-shaped cells are named late-
outgrowth EPCs, and also are called endothelial outgrowth cells (EOCs)(S. Liu et al., 2018), although
they are different from early-outgrowth EPCs. The late-outgrowth EPCs display a significant capacity to
replicate and differentiate to mature ECs. Compared with typical EPCs, late-outgrowth EPCs do not express
hematopoietic stem cells markers, but instead, express vascular endothelial-cadherin (VE-cadherin) and
CD146(Minami et al., 2015).

Given their biological properties, some researchers recognize that early-outgrowth EPCs and late-outgrowth
EPCs are not single types of cells in different stages, but they may differentiate from different cells(Medina
et al., 2010). There also exist a small proportion of EPCs that remain in the microcirculation of lung vessels
before occurrence of injury(Schniedermann et al., 2010). Therefore, we called this type of EPC resident
EPCs (in contrast to circulating EPCs). Resident EPCs display a significant replication and differentiation
capacity, suggesting that lung blood and lymphatic ECs may be derived from these cells. However, based
on our existing research results, we cannot clearly distinguish this cell type, and therefore, further study is
required to discern the nature between resident EPCs and circulating EPCs.

2.2 Mesenchymal stem cells (MSCs)

MSCs, also known as mesenchymal stromal cells, are multipotent stem cells that can differentiate into nu-
merous cells types such as osteoblasts (bone cells), chondrocytes (cartilage cells), myocytes (muscle cells),
and adipocytes (fat cells)(Ong, Ankrum, Dastidar, Levy, & Karp, 2014; Tonk, Witzler, Schulze, & Tobia Sc
H, 2020). The morphology of MSCs is also characteristic, as MSCs have a small cell body with long and
thin processes that are widely dispersed and populated in the adjacent extracellular matrix. In label-free
live cell imaging, some organelles can be seen, and MSCs are clearly defined due to these distinct morpholo-
gical features(Richmond, 1992). According to the International Society for Cellular Therapy (ISCT), MSCs
are characterized by the following criteria: (1) expression of a specific set of clusters of differentiation CD
markers (CD73, CD90, and CD105), (2) lack of expression of hematopoietic lineage CD markers [CD45,
CD34, CD14 or CD11b, CD79a or CD19, human leukocyte antigen-antigen D related (HLA-DR)], (3) plastic
adherence under standard culture conditions, (4) the ability to differentiate into osteoblasts, adipocytes, and
chondroblasts in vitro (Fukumitsu & Suzuki, 2019).

Due to the clear definition, it is much easier to classify MSCs than EPCs. The most acknowledged clas-
sification is cell source, and the most common extraction sources are umbilical cord blood, amniotic fluid,
adipose, and bone marrow, and different sources of MSCs possess different biological properties (Figure 2).
The abundance and healing capacity of stem cells from umbilical cord blood are much higher as compared to
amniotic fluid, and adipose and bone marrow stem cells. However, the replication and differentiation capacity
not only correlate with the cell source, but also with the age of donors. Research shows that the doubling
time and activity generation significantly decrease when age increases(Fraser, Wulur, Alfonso, & Hedrick,
2006; Pittenger et al., 1999).

The immunogenicity is also different between different cell sources. MSCs from bone marrow possess the
highest immunogenicity because they have a higher expression level of HLA-DR under an inflammatory
microenvironment (such as a high concentration of tumor necrosis factor-o. (TNF-a) and interferon gamma
(IFN-v)), which will cause the immune cells to identify them and more rapidly eliminate them. The differen-
tiation tendency is also different, as MSCs from umbilical cord blood tend to secrete additional hematopoietic
factors such as G-CSF, GM-CSF, and HGF. Therefore, this type of MSC is more well-equipped to support
the blood system. Additionally, MSCs from bone marrow can secrete a greater amount of VEGF than MSCs
from umbilical cord blood, which enables MSCs from bone marrow to more easily form neovessels(Baksh,
Yao, & Tuan, 2007; Hass, Kasper, Bohm, & Jacobs, 2011; Peng et al., 2008; Y.-Y. Shi, R. P. Nacamuli, A.
Salim, & M. T. Longaker, 2005; Van Harmelen, Rohrig, & Hauner, 2004; Weiss et al., 2006).

