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Abstract

An extrapolation cascadic Newton multigrid (ECNMG) method is proposed for high accuracy numerical solutions of two-

dimensional nonlinear Poisson equations, by incorporating the fourth-order compact difference schemes, the extrapolation

techniques and the existing Newton multigrid method. A series of grid level dependent computational tolerances are discussed

to distribute computational cost on different grids, and an extrapolation interpolation strategy and a bi-quartic polynomial

interpolation are used for two fourth-order approximations from current and previous grids to provide an extremely accurate

initial guess on the next finer grid, which can greatly reduce the iterations of the Newton multigrid computation for computing

an approximation with discretization-level accuracy. Additionally, a completed Richardson extrapolation technique is adopted

for the fourth-order computed solution to generate a sixth-order extrapolated solution cheaply. Numerical results of two-

dimensional nonlinear Poisson-Boltzmann equations with five different fourth-order compact difference schemes are conducted

to demonstrate the new ECNMG algorithm achieve sixth-order accuracy and keep less cost simultaneously, more efficient than

the existing Newton-MG method.

Hosted file

ECNMG MMA Version 20211026.tex available at https://authorea.com/users/413870/articles/

712453-high-accuracy-extrapolation-cascadic-newton-multigrid-computation-for-two-

dimensional-nonlinear-poisson-equations

1

https://authorea.com/users/413870/articles/712453-high-accuracy-extrapolation-cascadic-newton-multigrid-computation-for-two-dimensional-nonlinear-poisson-equations
https://authorea.com/users/413870/articles/712453-high-accuracy-extrapolation-cascadic-newton-multigrid-computation-for-two-dimensional-nonlinear-poisson-equations
https://authorea.com/users/413870/articles/712453-high-accuracy-extrapolation-cascadic-newton-multigrid-computation-for-two-dimensional-nonlinear-poisson-equations


P
os
te
d
on

31
J
an

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
70
66
91
58
.8
99
48
10
7/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/Fig1a/Fig1a-eps-converted-to.pdf

2



P
os
te
d
on

31
J
an

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
70
66
91
58
.8
99
48
10
7/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/Fig1b/Fig1b-eps-converted-to.pdf

3



P
os
te
d
on

31
J
an

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
70
66
91
58
.8
99
48
10
7/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/InterP4thcell25nodes/InterP4thcell25nodes-eps-converted-to.pdf

4



P
os
te
d
on

31
J
an

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
70
66
91
58
.8
99
48
10
7/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/InterP4thcell/InterP4thcell-eps-converted-to.pdf

5



P
os
te
d
on

31
J
an

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
70
66
91
58
.8
99
48
10
7/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/CMG-EXCMG-ECNMG-struct2021b/CMG-EXCMG-ECNMG-struct2021b-eps-converted-to.pdf

6



P
os
te
d
on

31
J
an

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
70
66
91
58
.8
99
48
10
7/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/Errors-U-expHOC4a/Errors-U-expHOC4a-eps-converted-to.pdf

7



P
os
te
d
on

31
J
an

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
70
66
91
58
.8
99
48
10
7/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

figures/Errors-U-SinHOC4a1/Errors-U-SinHOC4a1-eps-converted-to.pdf

8



High accuracy extrapolation cascadic Newton multigrid computation for
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ABSTRACT: An extrapolation cascadic Newton multigrid (ECNMG) method is proposed
for high accuracy numerical solutions of two-dimensional nonlinear Poisson equations, by
incorporating the fourth-order compact difference schemes, the extrapolation techniques
and the existing Newton multigrid method. A series of grid level dependent computational
tolerances are discussed to distribute computational cost on different grids, and an extrap-
olation interpolation strategy and a bi-quartic polynomial interpolation are used for two
fourth-order approximations from current and previous grids to provide an extremely ac-
curate initial guess on the next finer grid, which can greatly reduce the iterations of the
Newton multigrid computation for computing an approximation with discretization-level
accuracy. Additionally, a completed Richardson extrapolation technique is adopted for
the fourth-order computed solution to generate a sixth-order extrapolated solution cheap-
ly. Numerical results of two-dimensional nonlinear Poisson-Boltzmann equations with five
different fourth-order compact difference schemes are conducted to demonstrate the new
ECNMG algorithm achieve sixth-order accuracy and keep less cost simultaneously, more
efficient than the existing Newton-MG method.

KEYWORDS: Extrapolation, multigrid algorithm, sixth-order solution, fourth-order compact difference
scheme, nonlinear Poisson equation

MSC CLASSIFICATION: 65N12; 65N30; 65N55;

1 INTRODUCTION

Larger scale, high efficiency, high accuracy and so on are the main difficulties in modern science and engi-
neering computations fields. Multigrid method is one of the most efficient approaches for the larger scale
discrete systems of partial differential equations. Extrapolation strategy is a well-known numerical tool to
improve the approximation quality for partial differential equations. In recent years, some efficient multigrid
methods combined with extrapolation techniques [4–6, 10, 12–19, 23–26, 33] have established for solving
some partial differential equations. An extrapolation cascadic multigrid (EXCMG) method is first developed
for the second-order linear elliptic problems by Chen and his collaborators [4] in 2008. Thereafter, the EX-
CMG method has been successfully extended for many other cases [5, 12–14, 24–26], such as non-smooth
elliptic problems [12], linear parabolic problems [13], fractional diffusion equations [26], and some other
related linear problems [14, 25]. Moreover, Pan [23] and Li [15, 16] studied some EXCMG methods com-
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bined with the high order (fourth-order and sixth-order) compact difference schemes to solve linear Poisson
equations. During the same period, Wang and Zhang first design a multiscale multigrid (MSMG) method
for linear Poisson equation [32]. And then, Dai, Lin and Zhang further discussed the MSMG method with
a completed Richardson extrapolation technique for anisotropic linear Poisson equation [6]. Besides, Dai
and his collaborators applied the EXCMG to provide an initial guess for the originally MSMG method, and
constructed an EXCMG accelerated multiscale multigrid (EXCMG-MSMG) method [7] for accelerating the
whole computational process. A significant amount of numerical results demonstrate these extrapolation
multigrid methods (including EXCMG, MSMG and EXCMG-MSMG) are cost-effective approaches, which
achieve the high accuracy and high efficiency simultaneously for linear discrete equations. However, com-
pared with linear problems, these efficient extrapolation multigrid methods are seldom discussed for nonlinear
problems. Therefore it will be interesting to further extend these idea for nonlinear cases.

