
P
os
te
d
on

31
J
an

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
70
66
86
03
.3
52
23
60
6/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Symmetry and Nonexistence of Positive Solutions for a fractional

Laplacion System with coupled terms

Rong Zhang1

1Institute of Mathematics, School of Mathematics Science, Nanjing Normal University,
Jiangsu Nanjing 210023, China

April 16, 2024

Abstract

In this paper, we study the problem for a nonlinear elliptic system involving fractional Laplacion: $$ \begin{cases} \ (-

\Delta)ˆ{\frac{\alpha}{2}}u=|x|ˆ{\gamma}uˆ{p}vˆ{q+1},\\ \ (-\Delta)ˆ{\frac{\beta}{2}}v=|x|ˆ{\tau}uˆ{p+1}vˆ{q}, \end{cases}
$$ where $0<\alpha,\beta<2,$ $p,q>0\ and\ \max\{p,q\}\geq1,$ $\alpha+\gamma>0,\beta+\tau>0,$ $n\geq2$. First of

all, while in the subcritical case, i.e. $n+\alpha+\gamma-p(n-\alpha)-(q+1)(n-\beta)>0$, $n+\beta+\tau-(p+1)(n-\alpha)-
q(n-\beta)>0$, we prove the nonexistence of positive solution for the above system in $\mathbb{R}ˆ{n}$. Moreover, though

$Doubling\ Lemma$ to obtain the singularity estimates of the positive solution on bounded domain $\Omega$. In addi-

tion, while in the critical case, i.e. $n+\alpha+\gamma-p(n-\alpha)-(q+1)(n-\beta)=0$, $n+\beta+\tau-(p+1)(n-\alpha)-
q(n-\beta)=0$, we show that the positive solution of above system are radical symmetric and decreasing about some point by

using the method of $Moving\ planes$ in $\mathbb{R}ˆ{n}$.

Hosted file

0914.tex available at https://authorea.com/users/393661/articles/712064-symmetry-and-

nonexistence-of-positive-solutions-for-a-fractional-laplacion-system-with-coupled-terms

1

https://authorea.com/users/393661/articles/712064-symmetry-and-nonexistence-of-positive-solutions-for-a-fractional-laplacion-system-with-coupled-terms
https://authorea.com/users/393661/articles/712064-symmetry-and-nonexistence-of-positive-solutions-for-a-fractional-laplacion-system-with-coupled-terms
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Abstract: In this paper, we study the problem for a nonlinear elliptic system involv-

ing fractional Laplacion: {
(−∆)

α
2 u = |x|γupvq+1,

(−∆)
β
2 v = |x|τup+1vq,

where 0 < α, β < 2, p, q > 0 and max{p, q} ≥ 1, α + γ > 0, β + τ > 0, n ≥ 2. First

of all, while in the subcritical case, i.e. n + α + γ − p(n − α) − (q + 1)(n − β) > 0,

n+ β + τ − (p+ 1)(n− α)− q(n− β) > 0, we prove the nonexistence of positive solution

for the above system in Rn. Moreover, though Doubling Lemma to obtain the singularity

estimates of the positive solution on bounded domain Ω. In addition, while in the critical

case, i.e. n+α+γ−p(n−α)− (q+1)(n−β) = 0, n+β+τ − (p+1)(n−α)−q(n−β) = 0,

we show that the positive solution of above system are radical symmetric and decreasing

about some point by using the method of Moving planes in Rn.

Mathematics Subject Classification (2020): 35R11, 35A10, 35B06.

Key words: Fractional Laplacian; Moving planes; Radially symmetric; Doubling Lemma;

Singularity estimates.

1 Introduction

In this paper, we study the following system{
(−∆)

α
2 u = |x|γupvq+1,

(−∆)
β
2 v = |x|τup+1vq,

(1.1)

where 0 < α, β < 2, p, q > 0 and max{p, q} ≥ 1, α + γ > 0, β + τ > 0, n ≥ 2.

