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Abstract

Revegetation projects seeking to restore degraded ecosystems face a major challenge in sourcing appropriate plant material, as

identifying plants adapted to future climates requires knowledge of plant performance under novel conditions. In order to support

climate-resilient provenancing efforts, we develop a quantitative trait model that integrates genetic and microenvironmental

variation. We train our model with multiple natural plantings of Arabidopsis thaliana and predict days-to-bolting and fecundity

across the species’ European range. Model prediction accuracy was high for days-to-bolting and moderate for fecundity, with

the majority of trait variation being explained by temperature variation. Concerningly, fecundity was predicted to decline

under future conditions, although this response was heterogeneous across regions, and could be offset through the introduction

of specific genotypes. Our study highlights the value of predictive models to aid seed provenancing and improve the success of

revegetation projects.

1



Forecasting floral futures: leveraging genetic and 

microenvironmental  data  to  improve  seed 

provenancing under climate change

Andhika R. Putra1, Jian D.L. Yen2, Alexandre Fournier-Level1

1 School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia;  2  Arthur 

Rylah Institute for Environmental Research, Heidelberg, VIC 3084, Australia

Author  for  correspondence:  Alexandre  Fournier-Level T:  +61  3  8344  7258  E: 

afournier@unimelb.edu.au

Statement  of  authorship: AFL  designed  the  study; ARP  performed  modelling  work  and 

analysed the results. JDLY and AFL provided feedback and suggestions throughout the project. 

ARP wrote the initial draft of the manuscript; all three authors provided edits and revisions.

Data accessibility statement: Should the manuscript be accepted, we will upload supporting 

scripts in a github repository and supporting data in a Figshare repository and include the data 

DOI at the end of this article.

Running title: forecasting floral futures

Keywords:  restoration,  revegetation,  genomic  prediction,  functional  trait,  microclimate, 

Arabidopsis thaliana, genetic variation, adaptation

Article type: Letter

Section Count

Abstract 142 words

Main Text 5000 words

References 103

Figures 4

Tables 1

Text Boxes 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1



 Abstract

Revegetation  projects  seeking  to  restore  degraded  ecosystems  face  a  major  challenge  in 

sourcing appropriate plant  material,  as identifying plants adapted to future climates requires 

knowledge of plant performance under novel conditions.  In order to support climate-resilient 

provenancing  efforts,  we  develop  a  quantitative  trait  model  that  integrates  genetic  and 

microenvironmental variation. We train our model with multiple natural plantings of Arabidopsis  

thaliana and predict days-to-bolting and fecundity across the species’ European range. Model 

prediction accuracy was high for days-to-bolting and moderate for fecundity, with the majority of 

trait variation being explained by temperature variation. Concerningly, fecundity was predicted 

to decline under future conditions, although this response was heterogeneous across regions, 

and could be offset  through the introduction of  specific genotypes.  Our study highlights  the 

value of predictive models to aid seed provenancing and improve the success of revegetation 

projects.
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Introduction

The anthropic perturbation of natural systems continues to be a major threat to biodiversity, with 

the modern extinction rate estimated to be up to 100 times higher than the historical average 

(Ceballos et al., 2015). A major driver of this biodiversity decline is land-use changes, which 

result in the destruction of ecosystems and loss of natural habitat (Tilman et al., 2017). This 

problem is compounded by ongoing climate change, which alters remaining habitats to disrupt 

local adaptation and produce maladapted genotypes (‘genomic offset’;  Rellstab et al., 2021). 

Indeed, the two processes are inextricably linked in a mutually impactful relationship: land-use 

changes both cause and occur in response to climate change (Dale, 1997). Today, recognition 

of  the  damage posed by  anthropogenic  activities  has led  to growing  interest  in  developing 

methods for restoring degraded ecosystems. This is reflected in the rapid growth of ecological 

restoration as a field of research (Wortley et al., 2013) and the increasing amount of resources 

spent on restoration projects (Prober et al., 2015).

A major component of restoration projects is revegetation, which involves the reintroduction of 

native plant species into cleared or disturbed areas (Breed et al.,  2013) and is essential for 

reestablishing  complex,  self-sufficient  ecosystems  (Suding  et  al.,  2015).  Successful 

revegetation hinges on the sourcing of suitable seeds or provenancing (Fedriani et al., 2019) 

and  was  traditionally  accomplished  by  obtaining  seeds  from  nearby  populations  under  the 

assumption of local adaptation (Breed et al., 2013). However, the suitability of this approach is 

being  increasingly  challenged  because  it  assumes  the  long-term  persistence  of  current 

environmental conditions (Breed et al., 2013; Broadhurst et al., 2008). 

In reality, the rapid pace of contemporary climate change has clear biological consequences for 

plants. These include shifting flowering time (DeLeo et al., 2020; Lu et al., 2006; Primack et al., 

2004; Scheepens & Stöcklin, 2013; Sun et al., 2020), altering root and leaf morphology (Gray & 
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Brady, 2016; Guerin et al., 2012), and impacting reproductive output (Wheeler et al., 2000; Zhao 

et al.,  2017). Such trait responses to climate change (‘climate response’) affect overall  plant 

fitness and can lead to uncertainty regarding the long-term success of reintroduced species. 

Thus, an emerging goal in restoration ecology is to develop strategies for revegetation that 

account for climate change (Harris et al., 2006; Prober et al., 2015). This includes developing 

methods to identify and source genetic variation that is pre-adapted to future climates (Ramalho 

et al., 2017; Supple et al., 2018), such as models predicting climate response under different 

scenarios.

Climate-responsive fitness traits are often heritable (Bay et al., 2017) and must, by definition, 

respond  adequately  to  climate  variation.  These  two  characteristics  indicate  that  predicting 

climate  response  requires  accounting  for  the  effects  of  both  genetic  and  environmental 

variation. In this regard, quantitative genetics provides a powerful framework for integrating the 

two sources of variation determining trait values (Daetwyler et al., 2013). Quantitative genetics 

models can be parameterised with molecular  markers to predict  traits determined by a few 

genes (Fournier-Level et al., 2016; Hancock et al., 2011; Seymour et al., 2016; J. Zhang et al., 

2016)  or  with  genetic  similarity  matrices  and  pedigrees  when  the  genetic  architecture  is 

polygenic (Eu-ahsunthornwattana et al., 2014; Gao et al., 2018). Moreover, despite their origin 

in  animal  breeding  (Wilson et  al.,  2010)  recent  developments  in  quantitative  genetics  have 

focused  on  incorporating  environmental  variation  and  genotype-by-environment  interactions 

(GxE)  into  genomic  prediction  models  (Millet  et  al.,  2019;  Montesinos-López  et  al.,  2018; 

Ramstein et al., 2016; Windhausen et al., 2012).

In  this  study,  we  designed  a  quantitative  genetics  model  to  predict  quantitative  traits  in 

Arabidopsis thaliana,  a highly  diverse annual  plant  found in Europe, Asia,  Africa, and North 

America (Durvasula et al., 2017; Koornneef & Meinke, 2010). Through the development of a 

model based on experimental field data, we sought to answer two main questions. Firstly, how 
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should genetic information be incorporated into predictive models? In plants, common garden 

experiments have identified moderate- and large-effect quantitative trait loci (QTL) associated 

with key traits like life history and fitness (Brachi et al., 2010; Gnan et al., 2014; Salomé et al., 

2011), which initially suggests a marker-based approach may be suitable. However, QTL may 

differ across environments (Brachi et al., 2010; Fournier-Level et al., 2011; Linde et al., 2006) 

due to genotype-by-environment interactions (El-Soda et al., 2014; Sasaki et al., 2015). Across 

multiple environments, differences in the genomic regions associated with trait variation may 

lead  to  a  functionally  polygenic  genetic  architecture.  If  so,  we  hypothesize  that  genetic 

information  will  be  better  incorporated  via  similarity  measures  than  as  individual  molecular 

marker  effects.  Secondly,  how should environmental  variation be incorporated? Quantitative 

genetics models are typically environmentally implicit and only consider environmental variation 

categorically (Montesinos-López et al., 2018; Ramstein et al., 2016; Windhausen et al., 2012). 

This  limits  their  transferability  to  the novel  conditions  relevant  for  predictive  applications.  In 

contrast,  a  model  that  allows  for  continuous  environmental  variation  either  through  explicit 

climate predictors or environmental similarity matrices (sensu Millet et al., 2019) should be more 

transferable.