Numerical solutions of the Poisson equations play an important role in fields of mechanical engineer-
ing and electrostatics. In this paper, we try to design an efficient numerical algorithm, i.e., an extrapolation
cascadic Newton multigrid (ECNMG) method combined with the fourth-order compact difference schemes,
for computing a high accuracy numerical solution of the Dirichlet boundary value problems of the two-
dimensional (2D) nonlinear Poisson equations. In our computation, the problem domain is discretized by
regular grids, and five nine-point fourth-order compact difference schemes are employed to discretized by the
2D nonlinear Poisson equation. By applying the extrapolation interpolation technique and a bi-quartic La-
grange interpolation for the approximations from two-level of grids (current and previous grids), we are able
to obtain a much better initial guess for accelerating the Newton multigrid computation on an approximation
solution. Additionally, a series of grid level dependent computational tolerances are taken in the Newton
multigrid on different grids to generate conveniently the numerical solutions with discretization-level accu-
racy for extrapolations. Moreover, when the analytic solution is sufficiently smooth, a simple completed
extrapolation strategy [6,23] is applied for two fourth-order approximations on two different scale grids (cur-
rent and previous grids), and constructed a sixth-order accurate solution on the entire current grid cheaply
and directly. Numerical experiments are conducted to demonstrate the superiority of our ECNMG algorithm,
which can achieve sixth-order accuracy and keep less cost simultaneously.

The rest of the paper is organized as follows. Section 2 introduces five nine-point fourth-order compact
difference schemes. Section 3 describes the proposed ECNMG method. Supporting numerical results are
reported in Section 4. Concluding remarks are given in Section 5.

2 MODEL PROBLEM AND DISCRETIZATION

In this paper, we consider the two dimensional (2D) nonlinear Poisson equation in the form of

∆u(x, y) = f (x, y, u), (x, y) ∈ Ω, (2.1)

with suitable Dirichlet boundary conditions on ∂Ω. Here, the specified forcing function f (x, y, u) as well as
the unknown analytic solution u(x, y) are assumed to be continuously differentiable and have the required
partial derivatives on Ω.

To keep matters simple, assumingΩ is a rectangular [Da,Db]×[Dc,Dd], and subdividing it into a uniform
grid Ωh with uniform mesh-sizes hx =

Db−Da
Nx

and hy =
Dd−Dc

Ny
. Here Nx and Ny are the number of uniform

intervals in the x and the y coordinate directions, respectively. We take Ui, j to represent approximations of the
exact solution u(x, y) at the mesh node (xi, y j) with xi = Da + ihx and y j = Dc + jhy, (0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny).
Set fi, j = f (xi, y j,Ui, j) and γ = hx/hy. Next, we introduce the following nine-point fourth-order compact
schemes for the model problem (2.1):

2



HOC4a (cf. Zhai et al. [34])

(10 − 2γ2)(Ui+1, j + Ui−1, j) + (10γ2 − 2)(Ui, j+1 + Ui, j−1)

− (20 + 20γ2)Ui, j + (1 + γ2)(Ui+1, j+1 + Ui+1, j−1 + Ui−1, j+1 + Ui−1, j−1)

=h2
x[

1
12

( fi+1, j+1 + fi−1, j+1 + fi+1, j−1 + fi−1, j−1) +
5
6

( fi+1, j + fi−1, j + fi, j+1 + fi, j−1) +
25
3

fi, j].

(2.2)

HOC4b (cf. Refs. [21, 30, 33, 35])

(10 − 2γ2)(Ui+1, j + Ui−1, j) + (10γ2 − 2)(Ui, j+1 + Ui, j−1) − (20 + 20γ2)Ui, j+

(1 + γ2)(Ui+1, j+1 + Ui+1, j−1 + Ui−1, j+1 + Ui−1, j−1) = h2
x( fi+1, j + fi−1, j + fi, j+1 + fi, j−1 + 8 fi, j).

(2.3)

HOC4c (cf. Refs. [21, 31])

(20 − 4γ2)(Ui+1, j + Ui−1, j) + (20γ2 − 4)(Ui, j+1 + Ui, j−1) − (40 + 40γ2)Ui, j+

(2 + 2γ2)(Ui+1, j+1 + Ui+1, j−1 + Ui−1, j+1 + Ui−1, j−1)

=h2
x[ fi+1, j+1 + fi−1, j+1 + fi+1, j−1 + fi−1, j−1 + 20 fi, j].

(2.4)

HOC4d (cf. Zhai et al. [34])

(30 − 6γ2)(Ui+1, j + Ui−1, j) + (30γ2 − 6)(Ui, j+1 + Ui, j−1) − (60 + 60γ2)Ui, j+

(3 + 3γ2)(Ui+1, j+1 + Ui+1, j−1 + Ui−1, j+1 + Ui−1, j−1)

=h2
x( fi+1, j+1 + fi−1, j+1 + fi+1, j−1 + fi−1, j−1 + fi+1, j + fi−1, j + fi, j+1 + fi, j−1 + 28 fi, j).