We also assume that

n+ α + γ − p(n− α)− (q + 1)(n− β) ≥ 0;

n+ β + τ − (p+ 1)(n− α)− q(n− β) ≥ 0;
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The system (1.1) and the corresponding parabolic problem appear in the study
of static Schrödinger theory and Bose Einstein condensate with two components
([15]). It also can be used to describe competition of biological population. In recent
years, the fractional Laplacian has attracted much attention from the mathemati-
cal community due to its nonlocality and widespread applications. It can be used
to model diverse physical phenomena. For instance, in the diffusion process, the
operator was used to derive heat kernel estimates for many symmetric jump-type
processes (see [1]) and to study the acoustic wave equation. In astrophysics, it is
used to model the dynamics in the Hamiltonian chaos (see [25]). It also has various
applications in probability and finance, in which this operator is defined as the gen-
erator of -stable Lvy processes that represent random motions, such as the Brownian
motion and the Poisson process (see [8]), anomalous diffusion and quasi-geostrophic
flows, turbulence and water waves, molecular dynamics, and relativistic quantum
mechanics of stars, see ([3], [5], [24]) and it also plays an important roles in the
theory of nonlinear partial differential equations.

The fractional Laplacian in Rn is a nonlocal pseudo-differential operator, we
assuming the form

(−∆)
α
2 u =Cn,αPV

∫
Rn

u(x)− u(y)

|x− y|n+α
dy

=Cn,α lim
ε→0

∫
Rn\Bε(0)

u(x)− u(y)

|x− y|n+α
dy.

(1.2)

where Cn,α is a normalization constant and PV represents the Cauchy principal
value.

1.1 Nonexistence and Symmetry

In this subsection, we study the following system
(−∆)

α
2 u = |x|γupvq+1, x ∈ Rn,

(−∆)
β
2 v = |x|τup+1vq, x ∈ Rn,

u ≥ 0, v ≥ 0, x ∈ Rn.

(1.3)

where 0 < α, β < 2, p, q > 0 and max{p, q} ≥ 1, α + γ > 0, β + τ > 0, n ≥ 2.
We define the solution of (1.3) in the distribution sense. Let

Lα = {u : Rn → R|
∫
Rn

|u(x)|
1 + |x|n+α

dy <∞},

and

Lβ = {u : Rn → R|
∫
Rn

|u(x)|
1 + |x|n+β

dy <∞},

Obviously, the integral in (1.3) is well defined for u ∈ Lα ∩ C1,1
loc , v ∈ Lβ ∩ C

1,1
loc .

It is not easy to deal with the problems involving a nonlocal fractional Laplacian
operator due to the nonlocal charactrristic of these operators. The first method to
handle such problems is known as the extended method, which was introduced
by Caffarelli and Silvestre [4]. Namely, a nonlocal problem ivolving the fractioal
Laplacian is transformed into a higher dimensional local prolem.
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The study of the solution u : Rn → R of the equation involving fractional
Laplacian needs its extension U : Rn × [0,∞)→ R given by{

div(y1−α∇U) = 0, (x, y) ∈ Rn × [0,∞),

U(x, 0) = g(x).

Then

(−∆)
β
2 g(x) = −Cn,β lim

y→0+
y1−β ∂U

∂y
, x ∈ Rn.

The other method is the integral equations method, such as method of moving
planes in integral forms to study their equivalent corresponding integrals ([16],[17]).
That is, if we choose the integral equations method to study the well-known nonlin-
ear partical differential equation:

(−∆)
α
2 u = u

n+p
n−p ,

we need an equaivalent integral form:

u(x) =

∫
Rn

u
n+p
n−p (y)

|x− y|n−α
dy.

Recently, Zhang et al. in [28] studied the problem for a nonlinear elliptic system
involving fractional Laplacion:{

(−∆)
α
2 u = |x|τupvq+1,

(−∆)
α
2 v = |x|τup+1vq,

(1.4)

where 0 < α < 2, p, q > 0 and max{p, q} ≥ 1, τ ≥ 0, n ≥ 2. They showed that the
positive solution of above system are radially symmetric and decreasing about origin
by using the method of Moving planes in Rn. Moreover, while in the subcritical case
p+ q + 1 < n+α+2τ

n−α , they proved the nonexistence of positive solution for the above
system in Rn, then though Doubling Lemma to obtained the singularity estimates
of the positive solution on bounded domain Ω̃.

