Evergreen broadleaf greenness and its relationship with leaf flushing, aging, and water fluxes

Yunpeng Luo¹, Javier Pacheco-Labrador¹, Andrew Richardson², Bijan Seyednasrollah², Oscar Perez-Priego³, Rosario Gonzalez Cascon⁴, M. Pilar Martí⁵, Gerardo Moreno⁶, Richard Nair¹, Thomas Wutzler¹, Solveig Franziska Bucher⁷, Arnaud Carrara⁸, Edoardo Cremonese⁹, Tarek El-Madany¹, Gianluca Filippa⁹, Marta Galvagno⁹, Tiana Hammer¹, Xuanlong Ma¹⁰, David Martini¹, Qian Zhang¹, Markus Reichstein¹, Annette Menzel¹¹, Christine Römermann¹², and Mirco Migliavacca¹

¹Max Planck Institute for Biogeochemistry
²Northern Arizona University
³University of Córdoba
⁴National Institute for Agriculture and Food Research and Technology (INIA, CSIC)
⁵Spanish National Research Council (CSIC)
⁶University of Extremadura
⁷Friedrich Schiller University Jena
⁸Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM)
⁹Environmental Protection Agency of Aosta Valley
¹⁰Lanzhou University
¹¹Technische Universitat Munchen Fakultat Wissenschaftszentrum Weihenstephan fur Ernahrung Landnutzung und Umwelt
¹²Friedrich-Schiller-Universitat Jena

April 16, 2024

Abstract

Remote sensing capabilities to monitor evergreen broadleaved vegetation are limited by the low temporal variability in the greenness signal. With canopy greenness computed from digital repeat photography (PhenoCam), we investigated how canopy greenness related to seasonal changes in leaf age and traits as well as variation of trees' water fluxes (characterized by sap flow and canopy conductance). The results showed sprouting leaves, with significantly different leaf traits compared to mature and old leaves, are mainly responsible for the rapid increase in canopy green chromatic coordinate (GCC) in spring. Thus, the temporal dynamics of canopy GCC can be explained by leaf spectral properties and leaf age. Air temperature and vapor pressure deficit (VPD) explained most of sap flow and canopy conductance variance, respectively. Besides, GCC is an important explanatory variable for variation of canopy conductance may because GCC can represent the leaf ontogeny information. We conclude that PhenoCam GCC can be used to identify the new leaf flushing for evergreen broadleaved trees, which carries important information about leaf ontogeny and traits thus can better estimate of water fluxes such as canopy conductance.

Hosted file

Manuscript.docx available at https://authorea.com/users/737689/articles/712482-evergreenbroadleaf-greenness-and-its-relationship-with-leaf-flushing-aging-and-water-fluxes