(2.5)

HOC4e (cf. Zhai et al. [34])

(240 − 48γ2)(Ui+1, j + Ui−1, j) + (240γ2 − 48)(Ui, j+1 + Ui, j−1) − (480 + 480γ2)Ui, j+

(24 + 24γ2)(Ui+1, j+1 + Ui+1, j−1 + Ui−1, j+1 + Ui−1, j−1)

=h2
x[ fi+1, j+1 + fi−1, j+1 + fi+1, j−1 + fi−1, j−1 + 22( fi+1, j + fi−1, j + fi, j+1 + fi, j−1) + 196 fi, j].

(2.6)

Taking one of the above fourth-order compact schemes (HOC4a, HOC4b, HOC4c, HOC4d, HOC4e) with
mesh-size h = max{hx, hy} for the model problem (2.1) on grid Ωh, we obtain the corresponding nonlinear
system

F(uh) = 0, (2.7)

where the notation F(uh) signifies that the operator is nonlinear.
Furthermore, the domain Ω also can be further subdivided into a sequence of unform grids Ω j ( j =

1, 2, . . . , L) with mesh-size h j = 21− jh. We can obtain the corresponding nonlinear equations

F(u j) = 0, j = 1, 2, . . . , L. (2.8)

3



Algorithm 1 Newton-MG method for solving F(x) = 0
1: input ϵ, kmax and x0, set k = 0
2: for k = 0, 1, . . . , kmax do
3: if ||F(xk)|| ≤ ϵ then stop
4: else
5: construct Jacobian matrix A⇐ F′(x0)
6: compute Jacobian system Ask = −F(xk) by MG V-cycles, get s̃k

7: if ||s̃k || ≥ ϵ then
8: update xk+1 ⇐ xk + s̃k, k ⇐ k + 1
9: else stop

10: end if
11: end if
12: end for

3 EXTRAPOLATION CASCADIC NEWTON MULTIGRID COM-
PUTATION

The usual nonlinear numerical algorithms (such as Newton, Newton-like, nonlinear Gauss-Seidel relaxation)
are widely used for the results nonlinear system from the fourth-order compact schemes, but the accuracy of
computed approximation reach fourth-order at most. In order to obtain a sixth-order (rather than fourth-order)
accurate numerical solution from the nonlinear system, we aim to construct an efficient high precision ex-
trapolation cascadic Newton multigrid computation, which based on the so-called Newton multigrid method
(Newton-MG) [2] and extrapolation techniques. Here we first introduce the Newton-MG method in the follow
subsection.

3.1 CLASSICAL NEWTON-MG METHOD

It is well known that Newton’s method converges quadratically. Multigrid method is one of the fastest
and most efficient iterative methods for linear discrete system. In 1982, Dembo et al. applied classical V-
cycle multigrid to solve the Jacobian system approximately in Newton iterations, and originally proposed
the Newton-MG method [2]. This approach is also called an efficient inexact Newton’s method, which
takes advantages of Newton and multigrid methods to accelerate the nonlinear system solution. Numerical
experiments of the nonlinear problems in Ref. [2] shows that the Newton-MG method is much more efficient
than classical Newton’s method and full approximation scheme (FAS).

To be precise, Newton-MG method with a given initial solution x0 generates a sequence {xk} of approxi-
mations to the exact solution of nonlinear system F(x) = 0 as described in Algorithm 1.

3.2 EXTRAPOLATION FOR INITIAL GUESS

As well as classical iterative algorithms, the k-th iterative solution xk of Newton-MG method also satisfies
the following inequation

||xk − x∗|| ≤ θk ||x0 − x∗||. (3.9)

Here, θ ∈ (0, 1) is convergence factor of the Newton-MG method, x0 is an arbitrary initial value, and x∗ is the
exact solution of nonlinear system F(x) = 0.

From Eq. (3.9), we can imagine that if the initial error ||x0 − x∗|| is small enough, which will effectively
reduce the number of iterations and accelerate the convergence of Newton-MG method. Therefore, we aim

4



(i, j) (i+1, j)

(i, j+1) (i+1, j+1)

(a) Coarse grid Ωh

(i, j) (i+1, j)

(i, j+1) (i+1, j+1)

(i+1/2, j+1/2)(i, j+1/2) (i+1, j+1/2)

(i+1/2, j)

(i+1/2, j+1)

(b) Fine grid Ωh/2

Figure 1: Illustration of cells on the coarse and fine grids.

to construct a better initial guess for accelerating the Newton-MG method, by employing some interpolation
techniques. Classical Richardson extrapolation is a well-known numerical strategy to eliminate certain error
terms and thus to improve the approximation quality. In the last decade, some extrapolation interpolation
techniques have been developed to provide better initial guesses for accelerating multigrid methods [4, 14,
16, 23]. Here, we demonstrate how to construct an initial guess from an extrapolation interpolation and a bi-
quartic polynomial interpolation operators [23] with fourth-order compact schemes. To recapitulate briefly,
the extrapolation interpolation formulas [23] are employed to construct high accuracy extrapolation solution
on the entire fine grid (mesh-size h/2), by combining two fourth-order accurate solutions of the fine (mesh-
size h/2) and the coarse (mesh-size h) grids.

To better illustrate the extrapolation interpolation formulas, we take a coarse cell Ii, j = [xi, xi+1]×[y j, y j+1]
of grid Ωh (Figure 1(a)), which include nine fine grid nodes (Figure 1(b))

(xs, yt), (xi+1/2, yt), (xs, y j+1/2), (xi+1/2, y j+1/2), s = i, i + 1, t = j, j + 1.