After routine calculations like in [12], assume u, v ∈ Lα ∩ C1,1
loc and satisfy∫

Rn
(−∆)

α
4 u(x)(−∆)

α
4 φ(x)dx =

∫
Rn
|x|τup(x)vq+1(x)φ(x)dx, (1.5)

∫
Rn

(−∆)
α
4 v(x)(−∆)

α
4 φ(x)dx =

∫
Rn
|x|τup+1(x)vq(x)φ(x)dx, (1.6)

for any φ(x) ∈ C∞0 , where ∫
Rn

(−∆)
α
4 u(x)(−∆)

α
4 φ(x)dx

is defined by the Fourier transform∫
Rn
|ξ|αû(ξ)φ̂(ξ)dξ,

3



where û and φ̂ are the Fourier transform of u and φ respectively. Zhang et al. also
obtained that system (1.3) as defined above is equivalent to integral system{

u(x) =
∫
Rn
|y|τup(y)vq+1(y)
|x−y|n−α dy, u > 0 in Rn,

v(x) =
∫
Rn
|y|τup+1(y)vq(y)
|x−y|n−α dy, v > 0 in Rn.

(1.7)

Ma et al. in [19] studied the nonexistence of positive solutions for the following
fractional Hénon system

(−∆)
α
2 u = |x|avp, x ∈ Rn,

(−∆)
α
2 v = |x|buq, x ∈ Rn,

u ≥ 0, v ≥ 0, x ∈ Rn,

(1.8)

where 0 < α < 2, 1 ≤ p, q < ∞, a, b ≥ 0, n ≥ 2. Using a direct method of
moving planes, they have been proved the non-existence of positive solution in the
subcritical case 1 < p < n+α+a

n−α , 1 < q < n+α+b
n−α . Moreover, they also proved (1.8)

equivalence the following integral system{
u(x) = C1

∫
Rn
|y|avp(y)
|x−y|n−αdy,

v(x) = C2

∫
Rn
|y|buq(y)
|x−y|n−αdy,

(1.9)

under certain suitable conditions.
In [14], Li concerned the following elliptic system{

−∆u = (q + 1)uqvp+1, u > 0 ∈ Rn,

−∆v = (p+ 1)uq+1vp, v > 0 ∈ Rn,
(1.10)

where n ≥ 3, p, q > 0 and max{p, q} ≥ 1. They discussed the nonexistence of
positive solution in subcritical case and stable solution in supercritical case, the
necessary and sufficient conditions of classification in the critical case, and by us-
ing the Liouville theorem of (1.10), they estimated boundary blow-up rate, i.e.

u(x), v(x) ≤ Cdist−
2
p+q (x, ∂Ω), where Ω ⊂ Rn is a bounded domain.

Chen [6] proved that when n ≥ 3 and min{p, q} > 0, if (u, v) solve (1.10), then
it also solves the integral system{

u(x) = C1

∫
Rn
|y|auq(y)vp+1(y)
|x−y|n−2 dy,

v(x) = C2

∫
Rn
|y|buq+1(y)vp(y)
|x−y|n−2 dy,

(1.11)

for some positive constants C1, C2.
In [2], the author dealed with the local and global behaviour of the positive

solution of the semilinear elliptic system in Rn(n ≥ 3){
−∆u = |x|σuqvp+1, u > 0 ∈ Rn,

−∆v = |x|σuq+1vp, v > 0 ∈ Rn,
(1.12)

where σ, p, q ∈ R, and p, q > 0. Their main results are the fact that the solution
satisfy Harnack inequality when p+ q + 1 < n+2

n−2
in the local estimates. If not, they

also given the precise behaviour of the solution.