2.2 Induced pluripotent stem cells (IPSCs)

IPSCs are a type of pluripotent stem cell that can be directly generated from somatic cells. Due to this
characterization, there is great interest in IPSC technology worldwide. IPSC technology was pioneered by Dr.



Shinya Yamanaka in 2006, when he introduced four specific genes named Myc, octamer-binding transcription
factor 4 (Oct3/4), sex determining region Y-box 2 (Sox2), and kruppel like factor 4 (Kl1f4) (which were
also named Yamanaka factors), and then, encoding transcription factors could convert somatic cells into
pluripotent stem cells. Yamanaka used this technology, and was awarded the 2012 Nobel Prize along with Sir
John Gurdon “for the discovery that mature cells can be reprogrammed to become pluripotent(Takahashi
& Yamanaka, 2006).

3. Preclinical research on stem cells in PAH
3.1 EPCs
3.11 PAH and EPCs

The usual hypothesis is that a low level of EPCs is one of the conditions for the occurrence of PAH. In
research regarding congenital heart disease (CHD) that caused PAH in childhood, severe PAH patients
(mean pulmonary arterial pressure > 25 mmHg) show a significantly lower EPC level as compared to non-
PAH patients. This phenomenon shows that low level of EPCs is strongly correlated with PAH. However,
this relationship was not apparent for patients with mild PAH, indicating that a decreased level of EPC is
not the only pathogenesis, or the EPC level will not be significantly decreased in the early stage of PAH(H.
X. Sun et al., 2019). The same result was also obtained for adult patients, and in a comparison of COPD
and COPD-PAH patients, the latter group showed a significantly lower EPC level as compared to COPD
patients(P. Liu et al., 2016). A different conclusion was reached by a group of English scientists, who found
that the level of EPCs was increased in idiopathic pulmonary arterial hypertension (iPAH) patients with
bone morphogenetic protein type II receptor (BMPR2) mutation (which is a classical mutation that results
in the development of iPAH).

In order to explain this aberration, a comparison was made between the EPC screening conditions in different
studies (Table 1). We found that almost all scientists use different testing conditions, and the different
markers may correspond to different cell groups and different cell functions, finally leading to the chaos
of conclusions(Toshner et al., 2009). These different definitions of EPCs cause academic disruption that
increases the difficulty and cost of discussions and experiments, and eventually leads to the standstill of
progress. Despite the existence of contrary opinions, there is a consensus by most scientists that the low level
of EPCs is part of an indispensable process that results in the development of PAH. They suggest that in
the initial stage of PAH, high levels of cycling EPCs are able to repair the loss of vessels. However, with the
progression of disease, the continuous damage exceeds the compensatory ability of EPCs, which finally leads
to the reduction of peripheral EPCs and additional destruction of vessel structure. Ultimately, this process
causes stiffer and narrower vessels and a higher pulmonary arterial pressure.

Under this vicious cycle, the symptoms of PAH become increasingly severe and finally lead to death(Toshner
et al., 2009). EPCs exist in numerous ways to prevent the development and reverse existing PAH, and mainly
include direct incorporation to sites of impaired vessels for repair, playing supportive roles in cellular repair,
inhibiting the transfer of ECs, and participating in immunosuppression functions and secretion functions
such as secretome, exosome and extracellular vehicles (EVs)(Bayraktutan, 2019; Bianconi et al., 2018; Wei
et al., 2013).