Assume these nodal solutions{
uh

s,t, s = i, i + 1, t = j, j + 1
}

on Ωh,{
uh/2

s,t , uh/2
i+1/2,t, uh/2

s, j+1/2, s = i, i + 1, t = j, j + 1
}

on Ωh/2.

have been provided, the extrapolation approximations

{Nuh/2
s,t ,Nuh/2

i+1/2,t,Nuh/2
s, j+1/2,Nuh/2

i+1/2, j+1/2} (3.10)

can be constructed at these nodes (xs, yt), (xi+1/2, yt), (xs, y j+1/2), (xi+1/2, y j+1/2) of the fine grid Ωh/2 with
mesh-size h/2, through applying the extrapolation interpolation formulas [23], which can be described as
follow

Nuh/2
s,t =

17
16

uh/2
s,t −

1
16

uh
s,t, (3.11)

Nuh/2
i+1/2,t = uh/2

i+1/2,t +
1
32

[(uh/2 − uh)i,t + (uh/2 − uh)i+1,t], (3.12)

Nuh/2
s, j+1/2 = uh/2

s, j+1/2 +
1
32

[(uh/2 − uh)s, j + (uh/2 − uh)s, j+1], (3.13)
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and

Nuh/2
i+1/2, j+1/2 =uh/2

i+1/2, j+1/2 +
1
64

[(uh/2 − uh)i, j + (uh/2 − uh)i+1, j

+ (uh/2 − uh)i, j+1 + (uh/2 − uh)i+1, j+1]. (3.14)

Similarly, applying the above extrapolation interpolation formulas for the two solutions uh, uh/2 on the
entire coarse and fine grids, we immediately obtain the extrapolation solution Nuh/2 on the global fine grid
Ωh/2. We denote this process as

Nuh/2 = NE(uh, uh/2). (3.15)

(i−1,j−1) (i+1,j−1)

(i,j+1) (i+1,j+1)

(i−1,j) (i+1,j)

(i,j−1)

(i,j+1)

(i,j)

(a) Sixteen neighboring elements on Ωh/2

(1,1) (5,1)

(1,5) (5,5)

(1,3)

(1,2)

(1,4)

(5,3)

(5,2)

(5,4)

(3,1)(2,1) (4,1)

(3,5)(2,5) (4,5)

(b) Refined elements on Ωh/4

Figure 2: One interpolation cell which contains sixteen neighboring elements on Ωh/2.

Next, we discuss how to construct the bi-quartic polynomial interpolation operator [23] for these extrap-
olation solutions values on the fine grid Ωh/2, and interpolate initial guess on the refined grid Ωh/4. As argued
previously, we explain the process of this operator on one interpolation cell which contains 16 neighboring
elements of fine grid Ωh/2 or 64 neighboring elements of refined grid Ωh/4 (see Figure 2). To keep mat-
ters simple, we relabel the refined grid nodes as (s, t), which represents the label of the grid nodes (ξs, ηt)
(s, t = 1, 2, · · · , 5), the big black squares denote the grid points on Ωh/2, and the small circles denote the grid
points on Ωh/4 which do not belong to Ωh/2 (see Figure 2 (b)). The bi-quartic Lagrange interpolation function
in terms of natural coordinates (xis, ηt) is

L(ξ, η) =
25∑

m=1

Wm(ξ, η)um, (3.16)

where the basis functions Wm(ξ, η) can be written as

Wm(ξ, η) = ls(ξ)lt(η). (3.17)
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Here, ls(ξ), lt(η) (s, t = 1, 2, · · · , 5) are the Lagrange basis polynomials of degree 4, defined as

ls(ξ) =
5∏

k=1,k,s

ξ − ξk
ξs − ξk

, (3.18)

lt(η) =
5∏

k=1,k,t

η − ηk

ηt − ηk
, (3.19)

and (ξs, ηt) is the natural coordinate of node m(1 ≤ m ≤ 25).
Using the bi-quartic interpolation Eq. (3.16) for the computed solution at the 25 big black squares in

Figure 2 (b), we can obtain the initial values at other 56 (92 − 52) small circles on the interpolation cell. With
the similar discussion, we can provide an initial guess uh/4,0 on the refined grid Ωh/4, by constructing the
bi-quartic polynomial interpolation operator Ph/4

h/2 for the known solution Nuh/2 on the entire grid Ωh/2. We
denote the procedure of this interpolation operator as the form

uh/4,0 = Ph/4
h/2Nuh/2. (3.20)

3.3 EXTRAPOLATION FOR SIXTH-ORDER APPROXIMATION

Richardson extrapolation technique [27,28] is a powerful tool to enhance the accuracy of approximation solu-
tion, which takes separate second-order solutions on a fine gird and on the subgrid formed of alternate points,
and incorporates them to calculate a fourth-order solution on the subgrid. In 1983, Marchuk and Shaidurov
extended this approach to finite difference method [22]. Blum et al. discussed this strategy in conjunction
with the finite element method [1, 3, 11, 20]. Roache and Knupp improved the classical Richardson extrapo-
lation strategy, and developed a completed extrapolation technique [29] for second-order difference scheme,
which produces a fourth-order accurate solution on all the fine grid points by combining second-order solu-
tions on the fine and the coarse grids. Borrowing the idea, Dai, Pan and his collaborators studied a completed
Richardson extrapolation operator [6, 23] combined with fourth-order compact difference scheme to obtain a
sixth-order solution on the fine grid.

In this paper, we shall take the completed extrapolation strategy [6, 23] to enhance the accuracy of ap-
proximation of nonlinear system. Again, we choose a coarse grid cell Ii, j = [xi, xi+1] × [y j, y j+1] of grid Ωh,
to introduce the completed extrapolation operator [6, 23]. Assume the coarse grid nodal values uh

s,t and the
fine grid nodal values uh/2

s,t , uh/2
i+1/2,t, uh/2

s, j+1/2 with s = i, i + 1; t = j, j + 1 on the cell have been computed. The
completed extrapolation formulas [6, 23] can be rewritten explicitly as below

Euh/2
s,t =

16
15

uh/2
s,t −

1
15

uh
s,t, (3.21)

Euh/2
i+1/2,t = uh/2

i+1/2,t +
1
30

[(uh/2 − uh)i,t + (uh/2 − uh)i+1,t], (3.22)

Euh/2
s, j+1/2 = uh/2

s, j+1/2 +
1
30

[(uh/2 − uh)s, j + (uh/2 − uh)s, j+1], (3.23)

and

Euh/2
i+1/2, j+1/2 =uh/2

i+1/2, j+1/2 +
1
60

[(uh/2 − uh)i, j + (uh/2 − uh)i+1, j

+ (uh/2 − uh)i, j+1 + (uh/2 − uh)i+1, j+1]. (3.24)

Employing the above extrapolation formulas for the fourth-order accurate solutions (uh and uh/2 ) on two
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different scale grids (Ωh and Ωh/2), we can obtain an extrapolation solution Euh/2 on the global fine grid Ωh/2.
Similarly, we denote this procedure from uh, uh/2 to Euh/2 as a completed extrapolation operator, and call it
as Ex, i.e.