4



Li et al. in [12] studied the following weighted system of partial differential
equations 

(−∆)
α
2 u = |x|−svp, x ∈ Rn,

(−∆)
α
2 v = |x|−tuq, x ∈ Rn,

u ≥ 0, v ≥ 0, x ∈ Rn,

(1.13)

where p, q > 1, 0 < α < n and 0 ≤ s, t < α. They first established the equivalence
between partial differential system and weighted integral system{

u(x) =
∫
Rn

vp(y)
|x−y|n−α|y|sdy,

v(x) =
∫
Rn

uq(y)
|x−y|n−α|y|tdy.

(1.14)

Then, in the critical case of n−s
q+1

+ n−t
p+1

= n−α, they showed that every pair of positive

solution (u, v) are radially symmetric about the origin. While in the subcritical case,
they proved the nonexistence of positive solution.

Remark 1. Inspired by aforementioned work, we can obtain that system (1.3) as
defined above is equivalent to integral system{

u(x) =
∫
Rn
|y|γup(y)vq+1(y)
|x−y|n−α dy, u > 0 in Rn,

v(x) =
∫
Rn
|y|τup+1(y)vq(y)
|x−y|n−β dy, v > 0 in Rn.

(1.15)

The following is our main theorems.

If p and q is subcritical, we will show that there actually is no positive solution.

Theorem 1.1. Assume that u ∈ Lα ∩ C1,1
loc , v ∈ Lβ ∩ C1,1

loc , and max{p, q} ≥ 1.
Let (u, v) is a pair of positive solutions for (1.3), then in subcritical case, namely,
n+α+ γ− p(n−α)− (q+ 1)(n−β) > 0, n+β+ τ − (p+ 1)(n−α)− q(n−β) > 0,
(1.3) has no positive solutions.

If p and q is critical, we will show that the solution is radical symmetric.

Theorem 1.2. Assume that u ∈ Lα ∩ C1,1
loc , v ∈ Lβ ∩ C1,1

loc , and max{p, q} ≥ 1.
Let (u, v) is a pair of positive solutions for (1.3), then in critical case, namely,
n+α+ γ− p(n−α)− (q+ 1)(n−β) = 0, n+β+ τ − (p+ 1)(n−α)− q(n−β) = 0,
(1.3), u and v must be radially symmetric with the some center.

1.2 Singularity estimate

Finally, we consider a problem on the bounded domain{
(−∆)

α
2 u = |x|γupvq+1, x ∈ Ω,

(−∆)
β
2 v = |x|τup+1vq, x ∈ Ω,

(1.16)

where 0 < α, β < 2, p, q > 0 and max{p, q} ≥ 1, α + γ > 0, β + τ > 0, n ≥ 2,
Ω ⊂ Rn is a bounded domain. We will estimate boundary blow-up rate. The
following Doubling Lemma which is developed by Polacik-Quittner-Souplet [20]
plays a key role to obtain the estimate.

Lemma 1.3 (Doubling Lemma) Let (X,d) be a complete metric space and let ∅ 6=
D ⊂ Σ ⊂ X, with Σ closed. Set Γ = Σ/D. Finally let M : D → (0,∞) be

5



bounded on compact subsets of D and fix a real K > 0. If y ∈ D is such that
M(y)dist(y,Γ) > 2K, then there exists x ∈ D such that

M(x)dist(x,Γ) > 2K, M(x) ≥M(y),

M(z) ≤ 2M(x) for all z ∈ D ∩BK/M(x)(x).

Based on this Lemma, we establish the equivalence between the Liouville theo-
rem of (1.3) and the estimate of boundary blow-up rate for solutions of (1.16), and
combining with the nonexistence of the positive solution of (1.3) we can obtain that
the following result.

Theorem 1.4. Let n + α + γ − p(n − α) − (q + 1)(n − β) > 0, n + β + τ − (p +
1)(n− α)− q(n− β) > 0. The following conclusions are equivalent:
(i) The system (1.3) has no bounded positive classical solution;
(ii) Positive solution (u, v) of (1.16) satisfies estimates of the boundary blow-up rate

u(x) ≤ Cdist−
α
p+q (x, ∂Ω), (1.17)

v(x) ≤ Cdist−
β
p+q (x, ∂Ω). (1.18)

Thoughout the paper, we use C to denote a generic constant whose value may
be different from line to line or even in the same line.