3.12 Preclinical research on EPCs in PAH

Because EPCs have numerous capacities such as proliferation, migration, and adhesion to protect the normal
structure of ECs and PASMCs, scientists use EPCs to attenuate and reverse PAH. Zhao et al. injected
fluorescently labeled EPCs into monocrotaline (MCT)-induced PAH mice, the EPCs integrated into the distal
pulmonary artery endothelium and limited the progression of PAH through differentiation to mature ECs and
alleviation of neointima formation(Yang et al., 2013). Zhao et al. also detected EPC-derived proangiogenic
growth factors (such as IL-8 and adrenomedullin) in the adjacent area of EPCs through autocrine and
paracrine methodology. Zheng et al. found that EVs of EPCs transport mRNA to ECs, and express a
series of proteins such as chemokines, pathway proteins, and growth factors to enhance EC proliferation



and migration and decrease angiogenesis(Deregibus et al., 2007; Ingram et al., 2004; X. Li et al., 2016).
Zhao et al. used EPCs to treat monocrotaline (MCT)-induced PAH mice at two different time points to
explore the effect of EPCs on different disease stages. The results seemed inspiring, as compared with the
MCT group, the hemodynamic improvement in both groups was significant, but both treatment groups still
had a higher mean pulmonary arterial pressure (mPAP) than the control group, indicating that EPCs can
prevent but cannot reverse the occurrence of PAH. Zhao et al. also investigated the microstructure of the
pulmonary artery under EPC therapy. They stained the pulmonary artery with fluorescent microspheres and
alpha-smooth muscle actin (o-sma) to visualize the structure of PASMCs and microvasculature perfusion.
The results showed that the 21-day and 35-day groups dramatically increased their microvascular perfusion
and microvasculature after EPC treatment(Y. D. Zhao et al., 2005).

As a nonoral therapy, use frequency is also an important indicator of feasibility. Therefore, Harper et al.
and Zhou et al. investigated the stay time and stay location after EPC transplantation. Harper et al.
selected cells expressing CD34, CD306, CD146, and CD45 by fluorescence-activated cell sorting (FACS)
and transfected adenoviral vectors carrying the luciferase and GFP reporter gene. The immunofluorescence
results showed that at 1 h and 7 h after EPC transplantation, most of the luminescence was located in
the chest region, and there was little or no luminescence in other areas, the luciferase results were same.
Compared with the control group, the concentration of EPCs in the lung was two times higher than that in
the spleen. This shows that EPCs tend to aggregate in damaged endothelial tissues, but rarely aggregate in
integrated tissues. According to the above evidence, EPC therapy seems to be a targeting therapy that has
little impact on other organs, at least in concentration relationships(Harper et al., 2019; Zhou et al., 2013).
However, the experiment by Zhou et al. produced some opposite results. He found that the retention rate
of EPCs was still nearly 50% 25 days after transplantation(Zhou et al., 2013). These contrary results were
caused by different screening conditions during FACS.

In order to improve the effect of EPC therapy, scientists use gene editing technology. Wei et al. used
Ad.CMV-human endothelialNO synthase enzymes (Ad.CMV-heNOS), Ad.CMV, or Ad.CMV-enhanced
green fluorescent protein (Ad.CMV-EGFP) to infect EPCs for 72 h. Two weeks after the injection, the
systolic arterial pressure (ASP) of mice did not significantly change, but the systolic pulmonary artery
pressure (sPAP) significantly decreased in both the simple EPC group and the heNOS-EPC group. Fur-
thermore, the heNOS-EPC group was significantly lower than the vector-EPC-treated group and the normal
EPC-treated group. The histology results also showed the same trend, with a significant reduction in the
number of muscular pulmonary arteries and thickness of the muscular coat(Wei et al., 2013).

Cao et al. selected the human hypoxia inducible factor-1 alpha (hHIF-la) gene and transfected it into
EPCs. Compared with the EPC group and blank group, hHIF-1-EPCs significantly reversed the vascular
remodeling, and decreased the sSPAP, mPAP, and right ventricular/left ventricular + septum (RV/LV+S). Xu
et al. chose to disturb the metabolic process of the pulmonary artery to control the progression of PAH. They
used lentiviral vectors to inhibit the expression of E2F transcription factor 1 (E2F1) and subsequently increase
oxidative metabolism, endothelial differentiation, vascular repair, and decrease the pyruvate dehydrogenase
kinase 4/2 (PDK4/2) expression. The metabolic level was measured by the oxygen consumption rate (OCR),
extracellular acidification rate (ECAR), and lactate level. The results showed that E2F1-/- mice had a
greater OCR, a lower ECAR, and a lower level of lactate (which represents a lower anaerobic respiration
level), indicating that E2F1-/-EPC enhanced vascular growth, reduced infarct size, and improved vascular
function through increasing the oxygen utilization rate of pulmonary ECs(Cao et al., 2015; S. Xu et al.,
2018).