We demonstrate the relevance of our model for ecological restoration by using it to i) predict the 

spatiotemporal pattern of climate response across A. thaliana European range and ii) predict the 

climate response of  known genotypes to various environmental  conditions.  In doing so,  we 

address two goals that are likely to be relevant for restoration ecology. Firstly,  we identified 

regions of high genomic offset where local plants are predicted to become maladapted in the 

future and highlighted areas where local provenancing would have been a less suitable strategy 

for revegetation. Secondly, we identified specific genotypes that could be used in revegetation 

and demonstrate the value of model predictions for seed sourcing.
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Materials and Methods

Study Data Set

Two hundred and twenty two genotypes of A. thaliana were planted in 4 European field sites 

scattered over 3 seasons in 2006 and 2007 for a total of 7 plantings (Table S1, Appendix S1), 

as  described  in  Wilczek  et  al.  (2009,  2014).  Across  the  7  plantings,  5623  plants  were 

phenotyped  for  a  phenological  trait  (days-to-bolting,  DTB)  which  marks  the  transition  from 

vegetative to reproductive phase (Pouteau & Albertini, 2009) and a fitness trait (seed proxy, SP; 

number of siliques per plant x average length of 5 representative siliques from the plant in mm). 

All  genotypes  were  present  in  more  than  one  planting,  although  no  planting  contained  all 

genotypes. 

The  time  to  bolting  is  regulated  by  environmental  and  genetic  factors  (Amasino,  2010; 

Koornneef et al., 1998; Sasaki et al., 2015) and influences reproductive success (Korves et al., 

2007), making it a highly relevant climate response trait to model. SP measures reproductive 

output and was weakly correlated with DTB (Pearson’s ρ= 0.058), justifying the construction of 

separate models for each trait.

  

Genetic Variation

Alleles for 10,709,466 biallelic Single Nucleotide Polymorphisms (SNPs) scored across 2029 

Arabidopsis genotypes were retrieved from publicly available data (Arouisse et al., 2020). The 

genotypes used are inbred lines made homozygous through selfing and single-seed descent, so 
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allelic states can be coded 0 (homozygous for the reference allele) or 1 (homozygous for the 

alternative allele) with no heterozygotes. We filtered SNP data to remove SNPs with missing call 

rate > 0.05 and rare variants with minor allele frequency lower  than 0.01.  SNPs were then 

pruned using a  window size  of  500kb,  a variant  step count  of  100 and a  pairwise  linkage 

threshold  r2 = 0.1, retaining 86,760 SNPs. All filtering and pruning were conducted in PLINK 

v190b6.10 (Purcell et al., 2007).

Pruned SNPs were used to compute a genetic similarity matrix (GSM; Speed & Balding, 2015). 

The GSM is a square matrix with entries that measure pairwise similarity between individual 

genotypes. We compared several methods of constructing GSMs but found they did not affect 

model  performance  and  that  a  GSM  rendered  individual  markers  redundant  as  predictors 

(Appendix  S2).  Since  using  a  precomputed  GSM  is  more  computationally  practical  than 

including numerous SNPs for each model run, we decided to only quantify genetic variation 

through an identity-by-state GSM. Identity-by-state was preferred because it can be computed 

for any pair of individuals, including novel ones.

Microclimatic Variation

For each planting, microclimatic conditions were characterized based on the local temperature 

profile.  Temperature is  known to be an important  environmental  cue regulating  Arabidopsis 

development  (Granier  et  al.,  2002;  Springate  &  Kover,  2014)  and  warming  is  a  primary 

consequence of climate change. On-site ground temperature was initially modelled at hourly 

resolution  for  203  days  following  field  transplantation  using  daily  minimum  and  maximum 

temperature  (the  maximum number  of  days  of  data  available  for  all  plantings;  temperature 

modeling  as  described  in  Wilczek  et  al.,  2010),  providing  a  high-resolution  description  of 

temperature  conditions.  However,  lowering  the  resolution  to  daily  minimum  and  maximum 
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temperature yielded equally accurate trait predictions (Appendix S3). We adopted this resolution 

in our model because this is the typical resolution available for historical records and future 

projections (Cornes et al., 2018; Gent et al., 2011; Thornton et al., 2016). We used all 203 days 

of data to describe environmental variation, resulting in 406 (203 x 2) microclimatic predictors. 

Model Description

Genetic  and  environmental  information  were  combined  to  construct  trait  models  using  a 

penalized linear-mixed model framework with a LASSO-type penalisation (Tibshirani, 1996) as 

implemented  in  the  LMM-Lasso  package  (Rakitsch  et  al.,  2013).  Regularization  through 

LASSO-type  penalization  prevents  potential  overfitting  caused  by  the  large  number  of 

predictors. This linear-mixed model takes the form  y =  ΣXββ +  u  + ε, where  y  is a vector of 

individual  trait  values,  Xβ  is  a  matrix  of  daily  minimum  and  maximum  temperature  with 

corresponding  fixed effects  β  (fixed effect),  u  is  the  random effect  of  the  genetic  similarity 

between pairs of individuals, and  ε is the vector of residuals, the total number of plants. u is 

unobserved  but  assumed  to  be  normally  distributed  with  u  N(0  ,σ∼N(0 ,σ g
2K),  where  K is  the 

empirically  computed GSM and σg
2 is  the variance explained by the genetic  similarity.  The 

residual vector ε is also normally distributed ε N(0, σ∼N(0 ,σ e
2I), where I is the identity matrix and σe

2 

is the residual variance.

The initial model considered genetic and environmental variation additively and independently 

(‘G+E model’), such that predicted reaction norms across environments were identical for all 

genotypes. In order to account for the non-linear influence of GxE on climate response, we 

computed ADMIXTURE proportions  (Alexander  & Lange,  2011)  for  each plant  using  k =  4 

ancestral populations, which was found to be optimal (Appendix S4). ADMIXTURE proportions 
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were used to generate additional  predictors  XβADMIXβTURE.  For  n genotypes and  r microclimatic 

variables,  XβADMIXβTURE is the column-wise Khatri-Rao product  XβADMIXβTURE = (FT  ⊗ RT)T,  where F is 

the n x k matrix of ADMIXTURE proportions and R is the n x r matrix of microclimatic predictors. 

This  produces  an  n x  kr  matrix  of  additional  predictors  whose  values  are  unique  for  each 

genotype-environment  combination.  These  predictors  were included  alongside  the  minimum 

and maximum daily temperature (i.e. R) in the design matrix Xβ’ to create the ‘GxE model’ which 

takes the form y = ΣXβ’jβj + u + ε.

Assessing Model Performance

Internal Validation

Model  performance  was  assessed  through  a  random  10-fold  cross  validation  (‘internal 

validation’) with 9 folds of the data used to train the model and the 10 th fold used to test it. This 

was  repeated  10  times,  with  each  fold  acting  as  the  testing  set  once.  Overall  model 

performance was quantified using the root mean square error (RMSE) as a measure of error 

and the coefficient of determination between observed and predicted values (r2) as a measure 

of accuracy.

External Validation

External validation followed an ‘environmental blocking’ validation strategy (Roberts et al., 2017) 

designed to assess out-of-sample  prediction  accuracy.  This  involved training models on six 

plantings  and  testing  on  the  seventh  to  mimic  validation  on  independent  data.  Results  of 

environmental  blocking  were  also  used  to  determine  the  effect  of  different  training  set 
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compositions on model performance.

Finally,  we  performed  an  empirical  external  validation  using  data  from  an  independent 

experiment. Korves and colleagues (2007) performed a planting of A. thaliana in Rhode Island, 

USA in Spring 2003 (RS) for which median DTB was reported. RS is geographically (North 

America vs. Europe) and temporally (2003 vs. 2006-2007) distant from the plantings in our data 

set, making it a novel environment. We predicted DTB in RS for 77 genotypes using a model 

trained  on 100% of  our  data  and  2  meter  air  temperature  records  sourced from DAYMET 

(Thornton et al., 2016).

Model Application

The validated model was used to predict broadscale patterns of climate response in A. thaliana. 

This requires inferring the spatial distribution of genetic variation and germination timing on a 

continental scale. Both components are crucial  because they dictate the distribution of plant 

genotypes and the microclimate they experience, respectively.

Inferring the spatial distribution of Genetic Variation and 

Germination Date

We inferred the distribution of  A. thaliana  genetic variation using kriging (Oliver & Webster, 

1990), a method of interpolation used in geostatistics for spatially autocorrelated data (Appendix 

S5). Kriging was considered suitable because spatial autocorrelation in  A. thaliana’s genetic 

variation was observed in our dataset (average Moran’s  I=0.146, P=0) and is consistent with 

isolation by distance previously reported in the species (Platt et al., 2010; Sharbel et al., 2000). 
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We produced a kriged genetic landscape at 1°x1° resolution across Europe by kriging each 

column of the GSM using the autoKrige function from the automap package (Hiemstra, 2013) in 

R. 