The paper is organized as follows: In Section 2, we given some notations and
some necessary lemma. In Section 3, we complete the proof of Theorem 1.1 and
Theorem 1.2 by the moving plane. In Section 4, we use the Double Lemma to prove
Theorem 1.4.

2 Preliminaries

In this section, we will given some notations and some necessary lemma to proof
of Theorem 1.1 and Theorem 1.2.

2.1 Notations

In this subsection, we given some notatons, in order to study the symmetry and
monotonicity of positive solutions for fractional systems (1.3) by a direct method of
moving planes. We are not able to carry the method of moving planes on u and v
directly since there is no any decay conditions on u and v.

To overcome this difficulty, we make a Kelvin transform. Denote{
ū(x) = 1

|x−z0|n−αu( x−z0
|x−z0|2 + z0),

v̄(x) = 1
|x−z0|n−β v( x−z0

|x−z0|2 + z0),
(2.1)

be the Kelvin transform centered at any given point z0.

When z0 is the origin, while the proof for a general z0 is entirely similar. Namely,
(2.1) becomes {

ū(x) = 1
|x|n−αu( x

|x|2 ),

v̄(x) = 1
|x|n−β v( x

|x|2 ),
(2.2)

6



be the Kelvin transform of u and v centered at the origin.

It is easy to see

ū(x) ∼ 1

|x|n−α
, v̄(x) ∼ 1

|x|n−β
, for large |x|. (2.3)

By (2.2), we have

(−∆)
α
2 ū(x) =

1

|x|n+α
(−∆)

α
2 u(

x

|x|2
)

=
1

|x|n+α+γ
up(

x

|x|2
)vq+1(

x

|x|2
)

=
1

|x|n+α+γ−p(n−α)−(q+1)(n−β)
ūp(x)v̄q+1(x).

(2.4)

Similarly, we have

(−∆)
β
2 v̄(x) =

1

|x|n+β+τ−(p+1)(n−α)−q(n−β)
ūp+1(x)v̄q(x).

Let a = n+α+γ−p(n−α)−(q+1)(n−β), b = n+β+τ−(p+1)(n−α)−q(n−β),
then (1.3) becomes 

(−∆)
α
2 ū = 1

|x|a ū
pv̄q+1, x ∈ Rn,

(−∆)
β
2 v̄ = 1

|x|b ū
p+1v̄q, x ∈ Rn,

ū ≥ 0, v̄ ≥ 0, x ∈ Rn.

(2.5)

Define the moving planes

Tλ = {x ∈ Rn | x1 = λ, λ ∈ R},

and the region to the left of the plane

Σλ = {x ∈ Rn | x1 < λ, λ ∈ R}.

Let
xλ = (2λ− x1, x2, · · ·, xn)

be the reflection of the point x = (x1, · · ·, xn) about the plane Tλ, and

uλ(x) = u(xλ), vλ(x) = v(xλ).

Now, assume that (ū, v̄) solves the fractional system (1.3). We denote{
Uλ(x) = ūλ(x)− ū(x),

Vλ(x) = v̄λ(x)− v̄(x),
(2.6)

to compare the value of ūλ(x) with ū(x) and v̄λ(x) with v̄(x) respectively.

By system (1.3), we have{
(−∆)

α
2Uλ(x) = 1

|xλ|a ū
p
λ(x)v̄q+1

λ (x)− 1
|x|a ū

p(x)v̄q+1(x),

(−∆)
β
2 Vλ(x) = 1

|xλ|b ū
p+1
λ (x)v̄qλ(x)− 1

|x|b ū
p+1(x)v̄q(x).

(2.7)
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2.2 Necessary Lemma

In order to proof of Theorem 1.1 and Theorem 1.2, we will show the key ingre-
dients in the method of moving planes such as narrow region principle and decay at
infinity.