Dysfunctions of the prostacyclin (PGI) pathway are also an important factor in the occurrence of PAH.
Therefore, Zhou et al. tried to engineer the cyclooxygenase-prostacyclin (COX-PGI) pathway to improve
the effect of EPCs. The engineered EPCs significantly attenuated the RVSP increase, RV hypertrophy, and
intimal and medial smooth muscle layer cell proliferation, and enhanced adventitial pulmonary vessel wall
apoptosis(Zhou et al., 2013).

3.2 MISCs



3.21 PAH and MSCs

MSCs also have a significant ability to prevent the occurrence of PAH and reverse existing PAH in a manner
similar to that of EPCs. Liu et al. found that MSCs can promote the repair of ECs through increasing the
proliferation, migration, and tube formation of ECs to inhibit PAH. Inflammatory regulation also plays a
role that cannot easily be overlooked, under the treatment of MSCs, the level of anti-inflammatory cytokines
(such as TGF-{, IL-1, and prostaglandin E2) were increased(A. Liu et al., 2020; J. Liu et al., 2021), the level
of pro-inflammatory cytokines (such as IL-1p, IFN-y, and TNF-a) and angiogenic factors (such as VEGF,
vWF, and fibroblast growth factor) were significantly reduced(Bull, Clark, McFann, & Moss, 2010), what’s
more, MSCs can attenuate the proliferation of dendritic cells (DCs) and secretion of IL-10 which inhibits
the expression of CD80 and CD83 (which are co-stimulation factors of DC), and inhibiting the maturation
of DCs(S. Zhang et al., 2018).

What’s more, the effect of exosomes and secretomes has also been experimentally verified, both murine MSC
extracellular vesicles (mMSC-EXs) and human MSC extracellular vesicles (hMSC-EXs) have a significant
healing effect on mouse PAH models (Figure 3)(Jason M. Aliotta et al., 2016; Bian et al., 2014; Hu et al.,
2018; Lopatina et al., 2014).

3.22 Preclinical treatment with MSCs in PAH

The research about MSC therapy in PAH is much earlier than EPC therapy, and the effect of MSC therapy
is also more recognized. Huang et al. showed that after MSC transplantation, sugen-hypoxia induced-PH
(Su-Hx PH) rats and chronic hypoxia-induced pulmonary hypertension (CHPH) rats exhibited a significant
decrease in right ventricle pressure and degree of pulmonary artery remodeling. Masson’s trichrome staining
results showed that MSCs ameliorated the collagen deposition around the pulmonary arterial vasculature.
MSCs also attenuated the process of endothelial-to-mesenchymal transition (EndMT) by reducing the ex-
pression of HIF-2a(J. Huang et al., 2020). Furthermore, Huang et al. also investigated the secretory function
of MSCs by injecting MSC conditional medium (MSC-CM) into mice, and they obtained the same trend as
that observed with cell suspension.

These results showed that the both control group and experimental groups exhibited a high level of HIF-
20 under hypoxic conditions. However, the group that received MSC-CM treatment exhibited a faster
disappearance rate of HIF-2q, indicating that MSC-CM inhibited HIF-2a by promoting its degradation(J.
Huang et al., 2020).

Rathinasabapathy et al. found that adipose source MSCs (ASCs) and their conditional medium can modulate
numerous types of cytokines, including significantly downregulating pro-inflammatory cytokines such as
TNFa, IL-1, and IL-6, markers of immune defense system such as toll-like receptor 4 (TLR-4), cytokine-
inducible NOS (iNOS), and markers of tissue remodeling such as TGF-3, and upregulating the markers of
anti-inflammatory cytokines such as IL-10(Rathinasabapathy et al., 2016). In the past decade, an increasing
number of scientists has concentrated their attention on the exosome of MSCs. Without exception, the
exosome of MSCs was also effective, as some scientists found that the expression levels of Wntb5a, Wntl1,
BMPR2, BMP4, and BMP9 increased, but 3-catenin, cyclin D1, and TGF-31 decreased in the MSC exosome
group in vivo and in vitro. Considering that the immunogenicity of exosomes is lower than that of a cell
suspension, if we have an efficient method to obtain sufficient exosomes, then these exosomes may constitute
a more effective treatment (Table 2).