Euh/2 ⇐ EX(uh, uh/2). (3.25)

Remark 1 An observation is in order, the extrapolation interpolation NE (in previous subsection) and the
completed extrapolation Ex (in current subsection) are totally different.

(1) They have significantly different parameters. See the expressions of NE (Eqs. (3.11)-(3.14)) and EX
(Eqs. (3.21)-(3.24)) for details.

(2) They play different roles. The extrapolation interpolation NE is combined with a bi-quartic polynomial
interpolation for providing a good initial guess, which is superclose to the exact difference solution of
nonlinear system (rather than the analytic solution u of model problem). The completed extrapolation
EX is adopted to construct an improved solution, which is a sixth-order approximation of the analytic
solution u on the entire fine grid of model problem.

3.4 DESCRIPTION OF THE ECNMG COMPUTATION

In this subsection, we try to design an cost-efficient numerical approach, i.e., extrapolation cascadic Newton
multigrid (ECNMG) computation, for computing a sixth-order accurate approximation from the discrete
system. Roughly speaking, we take the Newton-MG method as a basic nonlinear iterative solver, which
embedded the better initial guesses and a series of grid level dependent computational tolerances to obtain
the corresponding fourth-order accurate approximations of the nonlinear systems with less computational
cost. We also choose the completed extrapolation strategy to enhance the accuracy of approximation of
nonlinear system directly and cheaply. The process of this method is described in Algorithm 2, and the
structure diagram of the ECNMG method is given in Figure 3. The key ingredients of the proposed algorithm
include the following aspects.
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Algorithm 2 Extrapolation cascadic Newton multigrid (ECNMG)
1: run the Newton-MG solver for computing two approximations U∗1, U∗2 on the grids Ω1, Ω2, respectively
2: for j = 3, 4, · · · , L do
3: use the extrapolation interpolation operator NE to update solution, NU j−1 ⇐ NE j

j−2(U∗j−2,U
∗
j−1)

4: use the bi-quartic interpolation operator P j
j−1 to construct an initial guess, U0

j ⇐ P j
j−1NU j−1

5: run the Newton-MG solver with U0
j and tolerances ϵ j for computing an approximation U∗j on grid Ω j

6: use the completed extrapolation operator Ex to obtain an extrapolation solution, Eu j ⇐ Ex(U∗j−1,U
∗
j )

7: end for

(1) A better initial guess is provided for Newton-MG method to accelerate the computation process of non-
linear system on the next finer grid, through employing the extrapolation interpolation technique and the
bi-quartic polynomial interpolation [23] for the known approximations on previous and current grids.

(2) Instead of performing a fixed number of multigrid cycles as used in classical multigrid structure, a series
of grid level dependent computational tolerances are discussed for reducing the iterations of nonlinear
solver on different scale fourth-order solutions.

(3) A sixth-order (rather than fourth-order) accurate approximation is generated on current grid cheaply and
directly, by employing a completed extrapolation operator [6, 23] for the fourth-order accuracy solutions
of discrete nonlinear systems on current and previous grids.

The computational tolerances ϵ j in ECNMG method is chosen as below

ϵ j =

 10 j−LϵL, j ≥ j̄,
10 j̄−LϵL, j < j̄,

(3.26)

where, L is the number of grid levels, ϵL is a given computational tolerance on the finest grid, threshold value
j̄ = [L/2].

4 NUMERICAL RESULTS

In our numerical experiments, we tested the ECNMG method for two nonlinear Poisson-Boltzmann equations
on the unit square domain Ω = [0, 1] × [0, 1], and compared the results with the Newton-MG method [2].
In these cases, the source terms f (x, y) and Dirichlet boundary conditions on ∂Ω are presented to satisfy the
known analytic solutions.

The classical V-cycle multigrid method embedded with the conjugate gradient relaxation is applied as
linear solver for solving the Jacobian systems in the Newton-MG method. In the V-cycle multigrid, the
numbers of pre-smoothing and post-smoothing both set as 1. Zero vector is chosen as an initial iterative
guess to start with the two methods (Newton-MG and ECNMG), which will be terminated when the k-th
iterative solution uk

j satisfies
max{ ||F(uk

j)||, ||uk
j − uk−1

j || } ≤ ϵ j

on the grid Ω j.
Using 8 embedded grids with the coarsest grid 16 × 16, and the finest grid is 2048 × 2048 which leads

to 4 million unknowns, we perform numerical computation using the ECNMG and the Newton-MG methods
with five different fourth-order compact difference schemes (HOC4a, HOC4b, HOC4c, HOC4d, HOC4e),
respectively. The iteration numbers (#I), initial guess errors (||U0

j − u||2), approximation errors (||U∗j − u||2),
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extrapolation solution errors (||Eu j − u||2), and convergence rates (#R j) from the 3-th level of grid 64 × 64 to
the 8-th grid 2048 × 2048 are given in the Tables 1- 10. Here, the convergence rate is defined as

#R j =
log(||e j−1||/||e j||)

log(h j−1/h j)
.

where ||e j|| is the L2-norm error on the j-th level grid with mesh-size h j.