Across its European range,  A. thaliana  germinates at  different  times of  the year (Donohue, 

2002). In order to determine the most likely growing season of different sites, we used data from 

(Exposito-Alonso, 2020) which identified  k=4 germination strategies defining coherent climate 

regions. We smoothed boundaries by replacing the value of outlier cells (those assigned to a 

different cluster from all its neighbors) with the most common value in the 8 neighboring cells. 

The four regions (Central  Europe CEUR, South Mediterranean SMER, North Mediterranean 

NMER, Scandinavia SCAN) corresponded to three germination seasons (spring, summer, fall). 

We  assumed  all  plants  germinated  on  a  single  date  for  each  season.  These  dates  were 

February 27 for spring, 25 May for summer, and 3 October for fall and were chosen based on 

the transplant dates of our plantings.

Projected Climate Response 

We first  predicted climate responses across Europe to identify  sites that  are susceptible  to 

future decline under the RCP2.6 and RCP8.5 climate change scenarios (van Vuuren et al., 

2011), with RCP8.5 being a worse scenario. We obtained daily minimum/maximum temperature 

projections for RCP2.6 from CCSM4 ensemble r1i1p1 (Gent et al., 2011) and for RCP8.5 from 

CMCC-CM ensemble r1i1p1 (Scoccimarro et al., 2011). Temperature rasters were resampled to 

1°x1°  to  match  the  resolution  of  the  kriged  genetic  landscape  using  the  R\raster  package 

(Hijmans et al., 2020).

We predicted DTB and SP from 2041 to 2099 using the RCP projections and in 2006 using 

temperature records  from E-OBS v19.0eHOM (Cornes et  al.,  2018).  We assumed a  single 
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genotype present in each cell (inferred through kriging) and identical germination dates across 

years. Since bolting occurs before seed production and showed clear boundaries in our data, 

we restricted predictions of SP to sites where predicted DTB fell within the observed range of 16 

to 246 days. We set negative values of SP to zero and converted SP to relative fecundity by 

dividing by the maximum predicted SP in 2006. This restricted predictions to sites where the 

model could predict biologically plausible values for both traits and highlighted regions where 

environmental conditions may fall outside the model capabilities. 

Finally,  we emulate revegetation attempts by using our model to predict  the performance of 

specific genotypes across Europe under climate change. This allowed us to determine whether 

known genotypes could be used as a source of “climate-proof” genetic variation at sites where 

the fitness of local populations was predicted to decline. As a proof-of-concept, we focused on 

predicting the relative fecundity of  the Eden-2 and Ll-2 genotypes in  2006 and 2099 under 

RCP8.5.  Eden-2  is  a  Swedish  genotype  that  must  be  exposed  to  prolonged  chill  before 

flowering  (‘vernalization’,  https://www.arabidopsis.org),  while  Ll-2  originates  from  Spain  and 

shows a low expression of the key flowering repressor  FLC (Rosloski et al.,  2013);  the two 

genotypes  were  predicted  to  be  the  latest-  and  earliest-bolting  of  the  2029  genotypes, 

respectively.
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Results

Internal Validation

Model performance was best when including both genetic and environmental variation, and DTB 

was overall better-predicted than SP (Table 1). For both traits, the  G only  model predicted a 

single  value  for  each  genotype  while  the  E only  model  predicted  a  single  value  for  each 

planting. Regressing predictions from the  G only  and  E only  models against the  G+E  model 

showed variation in daily minimum/maximum temperature explained more multi-environmental 

trait variation than genetic differences between individuals (G+E ~ E only: r2 = 0.940 for DTB, r2 

= 0.893 for SP. G+E ~  G only:  r2 = 0.247 for DTB,  r2 = 0.087 for SP). This was particularly 

pronounced for SP, where the  G only  model had a very low  r2  =  0.019. Accounting for GxE 

marginally improved model fit for both traits.

Table 1. Summary of model performance

Model RMSE r2

G only

DTB 54.109 0.220

SN 11446.880 0.019

E only

DTB 36.772 0.825

SN 9618.651 0.391

G+E

DTB 20.359 0.889

SN 8755.630 0.425

GxE

DTB 19.074 0.903

SN 8591.514 0.449

272

273

274

275

276

277

278

279

280

281

282

283

284

285

13



External Validation

Environmental blocking produced less accurate predictions than those obtained through internal 

validation (Fig. 1). For DTB, model performance varied greatly depending on which planting was 

excluded and on the inclusion of GxE. For the G+E model, VF and HF had the lowest RMSE 

(RMSE = 27.928 days and RMSE = 30.648 days respectively), while r2 was highest for NSP (r2 

= 0.497) and NF (r2 = 0.521).  DTB was overpredicted in  NSU06 and underpredicted in  OF. 

Including GxE improved predictions for the two summer plantings NSU06 (RMSE from 46.783 to 

10.462 days) and NSU07 (RMSE from 46.521 to 13.533 days), but offered no improvements in 

NF and OF. For HF and NSP, DTB was overpredicted such that RMSE increased despite a 

higher r2. For the independent external validation in RS, the G+E model had a higher RMSE but 

higher  r2 (RMSE = 35.574 days, r2 = 0.433) than the GxE model (RMSE = 18.790 days,  r2 = 

0.097).
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Unlike DTB, environmental blocking results for SP did not differ between the two models (Fig. 

2).  Prediction accuracy was generally  poor,  with low  r2 for  all  seven plantings.  Interestingly, 

RMSE was  weakly  positively  correlated  with  r2 (Pearson’s  ρ =  0.048).  Models  were  either 

Figure 1: External validation using environmental blocking for days-to-bolting. For all plantings  
except  RS,  models  were trained on data from six  plantings  (excluding  RS) and validation  
performed on the seventh planting. For RS, the model was trained on 100% of the data from  
seven plantings and compared against the median DTB as reported by Korves and colleagues  
(2007). HF = Halle, Fall 2006. NF = Norwich, Fall 2006. NSP = Norwich, Spring 2007. NSU06  
= Norwich,  Summer 2006. NSU07 = Norwich,  Summer 2007. OF = Oulu, Fall  2007.  VF =  
Valencia, Fall 2006.300
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predicting SP closer to the observed value or better at ranking different genotypes, but not both.

Figure  2:  Environmental  blocking  and  external  validation  results  for  seed  proxy.  For  all  
plantings,  models were trained on data from six plantings and validation performed on the  
seventh planting. HF = Halle,  Fall  2006. NF = Norwich, Fall  2006. NSP = Norwich, Spring  
2007. NSU06 = Norwich, Summer 2006. NSU07 = Norwich, Summer 2007. OF = Oulu, Fall  
2007. VF = Valencia, Fall 2006.
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Projected Climate Response

The predicted climate response fluctuated annually (Fig. 3) due to the variability of temperature 

projections, although projected conditions all trended towards warming (Fig. S3, Appendix S6). 

Earlier bolting was predicted in CEUR (both cohorts) and SMER, contrasting with the delay in 

bolting predicted for the fall cohorts in SCAN and NMER. Interestingly, the magnitude of this 

delay is lower under RCP8.5 than RCP2.6 in SCAN (mean change in DTB for 2090-2099 under 

RCP8.5  ΔDTBDTBRCP8.5 = +8 days, under RCP2.6  ΔDTBDTBRCP2.6 = +18 days), whereas the opposite 

was predicted for NMER (ΔDTBDTBRCP8.5 = +3 days, ΔDTBDTBRCP2.6 = +1 day). 

Figure 3: Predicted change in mean days-to-bolting and relative fecundity from 2040 to 2099  
for  two  climate  change  scenarios.  For  each  region,  predictions  were  created  using  an  
ADMIXβTURE-based  model  with  k  =  4  trained  on  100% of  the  data.  At  a  given  location,  
predicted seed proxy (SP) was set to NA if predicted days-to-bolting fell outside the observed  
range of 16-246 days and negative values of predicted SP were set to 0. The dashed line  
indicates the predicted mean of each trait in 2006. Relative fecundity is SP divided by the  
highest predicted SP in 2006.
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As for DTB, the predicted change in relative fecundity differed between fall and non-fall cohorts, 

although this should be interpreted cautiously because SP was much more poorly predicted. 

Spring and summer cohorts (CEUR, SMER) were predicted to decline in fecundity under both 

climate change scenario, whereas the mean change in relative fecundity in 2090-2099 is small 

and near-zero for fall  cohorts in SCAN (ΔDTBRFRCP8.5 = +0.068,  ΔDTBRFRCP2.6 = -0.040) and NMER 

(ΔDTBRFRCP8.5 =  +0.039,  ΔDTBRFRCP2.6 =  -0.067).  Interestingly  for  SCAN and  NMER,  fecundity  was 

predicted to increase under the more severe RCP8.5 and decrease under the milder RCP2.6.