Chen et al. transfected MSCs with the eNOS and F92A-Cavl genes using lentivirus vector to verify the
feasibility of gene editing technology in MSCs and increase the effect of MSCs. The results showed that
the serum NO concentration significantly increased in eNOS-MSCs, and eNOS/F92A-Cav1-MSCs inhibited
proliferation of PASMCs and improved pulmonary hemodynamics, vascular remodeling, and short-term
survival(H. Chen et al., 2017). Cheng et al. used adenovirus to transfect MSCs with the lethal-7a (let-7a)
microRNA, so that the let-7a-MSCs would overexpress let-7a microRNA, and the results showed that let-7a-
MSCs ameliorated MCT-induced ventricular impairment, attenuated pulmonary vascular remodeling, and
regulated PASMC proliferation and apoptosis resistance(Cheng, Wang, Li, & He, 2017).



3.3 IPSCs
3.31 Preclinical treatment with IPSCs in PAH

As an rising technology, rely on IPSCs to treat diseases has been applied in many fields including cardio-
vascular disease, neurodegenerative disease, it also includes respiratory diseases. Huang et al. use IPSCs
and IPSCs-CM to treat MCT-induced PAH, the results show that IPSC-based therapy led to decreased
accumulation of inflammatory cells and down-regulated the expression of pro-inflammatory factors through
inhibit the phosphorylation of NF-»B pathway(W. C. Huang et al., 2016).

4. Clinical application of stem cells in PAH
4.1 EPCs

Until now, the clinical application of EPCs in PAH has been rare (Table 3). The search results from
clinicaltrials show that only China and Canada have achieved EPC therapy trials using human patients. Of
the 31 idiopathic PAH patients in the Chinese trial, 16 patients were randomly selected to receive conventional
therapy, and 15 patients were randomly selected to receive EPC infusion plus conventional therapy. This
trial lasted for 12 weeks, and the frequency and degree of adverse events were similar between the 2 groups
(p >0.05)(X. X. Wang et al., 2007). However, the cell infusion group exhibited a significant improvement
in mean distance walked in 6 minutes, mPAP, pulmonary vascular resistance, and cardiac output. The
Canadian trial was more radical because they used gene-edited EPCs in patients who were refractory to
conventional therapy. They injected seven patients with eNOS-EPCs, but the number of patients was far
less than that in the Chinese trial, and there were five female subjects but only two male subjects. Similar
to the Chinese trial, the infusion of EPCs was well tolerated in the cell infusion group, and there was a
significant increase in the mean distance walked in 6 minutes over all 6 months. However, it is worth noting
that some improvements (such as hemodynamics) disappeared after 3 months, which may be due to the
short duration of EPCs(Granton et al., 2015).

4.2 MSCs

Until now, the only legal clinical stem-cell therapy was hematopoietic stem-cell therapy for childhood
leukemia. Other therapies remain controversial because they are often related to abortion politics and
human cloning. However, the research field of stem-cell therapy is constantly expanding, and scientists now
have applied stem cells in neurodegeneration, brain and spinal cord injury, frailty syndrome, pancreatic beta
cells, orthopedics, and other uses(Gazdic et al., 2018; Golpanian et al., 2017; R. Li et al., 2018; Lyon, 2018;
Memon & Abdelalim, 2020). The significant difference between EPCs and MSCs is that a lower immuno-
genicity is associated with MSCs. However, if low immunogenicity leads to lengthy transplantation time and
excessive allogeneic cells in the circulation of patients, this may lead to graft-versus-host disease (GVHD),
which is the most severe side effect of stem cell therapy(Malard & Mohty, 2014).