Example 4.1 [19] Consider the nonlinear Poisson-Boltzmann equation in the presence of source term

λ2(uxx(x, y) + uyy(x, y)) + exp(−u(x, y)) = f (x, y), (4.27)

in which, the exact solution is

u(x, y) = exp(y − x) + 2−1/σ(1 + y)1+1/σ. (4.28)

Here, λ = 0.005, σ = 0.01.

The numerical experiment of Example 4.1 with five different schemes (HOC4a, HOC4b, HOC4c, HOC4d,
HOC4e) are given in Tables 1 to 5. In the respect of accuracy, we can see from Tables 1 to 5 that the two
methods are both able to obtain full fourth-order accurate difference solutions (see the sixth and the eleventh
columns for details). But the convergence rate of extrapolation solutions in the proposed method are close to
theoretical value 6 (see the ninth column for details). Hence, fewer grid points are required for the ECNMG
algorithm than those for the Newton-MG algorithm to achieve a certain computational accuracy. For instance,
from the last rows of Table 1 for Example 4.1 with HOC4a scheme, we see that the approximation error of
Newton-MG method on the finest grid 2048 × 2048 is 7.21 × 10−11, while the extrapolation solution error
of the ECNMG algorithm on the 1024 × 1024 grid is 3.14 × 10−12. Besides, we given Figure 4 to describe
the errors of the initial guesses, the difference approximations and the extrapolation solutions from the 3-th
level to the final grid in the ECNMG method. It shows that the precision of extrapolation solutions Eu∗j
are more than the difference approximations U∗j (before extrapolated) and the initial values U0

j on the j-th
( j = 3, 4, . . . , 8) grid level. When the reciprocal of mesh-size (i.e., 1/h j) increases, the superiority of the new
method on accuracy is more obvious.

As for computational cost, one can see from Tables 1 to 5 that there is only a few iterations are required on
each grid level of our ECNMG method for Example 4.1 with different schemes, compared to the Newton-MG
method. This is particularly true when mesh is refined. The reason for this phenomenon is that we taken the
extrapolation interpolation and the bi-quartic polynomial interpolation techniques in our proposed method, to
provide the fifth-order accurate initial guesses, which are already extremely accurate approximations on each
grid level (see the fifth column for details). Particularly for large scale grid levels, the given initial guesses
are close enough to the difference solutions (see Figure 4. Taking Table 1 as an example, only two times
iterations are required on the finest grid 2048 × 2048 in our ECNMG method, since the error of the initial
guess is 8.01 × 1010, while the error of the difference solution is 7.21 × 1011. It is well known that when the
scale of grid increases, decreasing iterations on the finest grid will effectively reduce the total computational
cost. Therefore, the ECNMG method spent less total computational cost than that of the Newton-MG method
for solving large scale problems.

Moreover, Tables 1 to 5 demonstrate that the proposed indeed works well (accuracy and cost) for the
given different schemes (HOC4a, HOC4b, HOC4c, HOC4d and HOC4e).
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extrapolation approximations Eu j on different grid levels with mesh-size h j (Example 4.1, HOC4a).

Table 1: Numerical results of Example 4.1 with HOC4a

j 1/h j ϵ j
ECNMG Newton-MG

||U0
j − u||2 #R j ||U∗j − u||2 #R j ||Eu j − u||2 #R j #I ||U∗j − u||2 #R j #I

3 64 10−11 6.45(-3) – 7.24(-5) – 3.59(-5) – 6 7.24(-5) – 11
4 128 10−11 4.93(-4) 3.71 4.69(-6) 3.95 7.61(-7) 5.56 7 4.69(-6) 3.95 12
5 256 10−10 2.23(-5) 4.46 2.95(-7) 3.99 1.26(-8) 5.91 5 2.95(-7) 3.99 11
6 512 10−9 7.86(-7) 4.83 1.85(-8) 4.00 2.00(-10) 5.98 4 1.85(-8) 4.00 11
7 1024 10−8 2.54(-8) 4.95 1.15(-9) 4.00 3.14(-12) 5.99 3 1.15(-9) 4.00 10
8 2048 10−7 8.01(-10) 4.98 7.21(-11) 4.00 5.15(-14) 5.93 2 7.21(-11) 4.00 10

Table 2: Numerical results of Example 4.1 with HOC4b

j 1/h j ϵ j
ECNMG Newton-MG

||U0
j − u||2 #R j ||U∗j − u||2 #R j ||Eu j − u||2 #R j #I ||U∗j − u||2 #R j #I

3 64 10−11 6.45(-3) – 7.24(-5) – 3.58(-5) – 6 7.24(-5) – 11
4 128 10−11 4.93(-4) 3.71 4.69(-6) 3.95 7.61(-7) 5.56 6 4.69(-6) 3.95 11
5 256 10−10 2.23(-5) 4.46 2.95(-7) 3.99 1.26(-8) 5.91 5 2.95(-7) 3.99 11
6 512 10−9 7.86(-7) 4.83 1.85(-8) 4.00 2.00(-10) 5.98 4 1.85(-8) 4.00 11
7 1024 10−8 2.54(-8) 4.95 1.15(-9) 4.00 3.14(-12) 5.99 3 1.15(-9) 4.00 10
8 2048 10−7 8.01(-10) 4.98 7.21(-11) 4.00 5.15(-14) 5.93 2 7.21(-11) 4.00 10
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Table 3: Numerical results of Example 4.1 with HOC4c

j 1/h j ϵ j
ECNMG Newton-MG

||U0
j − u||2 #R j ||U∗j − u||2 #R j ||Eu j − u||2 #R j #I ||U∗j − u||2 #R j #I

3 64 10−11 6.45(-3) – 7.24(-5) – 3.59(-5) – 7 77.24(-5) – 11
4 128 10−11 4.93(-4) 3.71 4.69(-6) 3.95 7.61(-7) 5.56 7 74.69(-6) 3.95 12
5 256 10−10 2.23(-5) 4.46 2.95(-7) 3.99 1.26(-8) 5.91 6 72.95(-7) 3.99 11
6 512 10−9 7.86(-7) 4.83 1.85(-8) 4.00 2.00(-10) 5.98 4 71.85(-8) 4.00 11
7 1024 10−8 2.54(-8) 4.95 1.15(-9) 4.00 3.14(-12) 5.99 3 71.15(-9) 4.00 10
8 2048 10−7 8.01(-10) 4.98 7.21(-11) 4.00 5.15(-14) 5.93 2 77.21(-11) 4.00 10