Lemma 2.1 (Narrow Region Principle [27]) Let Ω ⊆ {x | λ − l < x1 < λ}
be a bounded narrow region in Σλ for l > 0 small. Assume that u ∈ Lα ∩ C1,1

loc ,

v ∈ Lβ ∩ C1,1
loc are lower semi-continuous on Ω. If bi(x) and ci(x) are positive and

bounded from below in Ω, i = 1, 2,
(−∆)

α
2U(x) ≥ b1(x)U(x) + c1(x)V (x), in Ω,

(−∆)
β
2 V (x) ≥ b2(x)U(x) + c2(x)V (x), in Ω,

U(x) ≥ 0, V (x) ≥ 0, in Σλ\Ω,
Uλ(x) = −U(x), Vλ(x) = −V (x), in Ω,

(2.8)

then for sufficiently small l, we get

U(x) ≥ 0, V (x) ≥ 0, ∀ x ∈ Ω. (2.9)

Furthermore, if U(x) = 0 and V (x) = 0 at some point in Ω, then

U(x) = 0, V (x) = 0 a.e. x ∈ Rn.

For an unbounded narrow region Ω, if we suppose

lim
|x|→∞

U(x) ≥ 0, lim
|x|→∞

V (x) ≥ 0,

the above conclusions also hold.

Lemma 2.2 (Decay at Infinity) Let Ω be an unbounded region in Σλ. Assume
that u ∈ Lα ∩ C1,1

loc , v ∈ Lβ ∩ C1,1
loc satisfy the following equations

(−∆)
α
2U(x) ≥ b1(x)U(x) + c1(x)V (x), in Ω,

(−∆)
β
2 V (x) ≥ b2(x)U(x) + c2(x)V (x), in Ω,

U(x) ≥ 0, V (x) ≥ 0, in Σλ\Ω,
Uλ(x) = −U(x), Vλ(x) = −V (x), in Ω,

(2.10)

where

b1(x) ∼ 1

|x|2α+γ
, c1(x) ∼ 1

|x|α+β+γ
, |x| → ∞, (2.11)

b2(x) ∼ 1

|x|α+β+τ
, c1(x) ∼ 1

|x|2β+τ
, |x| → ∞, (2.12)

and bi(x) and ci(x) are nonnegative in Ω, i = 1, 2.

Then, there exists a constant R, which depends on bi(x) and ci(x), i = 1, 2, but
is independent of U(x) and V (x), such that if

U(x0) = min
x∈Ω

U(x) < 0, V (x1) = min
x∈Ω

V (x) < 0, (2.13)

then
|x0| ≤ R, or |x1| ≤ R.
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Proof. The proofs are analogous to the ones that [27]. For easily to read, we give
outline of the proof.

By the elementary calculation, we derive

(−∆)
α
2U(x0) =Cn,αPV

∫
Rn

U(x0)− U(y)

|x0 − y|n+α
dy

=Cn,αPV
{∫

Σλ

U(x0)− U(y)

|x0 − y|n+α
dy +

∫
Rn\Σλ

U(x0)− U(y)

|x0 − y|n+α
dy}

=Cn,αPV
{∫

Σλ

U(x0)− U(y)

|x0 − y|n+α
dy +

∫
Σλ

U(x0)− Uλ(y)

|x0 − yλ|n+α
dy}

=Cn,αPV
{∫

Σλ

U(x0)− U(y)

|x0 − y|n+α
dy +

∫
Σλ

U(x0) + U(y)

|x0 − yλ|n+α
dy}

≤Cn,αPV
∫

Σλ

2U(x0)

|x0 − yλ|n+α
dy.

(2.14)

For fixed λ, when |x0| ≥ λ and |x1| ≥ λ, it is easy to derive∫
Σλ

1

|x0 − yλ|n+α
dy ≥ 1

|x0|α
. (2.15)

Combining (2.14) with (2.15), we have

(−∆)
α
2U(x0) ≤ C

|x0|α
U(x0). (2.16)

Similarly, we obtain

(−∆)
β
2 V (x1) ≤ C

|x1|β
V (x1). (2.17)

It follows from the first inequality of (2.10) and (2.16) that

C

|x0|α
U(x0) ≥ c1(x0)V (x1). (2.18)

Similarly, we obtain
C

|x1|β
V (x1) ≥ b2(x1)U(x1). (2.19)

From (2.18) and (2.19), we get

C

|x0|α
U(x0) ≥ c1(x0)V (x1) ≥ c1(x0)|x1|βb2(x1)U(x1)

≥ c1(x0)|x1|βb2(x1)U(x0).