Ethical issues continue to cause problems with allografts because embryonic stem cells are derived from
human embryos, but this process will kill the embryo. A key issue is the voluntary actions of donors,
and therefore, the choice of donation must be later than the choice of abortion, so as to avoid involuntary
activities caused by monetary temptation or other factors. In addition to ethical issues, there are also many
criticisms of the experimental procedures. Some critics report that only five basic trials seem to be used
in 48 reports, and many trials contradict each other. Therefore, research into clinical stem cell therapy
requires further development and stricter standards to limit disordered behavior and prevent damage to the
reputation of scientists and the field of stem cell therapy(Heo, Choi, Kim, & Kim, 2016). He identity of
patients after allogeneic stem cell transplantation is another inevitable problem. Because allogeneic stem
cells can differentiate into allogeneic mature cells, the identity of patients still needs to be further discussed
and confirmed. It is advantageous that the new technology of inducing pluripotent stem cells avoids this
ethical tissue, and another benefit is that it provides even more convenient access as compared to autologous
stem cells(Y. Y. Shi, R. P. Nacamuli, A. Salim, & M. T. Longaker, 2005).

4.3 TPSCs



The appearance of IPSCs has profound implications for the source of pluripotent stem cells. Because the
access of embryonic stem cells is controversial, IPSC technology sidesteps a majority of the ethical issues,
which results in the acceptability of stem-cell therapy for wide application. However, there is still a lack
of understanding regarding IPSCs, which are currently not being used for clinical therapy. Current clinical
application of IPSCs is restricted for cell models of diseases, which remain difficult for scientists to simulate
in vitro. Because patients’ somatic cells can revert back to pluripotent stem cells after utilization of IPSC
technology, then under the current steering, normal somatic cells can become model cells. Considering this
characterization, IPSC technology is an ideal method for acquiring model cells through patients’ somatic
cells because it does not cause obvious damage to patients. Sa et al. compared IPSC-derived ECs and native
pulmonary ECs of iPAH patients in order to investigate the feasibility of IPSC-derived cells. The results
showed that two types of cells manifest a similar phenotype. This result indicates that enormous progress has
been made, because whether sugen, hypoxia, or MCT-induced PAH has a certain gap with iPAH, the easier
method to derive human-source disease model cells, which is a huge leap for exploring the real mechanisms
of iPAH(Sa et al., 2017).

In the past 2 years, IPSC therapy trials in patients have also been established. However, all IPSC clinical
therapy trials are still in the recruiting stage. Only after a session of completed research will we be finally
able to evaluate the feasibility and effectiveness of IPSC therapy and then consider whether IPSC therapy
can finally become a feasible treatment for human diseases.

5. Challenge and future prospects

Both MSC therapy and EPC therapy are promising due to their outstanding effectiveness and low toxicity,
and the effects of MSC therapy and EPC therapy also have been verified in many diseases thus far. However,
because of our limited understanding of cell differentiation regulation, we poorly predict the further devel-
opment of transplanted MSCs and EPCs. Except for ethical issues, challenges mainly include the following
three aspects (Luo et al., 2013).(1) Low abundance: Human stem cells are derived from human tissue such as
bone marrow, adipose, amniotic fluid, and umbilical cord blood, and therefore, due to the sparse volume of
tissue, obtaining vast numbers of stem cells will become an insurmountable hurdle. However, the emergence
of IPSC technology may solve this problem. There exist many methods to induce somatic cells, including
virus, vector, mRNA, protein, small molecules, and miRNA (Ichida et al., 2009; Moradi, Braun, & Bahar-
vand, 2018; Moradi et al., 2017; Zhu et al., 2010). Unfortunately, the most efficient method is accompanied
by the highest danger. Therefore, further study is necessary to obtain a method that will balance safety
and efficiency(Okita, Nakagawa, Hyenjong, Ichisaka, & Yamanaka, 2008; Stadtfeld, Nagaya, Utikal, Weir,
& Hochedlinger, 2008; Woltjen et al., 2009). (2) Genomic insertion and incomplete reprogramming: Gene
editing technology and inducing pluripotent stem cell technology require carriers to transfect transcription
factors, while under some rare situations, exogenous cDNA can be inserted into the host’s chromosomal DNA.
However, due to undetectable mutations and unknown genesis positions, nobody knows what will happen if
genomic insertion occurs or if incomplete reprogrammed stem cells replicate and differentiate in a patients’
body(Selvaraj, Plane, Williams, & Deng, 2010). (3) Tumorigenicity: all stem cells probably develop to tumor
cells after replication and differentiation for a long period of time. This phenomenon has been verified by
many studies, because all stem cell transplantations finally develop to a tumor. Additionally, the process of
inducing pluripotent stem cell technology also increases the tumorigenicity of pluripotent stem cells, because
the transcription factor Myc is a protooncogene that will lead to the occurrence of tumors. Fortunately, Ya-
manaka reported that a new technology can create IPSCs without Myc(Aguilar-Gallardo, Cristébal, Simén,
& Carlos, 2013), and although its efficiency is much lower, this provides us with a satisfactory idea for safety
technology (Marién et al., 2009).