Table 4: Numerical results of Example 4.1 with HOC4d

j 1/h j ϵ j
ECNMG Newton-MG

||U0
j − u||2 #R j ||U∗j − u||2 #R j ||Eu j − u||2 #R j #I ||U∗j − u||2 #R j #I

3 64 10−11 6.45(-3) – 7.24(-5) – 3.59(-5) – 7 7.24(-5) – 12
4 128 10−11 4.93(-4) 3.71 4.69(-6) 3.95 7.61(-7) 5.56 7 4.69(-6) 3.95 12
5 256 10−10 2.23(-5) 4.46 2.95(-7) 3.99 1.26(-8) 5.91 6 2.95(-7) 3.99 11
6 512 10−9 7.86(-7) 4.83 1.85(-8) 4.00 2.00(-10) 5.98 4 1.85(-8) 4.00 11
7 1024 10−8 2.54(-8) 4.95 1.15(-9) 4.00 3.14(-12) 5.99 3 1.15(-9) 4.00 10
8 2048 10−7 8.01(-10) 4.98 7.21(-11) 4.00 5.17(-14) 5.93 2 7.21(-11) 4.00 10

Table 5: Numerical results of Example 4.1 with HOC4e

j 1/h j ϵ j
ECNMG Newton-MG

||U0
j − u||2 #R j ||U∗j − u||2 #R j ||Eu j − u||2 #R j #I ||U∗j − u||2 #R j #I

3 64 10−11 6.45(-3) – 7.24(-5) – 3.59(-5) – 6 7.24(-5) – 11
4 128 10−11 4.93(-4) 3.71 4.69(-6) 3.95 7.61(-7) 5.56 7 4.69(-6) 3.95 11
5 256 10−10 2.23(-5) 4.46 2.95(-7) 3.99 1.26(-8) 5.91 5 2.95(-7) 3.99 11
6 512 10−9 7.86(-7) 4.83 1.85(-8) 4.00 2.00(-10) 5.98 4 1.85(-8) 4.00 11
7 1024 10−8 2.54(-8) 4.95 1.15(-9) 4.00 3.15(-12) 5.99 3 1.15(-9) 4.00 10
8 2048 10−7 8.01(-10) 4.98 7.22(-11) 4.00 2.52(-13) 3.64 2 7.22(-11) 4.00 10
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Example 4.2 [19] Consider the following nonlinear Poisson-Boltzmann equation

uxx(x, y) + uyy(x, y) − σ2u(x, y)3 = f (x, y) (4.29)

with the exact solution
u(x, y) = x(1 − x)y(1 − y)sin(k2(x +

√
3y)). (4.30)

Here, k = 4, σ = 0.01.

Table 6: Numerical results of Example 4.2 with HOC4a

j 1/h j ϵ j
ECNMG Newton-MG

||U0
j − u||2 #R j ||U∗j − u||2 #R j ||Eu∗j − u||2 #R j #I ||U∗j − u||2 #R j #I

3 64 10−11 1.98(-4) – 3.31(-6) – 2.39(-7) – 6 3.31(-6) – 7
4 128 10−11 6.67(-6) 4.89 2.06(-7) 4.01 3.73(-9) 6.00 6 2.06(-7) 4.01 7
5 256 10−10 2.13(-7) 4.97 1.28(-8) 4.00 5.83(-11) 6.00 5 1.28(-8) 4.00 7
6 512 10−9 6.72(-9) 4.99 8.01(-10) 4.00 9.10(-13) 6.00 3 8.01(-10) 4.00 7
7 1024 10−8 2.15(-10) 4.97 5.01(-11) 4.00 1.86(-14) 5.61 2 5.01(-11) 4.00 6
8 2048 10−7 7.24(-12) 4.89 3.14(-12) 4.00 9.54(-15) 0.96 1 3.13(-12) 4.00 6

Table 7: Numerical results of Example 4.2 with HOC4b

j 1/h j ϵ j
ECNMG Newton-MG

||U0
j − u||2 #R j ||U∗j − u||2 #R j ||Eu∗j − u||2 #R j #I ||U∗j − u||2 #R j #I

3 64 10−11 1.94(-4) – 1.59(-6) – 1.12(-7) – 6 1.59(-6) – 7
4 128 10−11 6.61(-6) 4.87 9.80(-8) 4.02 1.72(-9) 6.02 6 9.80(-8) 4.02 7
5 256 10−10 2.11(-7) 4.97 6.11(-9) 4.00 2.69(-11) 6.00 4 6.11(-9) 4.00 7
6 512 10−9 6.65(-9) 4.99 3.81(-10) 4.00 4.19(-13) 6.00 3 3.81(-10) 4.00 7
7 1024 10−8 2.09(-10) 4.99 2.38(-11) 4.00 1.07(-14) 5.29 2 2.38(-11) 4.00 6
8 2048 10−7 6.66(-12) 4.97 1.50(-12) 3.99 9.49(-15) 0.18 1 1.49(-12) 4.00 6