We next compared the predicted change in days-to-bolting and relative fecundity for different 

landscapes of  A. thaliana genetic variation but  strictly comparing 2006 and 2099.  Predicted 

change in days-to-bolting is described in Appendix S7. Here, we focus on predicted change in 

relative fecundity despite the lower prediction accuracy of SP because its consequence on plant 

fitness  is  straightforward  to  interpret.  Under  the  baseline  scenario  using  the kriged  genetic 

landscape,  which assumes the current distribution of genetic variation remains constant,  we 

predicted a decrease in fecundity throughout most of A. thaliana’s European range (Figure 4a). 

Interestingly, the predicted change in fecundity for CEUR differed between the two seasonal 

cohorts: we predicted increased spring fecundity and decreased summer fecundity in western 

CEUR, but the opposite in eastern CEUR (Fig. 4a inset).

Finally,  we  considered  a  hypothetical  revegetation  scenario  where  Eden-2  and  Ll-2  were 

introduced  throughout  Europe.  Despite  identical  environmental  conditions,  the  fecundity 

response differed dramatically  between genotypes (Fig.  4b-c).  Eden-2 had higher  predicted 

fecundity than local genotypes in CEUR and SMER – regions where fall germination is expected 

– but otherwise had lower fecundity than local genotypes. In contrast, Ll-2 had higher predicted 

fecundity  than  local  genotypes  throughout  most  of  Europe  regardless  of  the  germination 

season, but was still less fecund than Eden-2 in CEUR and SMER (Fig. 4d).
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Figure 4: Maps of predicted difference in relative fecundity (ΔDTBRF) across Europe. a) Predicted ΔDTBRF in  
2099 under RCP8.5 relative to 2006 for the kriged genetic landscape. In CEUR, the predicted ΔDTBRF is  
the mean across the spring and summer cohorts. Inset: predicted ΔDTBRF for the spring and summer  
cohort in CEUR. b) Predicted ΔDTBRF across Europe in 2099 and RCP8.5 between Eden-2 and the  
kriged genetic landscape. c) Predicted ΔDTBRF between Ll-2 and the kriged genetic landscape. d) ΔDTBRF 
between Eden-2 and Ll-2. Cells are colored gray if predicted DTB falls outside the observed range of  
16-246 days. Borders indicate the different germination strategy regions. CEUR = Central Europe.  
NMER = North Mediterranean. SMER = South Mediterranean. SCAN = Scandinavia.344
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Discussion

The interaction between genotype and the environment greatly differed across regions and was 

shown to be important for predicting plant response to climate change. This can be modelled by 

including  microclimatic  predictors  in  a  quantitative  trait  model,  which  improves  prediction 

accuracy and allows forecasting the response for different genetic and climate scenarios. For 

the different  scenarios  tested in  European  A.  thaliana,  we predicted heterogeneous  climate 

response depending on both the distribution of genetic variation and spatiotemporal pattern of 

temperature variation.  Our predictions highlighted the complexity  of  the response to climate 

change and the breakdown of local adaptation over time that should be accounted for when 

envisioning ecological restoration.

Including genetic and environmental variation 

improves model performance

The inclusion of microclimatic predictors improved model performance relative to genotype-only 

models for both traits. Genetic variation alone explained only a small proportion of phenotypic 

variation and could be captured in a GSM. This supports our hypothesis that GxE alters the 

genetic architecture of traits across environments and renders individual markers uninformative 

(Brachi et al., 2010; El-Soda et al., 2014; Fournier-Level et al., 2011; Linde et al., 2006). The 

method used to compute pairwise genetic similarity did not affect model performance (Table S2 

& S3,  Appendix  S2),  suggesting they produced functionally  identical  descriptions of  genetic 

similarity. Eu-ahsunthornwattana and colleagues (2014) also reported high correlation between 
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different genetic similarity estimates in humans, suggesting that our framework is likely to be 

broadly applicable.

Phenotypic variation was mainly explained by temperature differences between the plantings. 

This  was  expected:  climate-responsive  traits  are  by  definition  affected  by  environmental 

conditions, and the influence of temperature on plant phenotypes is well-established (Anderson 

et al., 2012; Arft et al., 1999; Foden et al., 2007; Schwartz & Hanes, 2010; Sun et al., 2020; 

Zhao et al.,  2017). Our approach distinguishes itself  by using microclimatic time series data 

instead  of  low-resolution  environmental  predictors  such  as  the  Bioclim  variables  (Fick  & 

Hijmans,  2017).  This  functional  approach  defines  conditions  as  experienced  by  plants 

throughout their growing period, rather than through summary climate variables that condense 

years of weather data into a single statistic. This is necessary because A. thaliana plants can 

occupy the same geographical site but experience very different environments due to variation 

in germination time (Donohue et al., 2005). Predictors based on monthly, quarterly, or yearly 

averages cannot  account  for  the multiple seasonal  cohorts germinating  in  a single location. 

Moreover, long-term averages cannot account for the effects of climate change on temperature 

variability (Bathiany et al., 2018; Schär et al., 2004; Screen, 2014) and the distinct responses of 

plants to changes in  mean temperature and temperature  variability  (Burghardt  et  al.,  2016; 

Scheepens  et  al.,  2018;  Wheeler  et  al.,  2000).  Experimental  studies  have  typically  used a 

consistent increase in temperature to simulate climate change (Fournier-Level et al., 2016; Li et 

al., 2014; E. S. Post et al., 2008; Sherry et al., 2007; Springate & Kover, 2014) while maintaining 

current patterns of variability (Springate & Kover, 2014), but this may not reflect actual patterns 

of climate change. In comparison, our model considers both the daily range of temperature and 

temperature variation between days. This may allow predictions to better match trait values of 

natural  populations,  which  is  particularly  relevant  for  restoration  projects  that  will  introduce 

plants to uncontrolled conditions. A tradeoff in our model is the multicollinearity of predictors, 

which  results  in  non-independent  effect  sizes  that  do  not  lend  themselves  to  biological 

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

21



interpretation. However, this is less relevant to our primary aim of predicting plant performance 

for multiple genotypes to identify those suitable for revegetation.

Environmental variation was also an important determinant of model performance in external 

validation, with predictions being more accurate when the training set contained data from an 

environment similar to the testing set. For example, VF was well-predicted because the training 

set contained data from HF and NF. In contrast, DTB in OF was consistently underpredicted 

because it  was unique as Scandinavian and non-Scandinavian falls  are functionally  distinct 

environments. A. thaliana growing in Scandinavia are reported to be obligate winter cyclers that 

overwinter under snow cover and flower only in spring (Exposito-Alonso, 2020), whereas those 

growing further south are facultative winter cyclers that can finish their life cycle before snowfall 

(Li et al., 2014). Consequently, a model fitted only to data from early-bolting fall cohorts (VF, HF, 

NF) cannot improve prediction accuracy in OF, where conditions are expected to delay bolting 

until  spring.  For  the  purposes  of  seed  sourcing  and  revegetation,  our  findings  suggest 

environmentally diverse data is crucial to maximizing confidence in model predictions. Despite 

being  resource-intensive,  the  required  data  may  already  exist  for  tree  species  where 

provenance testing has been carried out for centuries (Mátyás, 1996).

Although our study was performed in the well-characterized model species A. thaliana, we only 

used generic,  easy-to-obtain data and avoided  A. thaliana-specific biological  assumptions to 

ensure  our  framework  is  transferable  to  non-model  species.  We  computed  GSMs  using 

genomic  SNPs  selected  without  prior  knowledge  of  their  association  with  DTB  or  SP  and 

defined environmental conditions using only temperature. In theory, additional predictors known 

to be biologically relevant could have been included like herbivory, soil nutrient level, and soil 

microbial  composition (Fitzpatrick et  al.,  2019;  Krannitz et al.,  1991; Sills  & Nienhuis,  1995; 

Weinig et al., 2003). In practice, doing so would decrease model transferability – the information 

required to generate predictions in novel conditions becoming harder to obtain as the predictors 
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become more specific and greater ecophysiological knowledge of the target species is required.

Predicted climate response and potential applications 

We predict temporally and spatially heterogeneous responses to climate change in the coming 

decades. Despite high interannual variability, the general trends were consistent with previous 

findings (Cook et al., 2012; Daele et al., 2012; E. Post et al., 2018; Wu et al., 2017; Yu et al., 

2010;  X.  Zhang et  al.,  2007).  In Scandinavia,  the predicted delay in  DTB likely  reflects the 

disruptive effect of winter warming on vernalization (Cook et al., 2012; Wu et al., 2017; X. Zhang 

et  al.,  2007).  Delayed  flowering  would  increase the period of  vegetative  growth,  causing a 

downstream increase in reproductive output (Choe et al., 2001; Daele et al., 2012; Tienderen et 

al.,  1996).  Conversely,  earlier  bolting  predicted  for  spring  and  summer  cohorts  in  Central 

Europe and South Mediterranean were consistent with expectations from thermal time models 

of accelerated development at higher temperatures (Chew et al., 2012; Wilczek et al., 2009). 