The future of stem cell therapy is promising. In the past 2 decades, stem cell therapy has been applied to
numerous fields, including interstitial pulmonary fibrosis, limbal stem cell deficiency, progressive multiple
sclerosis, diabetes, myocardial infarction, and neurodegenerative disease. Different from other conventional
drug therapies for pathogenesis, stem cell therapy has obvious advantages because it can directly involve in
cell regeneration. Therefore, stem cells provide a new therapy that conventional drug therapy cannot achieve.



A large number of animal studies and clinical trials show that significant improvement results from combined
therapy as compared with traditional drug therapy. However, stem cell therapy is not a mature therapy
because we know little about its potential mechanism. Therefore, in the next stage of research, we should
first design new experiments to explore the detailed mechanisms of stem cell therapy, and second, we should
summarize clinical experiences to provide a suitable therapy course. Last but not least, we should discuss
the ethical issues regarding allotransplantation. If we can obtain insight into the specific mechanism of stem
cell therapy and achieve a feasible consensus regarding allotransplantation, then the applications for stem
cell therapy will greatly expand.
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Figure 1. Stem cell differentiation process.

This is the differentiation tree of stem cells from zygote to progenitor cell. Progenitor cells are unipotent
stem cells that have the weakest capacity for differentiation and replication. In the mesoderm, endothelial
progenitor cells, neural progenitor cells, pancreatic progenitor cells, and cardiac progenitor cells are involved.
A multipotent stem cell is a monibus term; in the mesoderm, mesenchymal stem cells, hematopoietic stem
cells, neural stem cells, and skin stem cells are involved. iPSCs are manufactured stem cells, and this type
of pluripotent stem cell possesses functions similar to those of traditional pluripotent stem cells.
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Figure 2. Mechanism of stem cell therapy.

Stem cells can inhibit and reverse vessel pathological changes through numerous methods. Stem cells can
inhibit the proliferation of SMCs and promote the differentiation of ECs. Of course, the secretory function
also plays a critical role in efficacy and outcomes. Stem cells inhibit the secretion of pro-inflammatory factors
and promote the secretion of anti-inflammatory factors. Stem cells also secrete microvesicles and exosomes,
and under the comprehensive effect, diseased blood vessel revert to normal blood vessels.
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Figure 3. Mechanism of stem cell therapy.

Stem cells can inhibit and reverse vessel pathological changes through numerous methods. Stem cells can
inhibit the proliferation of SMCs and promote the differentiation of ECs. Of course, the secretory function
also plays a critical role in efficacy and outcomes. Stem cells inhibit the secretion of pro-inflammatory factors
and promote the secretion of anti-inflammatory factors. Stem cells also secrete microvesicles and exosomes,
and under the comprehensive effect, diseased blood vessel revert to normal blood vessels.