Table 8: Numerical results of Example 4.2 with HOC4c

j 1/h j ϵ j
ECNMG Newton-MG

||U0
j − u||2 #R j ||U∗j − u||2 #R j ||Eu∗j − u||2 #R j #I ||U∗j − u||2 #R j #I

3 64 10−11 2.30(-4) – 1.41(-5) – 1.22(-6) – 7 1.41(-5) – 7
4 128 10−11 7.23(-6) 4.99 8.79(-7) 4.00 1.93(-8) 5.98 6 8.79(-7) 4.00 7
5 256 10−10 2.30(-7) 4.97 5.49(-8) 4.00 3.03(-10) 5.99 5 5.49(-8) 4.00 7
6 512 10−9 7.77(-9) 4.89 3.43(-9) 4.00 4.74(-12) 6.00 3 3.43(-9) 4.00 7
7 1024 10−8 3.06(-10) 4.67 2.15(-10) 4.00 7.46(-14) 5.99 2 2.15(-10) 4.00 6
8 2048 10−7 1.50(-11) 4.34 1.34(-11) 4.00 9.56(-15) 2.96 1 1.34(-11) 4.00 6

Again, we use 8 level of grids with the finest grid 2048× 2048 for Example 4.2, and list the experimental
results (from the 3−th level grid to the final one) of Newton-MG and ECNMG methods with different compact
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Table 9: Numerical results of Example 4.2 with HOC4d

j 1/h j ϵ j
ECNMG Newton-MG

||U0
j − u||2 #R j ||U∗j − u||2 #R j ||Eu∗j − u||2 #R j #I ||U∗j − u||2 #R j #I

3 64 10−11 2.15(-4) – 9.72(-6) – 8.19(-7) – 6 9.72(-6) – 7
4 128 10−11 6.96(-6) 4.95 6.06(-7) 4.00 1.30(-8) 5.98 6 6.06(-7) 4.00 7
5 256 10−10 2.21(-7) 4.97 3.79(-8) 4.00 2.04(-10) 5.99 5 3.79(-8) 4.00 7
6 512 10−9 7.22(-9) 4.94 2.37(-9) 4.00 3.18(-12) 6.00 3 2.37(-9) 4.00 7
7 1024 10−8 2.60(-10) 4.80 1.48(-10) 4.00 5.14(-14) 5.95 2 1.48(-10) 4.00 6
8 2048 10−7 1.14(-11) 4.51 9.25(-12) 4.00 9.49(-15) 2.44 1 9.24(-12) 4.00 6

Table 10: Numerical results of Example 4.2 with HOC4e

j 1/h j ϵ j
ECNMG Newton-MG

||U0
j − u||2 #R j ||U∗j − u||2 #R j ||Eu∗j − u||2 #R j #I ||U∗j − u||2 #R j #I

3 64 10−11 1.98(-4) – 3.31(-6) – 2.39(-7) – 6 3.31(-6) – 7
4 128 10−11 6.67(-6) 4.89 2.06(-7) 4.01 3.73(-9) 6.00 6 2.06(-7) 4.01 7
5 256 10−10 2.13(-7) 4.97 1.28(-8) 4.00 5.83(-11) 6.00 5 1.28(-8) 4.00 7
6 512 10−9 6.72(-9) 4.99 8.01(-10) 4.00 9.10(-13) 6.00 3 8.01(-10) 4.00 7
7 1024 10−8 2.15(-10) 4.97 5.01(-11) 4.00 1.86(-14) 5.61 2 5.01(-11) 4.00 6
8 2048 10−7 7.24(-12) 4.89 3.14(-12) 4.00 9.52(-15) 0.97 1 3.13(-12) 4.00 6
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Figure 5: Comparison of the L2-norm errors of the initial guesses U0
j , the difference solutions U∗j and the

extrapolation approximations Eu j on different grid levels with mesh-size h j (Example 4.2, HOC4a).
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schemes in Tables 6 to 10. We can find that the errors of fourth-order solutions from the Newton-MG method
are exactly the same as the errors of fourth-order solutions from the ECNMG method. But, they are much
less accurate than the extrapolation solutions Eu j produced by the completed extrapolation operator in the
ECNMG method. The extrapolated solutions Eu j achieves the sixth-order precision on most grids and starts
to lose convergent order on the final grid, since the approximation on the final grid already has sufficient
accuracy O(10−15). Meanwhile, the present method took less grid points than those of the Newton-MG
method for a certain accuracy of approximation.

Compared to the computational expenses of the Newton-MG method, one can find that the number of
iterations of ECNMG method on grids Ω j ( j ≥ 3) are reduced obviously, which is particularly true when the
finest grid size h8 satisfy h−1

8 = 2048. Hence, the total computational cost of ECNMG method are evidently
lower than that of the Newton-MG method. The reason is that we took the extrapolation strategy and the
bi-quadratic interpolation to provide a better initial solution U0

j with the fifth-order precision, which is one
higher than the order of convergence of the fourth-order difference approximations U∗j . As a consequence,
the relative effect of how initial guess U0

j approximates difference solution U∗j becomes better when mesh is
refined (see Figure 5), and the number of iterations is reduced most significantly on the finest grid (see Tables
6 to 10).

Finally, as we can see that the ECNMG algorithm is also effective for Example 4.2 with different fourth-
order compact difference schemes (HOC4a, HOC4b, HOC4c, HOC4d and HOC4e).

5 CONCLUSIONS

In this work, we extend the idea of extrapolation multigrid computations to the nonlinear problems. We
present an extrapolation cascadic Newton multigrid (ECNMG) method combined with some nine-point
fourth-order compact difference schemes to solve the two dimensional (2D) Poisson equations with non-
linear forcing term. We employ the extrapolation interpolation and the bi-quartic interpolation for two ap-
proximation of nonlinear systems on the two-level grids (current and previous grids) to construct a better
initial guess on the next finer grid, which greatly reduces the iteration numbers of the Newton-MG method
for computing the converged fourth-order accurate solution. Then, we take a completed extrapolation tech-
nique to generate a sixth-order accurate extrapolation solution on the entire fine grid from two fourth-order
accurate approximations on two different scale grids. Numerical experiments show that the proposed method
successfully enhance the accuracy of numerical solutions and keep less costs simultaneously. Therefore, it is
much more efficient comparing to the classical Newton multigrid and particularly suitable for solving large
scale nonlinear systems.
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