The corresponding decline in fecundity may reflect a shortened period of growth and decreased 

flower production (Scheepens & Stöcklin, 2013), although this is unclear because accelerated 

development has also been suggested to increase reproductive output (Cook et al., 2012). 

While we could not infer the biological causes underlying our predictions, they clearly show a 

breakdown of current local adaptation and increase in genetic offset caused by climate change. 

For the majority of Europe, our predictions suggest local provenancing is less effective in the 

long-term since fecundity is predicted to decline by 2099.  Indeed,  we identified a source of 

genetic variation that could help establish climate-resilient populations of  A. thaliana from an 

unexpected origin: Spain. The Spanish genotype Ll-2 had higher predicted fecundity than local 

genotypes  throughout  most  of  Europe  regardless  of  growing  season,  and  was  potentially 

suitable for boosting climate resilience in locations as disparate as the Balkans, Finland, and 

Northwestern Russia. Importantly, our findings are supported by empirical reports that southern 
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genotypes  outperformed  local  genotypes  across  Europe  (Wilczek  et  al.,  2014)  and  clearly 

demonstrates the value of moving beyond local provenancing as a strategy for sourcing seeds.

Even so, our findings should not be taken as an absolute sign of future maladaptation. In this 

study,  we  assumed  the  germination  date  remained  constant  between  years.  In  reality, 

germination timing is another climate-responsive trait that relies on environmental cues (Finch‐

Savage & Leubner Metzger, 2006) and would likely vary between years. Germination timing‐  

strongly  affect  fitness,  as  seen  in  Central  Europe  where  predictions  were  seasonally  and 

geographically  differentiated (Figure  4a).  This  suggests the potential  for  A.  thaliana to  shift 

germination time in response to climate change,  a phenomenon that has been observed in 

alpine species (Mondoni et al., 2012). If this seasonal shift occurs, A. thaliana has the potential  

to avoid maladaptation and persist in the face of climate change.

Conclusion

Plant  response to climate change in the field is complex and can run contrary to empirical 

expectations  (Parmesan & Hanley,  2015).  This  complexity  has  made predicting  ‘real  world’ 

patterns  of  climate  response  challenging  and  is  a  significant  barrier  to  successful,  climate-

resilient  revegetation.  Our  work  addresses this  gap by  presenting  a  straightforward way of 

incorporating genetic variation, environmental variation, and their interaction into a predictive 

model.  Using  A.  thaliana  as  an  example,  we  demonstrate  the  capacity  for  the  model  to 

accurately  predict  non-linear  responses  to  climate  change  and  its  potential  use  in  seed 

provenancing by determining plant performance over time and space. Although the model was 

developed using a well-characterized species, our framework shows potential for use in non-

model species due to its simple data requirements and minimal biological assumptions.

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

24



Acknowledgements

The authors would like to thank Mark Taylor for providing the microclimatic data, Daniel Runcie 

for helping clarify the math of the models, Moises Exposito-Alonso for sharing germination time 

models and Johanna Schmitt for providing feedback on the manuscript.

474

475

476

477

25



References

Alexander, D. H., & Lange, K. (2011). Enhancements to the ADMIXTURE algorithm for 

individual ancestry estimation. BMC Bioinformatics, 12(1), 246. 

https://doi.org/10.1186/1471-2105-12-246

Amasino, R. (2010). Seasonal and developmental timing of flowering. The Plant Journal, 61(6), 

1001–1013. https://doi.org/10.1111/j.1365-313X.2010.04148.x

Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I., & Mitchell-Olds, T. (2012). 

Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology 

in response to climate change. Proceedings of the Royal Society B: Biological Sciences, 

279(1743), 3843–3852. https://doi.org/10.1098/rspb.2012.1051

Arft, A. M., Walker, M. D., Gurevitch, J., Alatalo, J. M., Bret-Harte, M. S., Dale, M., Diemer, M., 

Gugerli, F., Henry, G. H. R., Jones, M. H., Hollister, R. D., Jónsdóttir, I. S., Laine, K., 

Lévesque, E., Marion, G. M., Molau, U., Mølgaard, P., Nordenhäll, U., Raszhivin, V., … 

Wookey, P. A. (1999). Responses of Tundra Plants to Experimental Warming:meta-

Analysis of the International Tundra Experiment. Ecological Monographs, 69(4), 491–

511. https://doi.org/10.1890/0012-9615(1999)069[0491:ROTPTE]2.0.CO;2

Arouisse, B., Korte, A., Eeuwijk, F. van, & Kruijer, W. (2020). Imputation of 3 million SNPs in the 

Arabidopsis regional mapping population. The Plant Journal, 102(4), 872–882. 

https://doi.org/10.1111/tpj.14659

Bathiany, S., Dakos, V., Scheffer, M., & Lenton, T. M. (2018). Climate models predict increasing 

temperature variability in poor countries. Science Advances, 4(5), eaar5809. 

https://doi.org/10.1126/sciadv.aar5809

Bay, R. A., Rose, N., Barrett, R., Bernatchez, L., Ghalambor, C. K., Lasky, J. R., Brem, R. B., 

Palumbi, S. R., & Ralph, P. (2017). Predicting Responses to Contemporary 

Environmental Change Using Evolutionary Response Architectures. The American 

478

479

26



Naturalist, 189(5), 463–473. https://doi.org/10.1086/691233

Brachi, B., Faure, N., Horton, M., Flahauw, E., Vazquez, A., Nordborg, M., Bergelson, J., 

Cuguen, J., & Roux, F. (2010). Linkage and Association Mapping of Arabidopsis thaliana 

Flowering Time in Nature. PLoS Genetics, 6(5). 

https://doi.org/10.1371/journal.pgen.1000940

Breed, M. F., Stead, M. G., Ottewell, K. M., Gardner, M. G., & Lowe, A. J. (2013). Which 

provenance and where? Seed sourcing strategies for revegetation in a changing 

environment. Conservation Genetics, 14(1), 1–10. https://doi.org/10.1007/s10592-012-

0425-z

Broadhurst, L. M., Lowe, A., Coates, D. J., Cunningham, S. A., McDonald, M., Vesk, P. A., & 

Yates, C. (2008). Seed supply for broadscale restoration: Maximizing evolutionary 

potential. Evolutionary Applications, 1(4), 587–597. https://doi.org/10.1111/j.1752-

4571.2008.00045.x

Burghardt, L. T., Runcie, D. E., Wilczek, A. M., Cooper, M. D., Roe, J. L., Welch, S. M., & 

Schmitt, J. (2016). Fluctuating, warm temperatures decrease the effect of a key floral 

repressor on flowering time in Arabidopsis thaliana. New Phytologist, 210(2), 564–576. 

https://doi.org/10.1111/nph.13799

Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M., & Palmer, T. M. (2015). 

Accelerated modern human–induced species losses: Entering the sixth mass extinction. 

Science Advances. https://www.science.org/doi/abs/10.1126/sciadv.1400253

Chew, Y. H., Wilczek, A. M., Williams, M., Welch, S. M., Schmitt, J., & Halliday, K. J. (2012). An 

augmented Arabidopsis phenology model reveals seasonal temperature control of 

flowering time. New Phytologist, 194(3), 654–665. https://doi.org/10.1111/j.1469-

8137.2012.04069.x

Choe, S., Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S., & Feldmann, K. A. (2001). 

Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in 

increased vegetative growth and seed yield in Arabidopsis. The Plant Journal, 26(6), 

27



573–582. https://doi.org/10.1046/j.1365-313x.2001.01055.x

Cook, B. I., Wolkovich, E. M., & Parmesan, C. (2012). Divergent responses to spring and winter 

warming drive community level flowering trends. Proceedings of the National Academy 

of Sciences of the United States of America, 109(23), 9000–9005. 

https://doi.org/10.1073/pnas.1118364109

Cornes, R. C., Schrier, G. van der, Besselaar, E. J. M. van den, & Jones, P. D. (2018). An 

Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. Journal of 

Geophysical Research: Atmospheres, 123(17), 9391–9409. 

https://doi.org/10.1029/2017JD028200

Daele, I. V., Gonzalez, N., Vercauteren, I., Smet, L. de, Inzé, D., Roldán Ruiz, I., & Vuylsteke, ‐

M. (2012). A comparative study of seed yield parameters in Arabidopsis thaliana 

mutants and transgenics. Plant Biotechnology Journal, 10(4), 488–500. 

https://doi.org/10.1111/j.1467-7652.2012.00687.x

Daetwyler, H. D., Calus, M. P. L., Pong-Wong, R., Campos, G. de los, & Hickey, J. M. (2013). 