Table 1. Summary of recent literature regarding EPC immunological markers

Flow cytometry Source Target Conclusion Reference
makers
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(Xia et al., 2009)
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2018)

(P. Liu et al.,
2016)

(Garcia-Lucio et
al., 2017)
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(Q. Zhao et al.,

2007)
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2012)

(Cao et al., 2015)
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2019)
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CD34(+), Peripheral blood Correlation between  Progenitor cell (Yao et al., 2009)

CD133(+), EPC and lung types are present in
VEGFR-2(+) disease the neointima of
occluded vessels
CD34(+), Peripheral blood Function of EPC Inhibition of (B. Liu et al.,
CD144(+), therapy ROCK reduced 2016)
CD31(+), EPCs senescence
VEGFR-2(+), and alleviate PAH
eNOS (+)

VEGFR-2, Vascular Endothelial Growth Factor Receptor-2, also known as KDR (Kinase Insert Domain
Receptor) /Flk-1(Fetal Liver Kinase 1); eNOS, endothelial nitric oxide synthase; sca-1, Stem cells antigen-
1; ZsGreen, Zoanthus sp. green fluorescent protein; vWF, von Willebrand factor; NOX, NADPH oxidase;
ROCK, Rho-kinase;

Table 2 Summary of recent literature regarding MSC therapy in PAH

Cell source Application Route Dosage Modeling Start time  Outcome Reference
form and end
time
Mice UC Cell v 5x10° Cells 4 weeks Treat at Treatment (Alencar et
suspension in 50 yL hypoxia and  week 6, improves al., 2018)
PBS 2 weeks sacrifice at hemody-
hypoxia/SU5416veek 8 namic
variables
and
histopatho-
logical
alterations
of PAH
models
Rat BM Cell I\Y 1x10% cells 3 weeks Treat at Treatment (J. Huang et
suspension in 1 ml PBS hypoxia week 1, improves al., 2020)
/SU5416 Sacrifice at hemody-
week 5 namic
variables
and
histopatho-
logical
alterations
of PAH
models
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/ Cell
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Cell

suspension

Cell

suspension

v

v

v

v

0.1ug or
10ug Exo in
PBS once a
day

MSCs once
a day
MSC-MVs
once two
days

10° cells in
50 pl saline

3 x 109 cells
in PBS
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3 weeks
hypoxia

One
injection of
MCT(50
mg/kg) for 3
weeks

One
injection of
MCT (60
mg/kg) for 2
weeks

One
injection of
MCT (50
mg/kg) for 3
weeks

Treat at day
4, Sacrifice
After week 4
hypoxia

Treat at
week 4,
Sacrifice at
week 6.

Treat at
week 2,
Sacrifice at
week 4

Treat at
week 4,
Sacrifice at
week 6

Treatment
improves
hemody-
namic
variables
and
histopatho-
logical
alterations
of PAH
models
Treatment
improves
hemody-
namic
variables
and
histopatho-
logical
alterations
of PAH
models
Treatment
improves
hemody-
namic
variables
and
histopatho-
logical
alterations
of PAH
models
Treatment
improves
hemody-
namic
variables
and
histopatho-
logical
alterations
of PAH
models .

(Lee et al.,
2012)

(J. Y. Chen
et al., 2014)

(de
Mendonga et
al., 2017)

(Cheng et
al., 2017)



Rat BM

Rat BM

Cell

suspension

Cell

suspension

IT

v

3 x 106 cells
in PBS

1 x 10° cells
in 0.1 mL
LR

One
injection of
MCT

(60mg/kg)
for 2 weeks

Hyperoxia
for 15 days

Treat at
week 3,
Sacrifice at
week 7

Treat at day
5, Sacrifice
at day 15

Treatment
improves
hemody-
namic
variables
and
histopatho-
logical
alterations
of PAH
models
Treatment
improves
hemody-
namic
variables
and
histopatho-
logical
alterations
of PAH
models

(Baber et
al., 2007)

(Suzuki et
al., 2020)

UC, umbilical cord; BM, bone marrow; AD, adipose derived; IV, intravenous; IT, intratracheal; MSC, mes-
enchymal stem cell; MV, microvesicle; PBS, phosphate buffer saline; MCT, monocrotaline; EV, extracellular
vesicle; LR, lactated Ringer’s solution

Table 3. Summary of recent stem cell therapy clinical trials
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number
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This is a preprint and has not been peer-reviewed. Data may be preliminary.
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