That is,
C

|x0|α|x1|βc1(x0)b2(x1)
≤ 1.

However, for |x0| and |x1| sufficiently large, the above inequality is equivalent to

|x0|β+γ|x1|α+τ ,
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which is a contradiction.

Therefore, there exists R > 0 such that

|x0| ≤ R, or |x1| ≤ R.

This completes the proof. �
The following Lemma 2.3 and Lemma 2.4 are also crucical for us in [28].

Lemma 2.3. For λ negative large, there exists a constant C ≥ 0 and ε > 0 such
that

Uλ(x), Vλ(x) ≥ C > 0, x ∈ Bε(0
λ)\{0λ}. (2.20)

Lemma 2.4. For λ̃ < 0, if either of Uλ̃(x), Vλ̃(x) ≥ 0, but not identically 0. Then
there exists a constant C ≥ 0 and ε > 0 such that

Uλ̃(x), Vλ̃(x) ≥ C > 0, x ∈ Bε(0
λ̃)\{0λ̃}, (2.21)

where λ̃ defined as the following (3.12).

3 Proof of Theorem 1.1 and Theorem 1.2

3.1 System in subcritical case

In this subsection, we will use the method of moving planes to prove Theorem
1.1, namely, in the subcritical case, we show that (1.3) has no positive solution.

Proof of Theorem 1.1. By the definition of Uλ and Vλ, we have

lim
|x|→∞

Uλ(x) = 0, lim
|x|→∞

Vλ(x) = 0.

Define
Σu
λ = {x ∈ Σλ | Uλ(x) < 0}, Σv

λ = {x ∈ Σλ | Vλ(x) < 0}.
The proof consists of two steps.

Step 1. we show that when λ sufficiently negative.

Uλ(x), Vλ(x) ≥ 0, ∀x ∈ Σλ\{0λ}. (3.1)

By an elementary calculation, for x ∈ Σu
λ ∩ Σv

λ, we derive

(−∆)
α
2Uλ(x) =

1

|xλ|a
ūpλ(x)v̄q+1

λ (x)− 1

|x|a
ūp(x)v̄q+1(x)

=
1

|xλ|a
ūpλ(x)v̄q+1

λ (x)− 1

|x|a
ūpλ(x)v̄q+1

λ (x)− 1

|x|a
ūpλ(x)v̄q+1

λ (x)

− 1

|x|a
ūp(x)v̄q+1(x)

=(
1

|xλ|a
− 1

|x|a
)ūpλ(x)v̄q+1

λ (x) +
1

|x|a
(ūpλ(x)v̄q+1

λ (x)− ūp(x)v̄q+1(x))

≥ 1

|x|a
(ūpλ(x)v̄q+1

λ (x)− ūp(x)v̄q+1(x))

=
1

|x|a
(ūpλ(x)v̄q+1

λ (x)− ūpλ(x)v̄q+1(x) + ūpλ(x)v̄q+1(x)− ūp(x)v̄q+1(x))

≥ 1

|x|a
[ūpλ(x)(v̄q+1

λ (x)− v̄q+1(x)) + (ūpλ(x)− ūp(x))v̄q+1(x)].
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For the above inequality, applying the Mean Value Theorem, we obtain

(−∆)
α
2Uλ(x) ≥ C

|x|a
[ūpλ(x)v̄q(ξ)(v̄λ(x)− v̄(x)) + v̄q+1(x)ūp−1(η)(ūλ(x)− ū(x))]

≥ C

|x|a
ūpλ(x)v̄q(x)Vλ(x) +

C

|x|a
v̄q+1(x)ūp−1(x)Uλ(x)

≥b1(x)Uλ(x) + c1(x)Vλ(x),

where ξ and η are valued between xλ and x, and

b1(x) =
C

|x|a
v̄q+1(x)ūp−1(x), c1(x) =

C

|x|a
ūpλ(x)v̄q(x).