Genomic Prediction in Animals and Plants: Simulation of Data, Validation, Reporting, 

and Benchmarking. Genetics, 193(2), 347–365. 

https://doi.org/10.1534/genetics.112.147983

Dale, V. H. (1997). The Relationship Between Land-Use Change and Climate Change. 

Ecological Applications, 7(3), 753–769. https://doi.org/10.1890/1051-

0761(1997)007[0753:TRBLUC]2.0.CO;2

DeLeo, V. L., Menge, D. N. L., Hanks, E. M., Juenger, T. E., & Lasky, J. R. (2020). Effects of 

two centuries of global environmental variation on phenology and physiology of 

Arabidopsis thaliana. Global Change Biology, 26(2), 523–538. 

https://doi.org/10.1111/gcb.14880

Donohue, K. (2002). Germination Timing Influences Natural Selection on Life-History 

Characters in Arabidopsis Thaliana. Ecology, 83(4), 1006–1016. 

https://doi.org/10.1890/0012-9658(2002)083[1006:GTINSO]2.0.CO;2

28



Donohue, K., Dorn, L., Griffith, C., Kim, E., Aguilera, A., Polisetty, C. R., & Schmitt, J. (2005). 

Niche Construction Through Germination Cueing: Life-History Responses to Timing of 

Germination in Arabidopsis Thaliana. Evolution, 59(4), 771–785. 

https://doi.org/10.1111/j.0014-3820.2005.tb01752.x

Durvasula, A., Fulgione, A., Gutaker, R. M., Alacakaptan, S. I., Flood, P. J., Neto, C., 

Tsuchimatsu, T., Burbano, H. A., Picó, F. X., Alonso-Blanco, C., & Hancock, A. M. 

(2017). African genomes illuminate the early history and transition to selfing in 

Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 114(20), 5213–

5218. https://doi.org/10.1073/pnas.1616736114

El-Soda, M., Malosetti, M., Zwaan, B. J., Koornneef, M., & Aarts, M. G. M. (2014). Genotype × 

environment interaction QTL mapping in plants: Lessons from Arabidopsis. Trends in 

Plant Science, 19(6), 390–398. https://doi.org/10.1016/j.tplants.2014.01.001

Eu-ahsunthornwattana, J., Miller, E. N., Fakiola, M., Jeronimo, S. M. B., Blackwell, J. M., & 

Cordell, H. J. (2014). Comparison of Methods to Account for Relatedness in Genome-

Wide Association Studies with Family-Based Data. PLoS Genetics, 10(7). https://doi.org/

10.1371/journal.pgen.1004445

Exposito-Alonso, M. (2020). Seasonal timing adaptation across the geographic range of 

Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 117(18), 9665–

9667. https://doi.org/10.1073/pnas.1921798117

Fedriani, J. M., Garrote, P. J., Calvo, G., Delibes, M., Castilla, A. R., & Żywiec, M. (2019). 

Combined effects of seed provenance, plant facilitation and restoration site on 

revegetation success. Journal of Applied Ecology, 56(4), 996–1006. 

https://doi.org/10.1111/1365-2664.13343

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces 

for global land areas. International Journal of Climatology, 37(12), 4302–4315. 

https://doi.org/10.1002/joc.5086

Finch Savage, W. E., & Leubner Metzger, G. (2006). Seed dormancy and the control of ‐ ‐

29



germination. New Phytologist, 171(3), 501–523. https://doi.org/10.1111/j.1469-

8137.2006.01787.x

Fitzpatrick, C. R., Mustafa, Z., & Viliunas, J. (2019). Soil microbes alter plant fitness under 

competition and drought. Journal of Evolutionary Biology, 32(5), 438–450. https://doi.org/

10.1111/jeb.13426

Foden, W., Midgley, G. F., Hughes, G., Bond, W. J., Thuiller, W., Hoffman, M. T., Kaleme, P., 

Underhill, L. G., Rebelo, A., & Hannah, L. (2007). A changing climate is eroding the 

geographical range of the Namib Desert tree Aloe through population declines and 

dispersal lags. Diversity and Distributions, 13(5), 645–653. 

https://doi.org/10.1111/j.1472-4642.2007.00391.x

Fournier-Level, A., Korte, A., Cooper, M. D., Nordborg, M., Schmitt, J., & Wilczek, A. M. (2011). 

A Map of Local Adaptation in Arabidopsis thaliana. Science, 334(6052), 86–89. 

https://doi.org/10.1126/science.1209271

Fournier-Level, A., Perry, E. O., Wang, J. A., Braun, P. T., Migneault, A., Cooper, M. D., 

Metcalf, C. J. E., & Schmitt, J. (2016). Predicting the evolutionary dynamics of seasonal 

adaptation to novel climates in Arabidopsis thaliana. Proceedings of the National 

Academy of Sciences, 113(20), E2812–E2821. 

https://doi.org/10.1073/pnas.1517456113

Gao, N., Teng, J., Ye, S., Yuan, X., Huang, S., Zhang, H., Zhang, X., Li, J., & Zhang, Z. (2018). 

Genomic Prediction of Complex Phenotypes Using Genic Similarity Based Relatedness 

Matrix. Frontiers in Genetics, 9. https://doi.org/10.3389/fgene.2018.00364

Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., 

Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z.-L., 

& Zhang, M. (2011). The Community Climate System Model Version 4. Journal of 

Climate, 24(19), 4973–4991. https://doi.org/10.1175/2011JCLI4083.1

Gnan, S., Priest, A., & Kover, P. X. (2014). The Genetic Basis of Natural Variation in Seed Size 

and Seed Number and Their Trade-Off Using Arabidopsis thaliana MAGIC Lines. 

30



Genetics, 198(4), 1751–1758. https://doi.org/10.1534/genetics.114.170746

Granier, C., Massonnet, C., Turc, O., Muller, B., Chenu, K., & Tardieu, F. (2002). Individual leaf 

development in Arabidopsis thaliana: A stable thermal-time-based programme. Annals 

of Botany, 89(5), 595–604. https://doi.org/10.1093/aob/mcf085

Gray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change. 

Developmental Biology, 419(1), 64–77. https://doi.org/10.1016/j.ydbio.2016.07.023

Guerin, G. R., Wen, H., & Lowe, A. J. (2012). Leaf morphology shift linked to climate change. 

Biology Letters, 8(5), 882–886. https://doi.org/10.1098/rsbl.2012.0458

Hancock, A. M., Brachi, B., Faure, N., Horton, M. W., Jarymowycz, L. B., Sperone, F. G., 

Toomajian, C., Roux, F., & Bergelson, J. (2011). Adaptation to Climate Across the 

Arabidopsis thaliana Genome. Science, 334(6052), 83–86. 

https://doi.org/10.1126/science.1209244

Harris, J. A., Hobbs, R. J., Higgs, E., & Aronson, J. (2006). Ecological Restoration and Global 

Climate Change. Restoration Ecology, 14(2), 170–176. https://doi.org/10.1111/j.1526-

100X.2006.00136.x

Hiemstra, P. (2013). automap: Automatic interpolation package (1.0-14) [Computer software]. 

https://CRAN.R-project.org/package=automap

Hijmans, R. J., Etten, J. van, Sumner, M., Cheng, J., Baston, D., Bevan, A., Bivand, R., Busetto, 

L., Canty, M., Forrest, D., Ghosh, A., Golicher, D., Gray, J., Greenberg, J. A., Hiemstra, 

P., Hingee, K., Geosciences, I. for M. A., Karney, C., Mattiuzzi, M., … Wueest, R. 

(2020). raster: Geographic Data Analysis and Modeling (3.3-13) [Computer software]. 

https://CRAN.R-project.org/package=raster

Koornneef, M., Alonso-Blanco, C., Peeters, A. J. M., & Soppe, W. (1998). Genetic control of 

flowering time in arabidopsis. Annual Review of Plant Physiology and Plant Molecular 

Biology, 49(1), 345–370. https://doi.org/10.1146/annurev.arplant.49.1.345

Koornneef, M., & Meinke, D. (2010). The development of Arabidopsis as a model plant. The 

Plant Journal, 61(6), 909–921. https://doi.org/10.1111/j.1365-313X.2009.04086.x

31



Korves, T. M., Schmid, K. J., Caicedo, A. L., Mays, C., Stinchcombe, J. R., Purugganan, M. D., 

& Schmitt, J. (2007). Fitness effects associated with the major flowering time gene 

FRIGIDA in Arabidopsis thaliana in the field. The American Naturalist, 169(5), E141-157. 

https://doi.org/10.1086/513111

Krannitz, P. G., Aarssen, L. W., & Dow, J. M. (1991). The Effect of Genetically Based 

Differences in Seed Size on Seedling Survival in Arabidopsis thaliana (Brassicaceae). 

American Journal of Botany, 78(3), 446–450. JSTOR. https://doi.org/10.2307/2444967

Li, Y., Cheng, R., Spokas, K. A., Palmer, A. A., & Borevitz, J. O. (2014). Genetic variation for life 

history sensitivity to seasonal warming in Arabidopsis thaliana. Genetics, 196(2), 569–

577. https://doi.org/10.1534/genetics.113.157628

Linde, M., Hattendorf, A., Kaufmann, H., & Debener, Th. (2006). Powdery mildew resistance in 

roses: QTL mapping in different environments using selective genotyping. Theoretical 

and Applied Genetics, 113(6), 1081–1092. https://doi.org/10.1007/s00122-006-0367-2

Lu, P., Yu, Q., Liu, J., & Lee, X. (2006). Advance of tree-flowering dates in response to urban 

climate change. Agricultural and Forest Meteorology, 138(1), 120–131. 

https://doi.org/10.1016/j.agrformet.2006.04.002

Mátyás, C. (1996). Climatic adaptation of trees: Rediscovering provenance tests. Euphytica, 

92(1), 45–54. https://doi.org/10.1007/BF00022827

Millet, E. J., Kruijer, W., Coupel-Ledru, A., Alvarez Prado, S., Cabrera-Bosquet, L., Lacube, S., 

Charcosset, A., Welcker, C., van Eeuwijk, F., & Tardieu, F. (2019). Genomic prediction 

of maize yield across European environmental conditions. Nature Genetics, 51(6), 952–

956. https://doi.org/10.1038/s41588-019-0414-y

Montesinos-López, A., Montesinos-López, O. A., Gianola, D., Crossa, J., & Hernández-Suárez, 

C. M. (2018). Multi-environment Genomic Prediction of Plant Traits Using Deep Learners 

With Dense Architecture. G3: Genes, Genomes, Genetics, 8(12), 3813–3828. 

https://doi.org/10.1534/g3.118.200740

Oliver, M. A., & Webster, R. (1990). Kriging: A method of interpolation for geographical 

32



information systems. International Journal of Geographical Information Systems, 4(3), 

313–332. https://doi.org/10.1080/02693799008941549

Parmesan, C., & Hanley, M. E. (2015). Plants and climate change: Complexities and surprises. 

Annals of Botany, 116(6), 849–864. https://doi.org/10.1093/aob/mcv169

Platt, A., Horton, M., Huang, Y. S., Li, Y., Anastasio, A. E., Mulyati, N. W., Ågren, J., Bossdorf, 

O., Byers, D., Donohue, K., Dunning, M., Holub, E. B., Hudson, A., Corre, V. L., Loudet, 

O., Roux, F., Warthmann, N., Weigel, D., Rivero, L., … Borevitz, J. O. (2010). The Scale 

of Population Structure in Arabidopsis thaliana. PLOS Genetics, 6(2), e1000843. https://

doi.org/10.1371/journal.pgen.1000843

Post, E. S., Pedersen, C., Wilmers, C. C., & Forchhammer, M. C. (2008). Phenological 

Sequences Reveal Aggregate Life History Response to Climatic Warming. Ecology, 

89(2), 363–370. https://doi.org/10.1890/06-2138.1

Post, E., Steinman, B. A., & Mann, M. E. (2018). Acceleration of phenological advance and 

warming with latitude over the past century. Scientific Reports, 8(1), 3927. 

https://doi.org/10.1038/s41598-018-22258-0

Pouteau, S., & Albertini, C. (2009). The significance of bolting and floral transitions as indicators 

of reproductive phase change in Arabidopsis. Journal of Experimental Botany, 60(12), 

3367–3377. https://doi.org/10.1093/jxb/erp173

Primack, D., Imbres, C., Primack, R. B., Miller Rushing, A. J., & Tredici, P. D. (2004). Herbarium‐  

specimens demonstrate earlier flowering times in response to warming in Boston. 

American Journal of Botany, 91(8), 1260–1264. https://doi.org/10.3732/ajb.91.8.1260

Prober, S., Byrne, M., McLean, E., Steane, D., Potts, B., Vaillancourt, R., & Stock, W. (2015). 

Climate-adjusted provenancing: A strategy for climate-resilient ecological restoration. 

Frontiers in Ecology and Evolution, 3, 65. https://doi.org/10.3389/fevo.2015.00065

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., 

Sklar, P., de Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A Tool Set for 

Whole-Genome Association and Population-Based Linkage Analyses. American Journal  

33



of Human Genetics, 81(3), 559–575.

Rakitsch, B., Lippert, C., Stegle, O., & Borgwardt, K. (2013). A Lasso multi-marker mixed model 

for association mapping with population structure correction. Bioinformatics, 29(2), 206–

214. https://doi.org/10.1093/bioinformatics/bts669

Ramalho, C. E., Byrne, M., & Yates, C. J. (2017). A Climate-Oriented Approach to Support 

Decision-Making for Seed Provenance in Ecological Restoration. Frontiers in Ecology 

and Evolution, 5, 95. https://doi.org/10.3389/fevo.2017.00095

Ramstein, G. P., Evans, J., Kaeppler, S. M., Mitchell, R. B., Vogel, K. P., Buell, C. R., & Casler, 

M. D. (2016). Accuracy of Genomic Prediction in Switchgrass (Panicum virgatum L.) 

Improved by Accounting for Linkage Disequilibrium. G3: Genes, Genomes, Genetics, 

6(4), 1049–1062. https://doi.org/10.1534/g3.115.024950

Rellstab, C., Dauphin, B., & Exposito-Alonso, M. (2021). Prospects and limitations of genomic 

offset in conservation management. Evolutionary Applications, 14(5), 1202–1212. 

https://doi.org/10.1111/eva.13205

Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera Arroita, G., Hauenstein, S., ‐

Lahoz Monfort, J. J., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., & ‐

Dormann, C. F. (2017). Cross-validation strategies for data with temporal, spatial, 

hierarchical, or phylogenetic structure. Ecography, 40(8), 913–929. 

https://doi.org/10.1111/ecog.02881

Rosloski, S. M., Singh, A., Jali, S. S., Balasubramanian, S., Weigel, D., & Grbic, V. (2013). 

Functional analysis of splice variant expression of MADS AFFECTING FLOWERING 2 

of Arabidopsis thaliana. Plant Molecular Biology, 81(1–2), 57–69. https://doi.org/10.1007/

s11103-012-9982-2

Salomé, P. A., Bomblies, K., Laitinen, R. A. E., Yant, L., Mott, R., & Weigel, D. (2011). Genetic 

Architecture of Flowering-Time Variation in Arabidopsis thaliana. Genetics, 188(2), 421–

433. https://doi.org/10.1534/genetics.111.126607

Sasaki, E., Zhang, P., Atwell, S., Meng, D., & Nordborg, M. (2015). “Missing” GxE Variation 

34



Controls Flowering Time in Arabidopsis thaliana. PLOS Genetics, 11(10), e1005597. 

https://doi.org/10.1371/journal.pgen.1005597

Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., & Appenzeller, C. (2004). 

The role of increasing temperature variability in European summer heatwaves. Nature, 

427(6972), 332–336. https://doi.org/10.1038/nature02300

Scheepens, J. F., Deng, Y., & Bossdorf, O. (2018). Phenotypic plasticity in response to 

temperature fluctuations is genetically variable, and relates to climatic variability of 

origin, in Arabidopsis thaliana. AoB PLANTS, 10(4). 

https://doi.org/10.1093/aobpla/ply043

Scheepens, J. F., & Stöcklin, J. (2013). Flowering phenology and reproductive fitness along a 

mountain slope: Maladaptive responses to transplantation to a warmer climate in 

Campanula thyrsoides. Oecologia, 171(3), 679–691. https://doi.org/10.1007/s00442-

012-2582-7

Schwartz, M. D., & Hanes, J. M. (2010). Continental-scale phenology: Warming and chilling. 

International Journal of Climatology, 30(11), 1595–1598. https://doi.org/10.1002/joc.2014

Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Giuseppe Fogli, P., Manzini, E., Vichi, M., 

Oddo, P., & Navarra, A. (2011). Effects of Tropical Cyclones on Ocean Heat Transport in 

a High-Resolution Coupled General Circulation Model. Journal of Climate, 24(16), 4368–

4384. https://doi.org/10.1175/2011JCLI4104.1

Screen, J. A. (2014). Arctic amplification decreases temperature variance in northern mid- to 

high-latitudes. Nature Climate Change, 4(7), 577–582. 

https://doi.org/10.1038/nclimate2268

Seymour, D. K., Chae, E., Grimm, D. G., Pizarro, C. M., Habring-Müller, A., Vasseur, F., 

Rakitsch, B., Borgwardt, K. M., Koenig, D., & Weigel, D. (2016). Genetic architecture of 

nonadditive inheritance in Arabidopsis thaliana hybrids. Proceedings of the National 

Academy of Sciences. https://doi.org/10.1073/pnas.1615268113

Sharbel, T. F., Haubold, B., & Mitchell-Olds, T. (2000). Genetic isolation by distance in 

35



Arabidopsis thaliana: Biogeography and postglacial colonization of Europe. Molecular 

Ecology, 9(12), 2109–2118. https://doi.org/10.1046/j.1365-294x.2000.01122.x

Sherry, R. A., Zhou, X., Gu, S., Arnone, J. A., Schimel, D. S., Verburg, P. S., Wallace, L. L., & 

Luo, Y. (2007). Divergence of reproductive phenology under climate warming. 

Proceedings of the National Academy of Sciences, 104(1), 198–202. 

https://doi.org/10.1073/pnas.0605642104

Sills, G. R., & Nienhuis, J. (1995). Maternal phenotypic effects due to soil nutrient levels and 

sink removal in Arabidopsis thaliana (Brassicaceae). American Journal of Botany, 82(4), 

491–495. https://doi.org/10.1002/j.1537-2197.1995.tb15669.x

Speed, D., & Balding, D. J. (2015). Relatedness in the post-genomic era: Is it still useful? 

Nature Reviews Genetics, 16(1), 33–44. https://doi.org/10.1038/nrg3821

Springate, D. A., & Kover, P. X. (2014). Plant responses to elevated temperatures: A field study 

on phenological sensitivity and fitness responses to simulated climate warming. Global 

Change Biology, 20(2), 456–465. https://doi.org/10.1111/gcb.12430

Suding, K., Higgs, E., Palmer, M., Callicott, J. B., Anderson, C. B., Baker, M., Gutrich, J. J., 

Hondula, K. L., LaFevor, M. C., Larson, B. M. H., Randall, A., Ruhl, J. B., & Schwartz, K. 

Z. S. (2015). Committing to ecological restoration. Science, 348(6235), 638–640. https://

doi.org/10.1126/science.aaa4216

Sun, Y., Bossdorf, O., Grados, R. D., Liao, Z., & Müller Schärer, H. (2020). Rapid genomic and ‐

phenotypic change in response to climate warming in a widespread plant invader. 

Global Change Biology, 26(11), 6511–6522. https://doi.org/10.1111/gcb.15291

Supple, M. A., Bragg, J. G., Broadhurst, L. M., Nicotra, A. B., Byrne, M., Andrew, R. L., Widdup, 

A., Aitken, N. C., & Borevitz, J. O. (2018). Landscape genomic prediction for restoration 

of a Eucalyptus foundation species under climate change. ELife, 7, e31835. 

https://doi.org/10.7554/eLife.31835

Thornton, P. E., Thornton, M. M., Mayer, B. W., Wei, Y., Devarakonda, R., Vose, R. S., & Cook, 

R. B. (2016). Daymet: Daily Surface Weather Data on a 1-km Grid for North America, 

36



Version 3. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1328

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal 

Statistical Society. Series B (Methodological), 58(1), 267–288.

Tienderen, P. H. van, Hammad, I., & Zwaal, F. C. (1996). Pleiotropic effects of flowering time 

genes in the annual crucifer Arabidopsis thaliana (Brassicaceae). American Journal of 

Botany, 83(2), 169–174. https://doi.org/10.1002/j.1537-2197.1996.tb12693.x

Tilman, D., Clark, M., Williams, D. R., Kimmel, K., Polasky, S., & Packer, C. (2017). Future 

threats to biodiversity and pathways to their prevention. Nature, 546(7656), 73–81. 

https://doi.org/10.1038/nature22900

van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., 

Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., 

Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An 

overview. Climatic Change, 109(1), 5. https://doi.org/10.1007/s10584-011-0148-z

Weinig, C., Stinchcombe, J. R., & Schmitt, J. (2003). Evolutionary Genetics of Resistance and 

Tolerance to Natural Herbivory in Arabidopsis thaliana. Evolution, 57(6), 1270–1280. 

JSTOR.

Wheeler, T. R., Craufurd, P. Q., Ellis, R. H., Porter, J. R., & Vara Prasad, P. V. (2000). 

Temperature variability and the yield of annual crops. Agriculture, Ecosystems & 

Environment, 82(1), 159–167. https://doi.org/10.1016/S0167-8809(00)00224-3

Wilczek, A. M., Burghardt, L. T., Cobb, A. R., Cooper, M. D., Welch, S. M., & Schmitt, J. (2010). 

Genetic and physiological bases for phenological responses to current and predicted 

climates. Philosophical Transactions of the Royal Society B: Biological Sciences, 

365(1555), 3129–3147. https://doi.org/10.1098/rstb.2010.0128

Wilczek, A. M., Cooper, M. D., Korves, T. M., & Schmitt, J. (2014). Lagging adaptation to 

warming climate in Arabidopsis thaliana. Proceedings of the National Academy of 

Sciences, 111(22), 7906–7913. https://doi.org/10.1073/pnas.1406314111

Wilczek, A. M., Roe, J. L., Knapp, M. C., Cooper, M. D., Lopez-Gallego, C., Martin, L. J., Muir, 

37



C. D., Sim, S., Walker, A., Anderson, J., Egan, J. F., Moyers, B. T., Petipas, R., 

Giakountis, A., Charbit, E., Coupland, G., Welch, S. M., & Schmitt, J. (2009). Effects of 

Genetic Perturbation on Seasonal Life History Plasticity. Science, 323(5916), 930–934. 

https://doi.org/10.1126/science.1165826

Wilson, A. J., Réale, D., Clements, M. N., Morrissey, M. M., Postma, E., Walling, C. A., Kruuk, 

L. E. B., & Nussey, D. H. (2010). An ecologist’s guide to the animal model. Journal of 

Animal Ecology, 79(1), 13–26. https://doi.org/10.1111/j.1365-2656.2009.01639.x

Windhausen, V. S., Atlin, G. N., Hickey, J. M., Crossa, J., Jannink, J.-L., Sorrells, M. E., Raman, 

B., Cairns, J. E., Tarekegne, A., Semagn, K., Beyene, Y., Grudloyma, P., Technow, F., 

Riedelsheimer, C., & Melchinger, A. E. (2012). Effectiveness of Genomic Prediction of 

Maize Hybrid Performance in Different Breeding Populations and Environments. G3: 

Genes, Genomes, Genetics, 2(11), 1427–1436. https://doi.org/10.1534/g3.112.003699

Wortley, L., Hero, J.-M., & Howes, M. (2013). Evaluating Ecological Restoration Success: A 

Review of the Literature. Restoration Ecology, 21(5), 537–543. 

https://doi.org/10.1111/rec.12028

Wu, X., Liu, H., Li, X., Tian, Y., & Mahecha, M. D. (2017). Responses of Winter Wheat Yields to 

Warming-Mediated Vernalization Variations Across Temperate Europe. Frontiers in 

Ecology and Evolution, 5. https://doi.org/10.3389/fevo.2017.00126

Yu, H., Luedeling, E., & Xu, J. (2010). Winter and spring warming result in delayed spring 

phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences, 

107(51), 22151–22156. https://doi.org/10.1073/pnas.1012490107

Zhang, J., Song, Q., Cregan, P. B., & Jiang, G.-L. (2016). Genome-wide association study, 

genomic prediction and marker-assisted selection for seed weight in soybean (Glycine 

max). TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 

129(1), 117–130. https://doi.org/10.1007/s00122-015-2614-x

Zhang, X., Tarpley, D., & Sullivan, J. T. (2007). Diverse responses of vegetation phenology to a 

warming climate. Geophysical Research Letters, 34(19). 

38



https://doi.org/10.1029/2007GL031447

Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., 

Ciais, P., Durand, J.-L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., 

Martre, P., Müller, C., … Asseng, S. (2017). Temperature increase reduces global yields 

of major crops in four independent estimates. Proceedings of the National Academy of 

Sciences, 114(35), 9326–9331. https://doi.org/10.1073/pnas.1701762114

480

39


	Study Data Set
	Genetic Variation
	Microclimatic Variation
	Model Description
	Assessing Model Performance

	Model Application
	Inferring the spatial distribution of Genetic Variation and Germination Date
	Projected Climate Response

	Internal Validation
	External Validation
	Projected Climate Response
	Including genetic and environmental variation improves model performance