Therefore, we obtain

(−∆)
α
2Uλ(x) ≥ b1(x)Uλ(x) + c1(x)Vλ(x). (3.2)

It is easy to derive that

b1(x) ∼ 1

|x|2α+γ
, c1(x) ∼ 1

|x|α+β+γ
, |x| → ∞.

Similarly, we get

(−∆)
β
2 Vλ(x) ≥ b2(x)Uλ(x) + c2(x)Vλ(x), (3.3)

where

b2(x) =
C

|x|b
ūp(x)v̄q(x), c2(x) =

C

|x|b
ūp+1
λ (x)v̄q−1(x).

We have

b2(x) ∼ 1

|x|α+β+τ
, c2(x) ∼ 1

|x|2β+τ
, |x| → ∞.

Suppose there exists some points x0 such that

Uλ(x
0) = min

x∈Σλ
Uλ(x) < 0.

We claim that

(−∆)
α
2Uλ(x) ≤ C

|x0|α
Uλ(x

0), |x0| > λ. (3.4)

In fact, we have ∫
Σλ

1

|x0 − y|n+α
dy ≥

∫
Bx0 (x1)

1

|x0 − y|n+α
dy

≥
∫
Bx0 (x1)

1

4n+α|x0|n+α
dy

=
ωn

4n+α|x0|α
,

(3.5)

where ωn is the area of n dimensional unit sphere and Bx0(x
1) ⊂ Rn\Σλ with

x1 = (3|x0|+ x0
1, x2, · · ·, xn).

11



By (2.14) and (3.5), we can derive that (3.4).

Combining (3.2) with (3.4), we obtain

C

|x0|α
Uλ(x

0) ≥ b1(x0)Vλ(x
0) + c1(x0)Uλ(x

0). (3.6)

By the degeneracy of b1(x) at infinity and (3.6), for sufficiently negative λ,

C

|x0|α
Uλ(x

0) ≥ c1(x0)Vλ(x
0). (3.7)

Now, we suppose that there is some point x1 such that

Vλ(x
1) = min

x∈Σλ
Vλ(x) < 0.

Similar to (3.4), we obtain

(−∆)
β
2 Vλ(x) ≤ C

|x1|β
Vλ(x

1), |x1| > λ. (3.8)

Combining (3.3) with (3.8), we have

C

|x1|β
Vλ(x

1) ≥ b2(x1)Uλ(x
1) + c2(x1)Vλ(x

1). (3.9)

From the degeneracy of c2(x) at infinity and (3.9), for sufficiently negative λ, we
have

C

|x1|β
Vλ(x

1) ≥ b2(x1)Uλ(x
1). (3.10)

Combining (3.7) with (3.10), we deduce

C

|x1|β
Vλ(x

1) ≥ b2(x1)Uλ(x
0) ≥ b2(x1)|x0|αc1(x0)Vλ(x

0)

≥ b2(x1)|x0|αc1(x0)Vλ(x
1).

Using the degeneracy of b2(x) and c1(x) at infinity, we have

C

|x1|β
Vλ(x

1) ≥ 1

|x1|α+β+τ
· 1

|x0|β+γ
Vλ(x

1).

Namely,
1

|x1|α+τ
· 1

|x0|β+γ
≥ 1,

for sufficiently negative λ, the inequality does not hold.

From Lemma 2.2, for sufficiently negative λ, at least one of Uλ and Vλ are
greater than or equal to 0. Without loss of generality, we assume that

Uλ(x) ≥ 0, x ∈ Σλ\{0λ}. (3.11)

The following proves that (3.11) to Vλ is also true. In fact, if Vλ is negative
somewhere in Σλ\{0λ}, then there must exist some x̄ ∈ Σλ\{0λ} such that

Vλ(x̄) = min
x∈Σλ

Vλ(x) < 0.

12



From previous arguments of (3.3) and (3.8), we have

0 >
C

|x̄|β
Vλ(x̄) ≥ (−∆)

β
2 Vλ(x̄) ≥ b2(x̄)Uλ(x̄) + c2(x̄)Vλ(x̄),

For the above inequality, combining with (3.10), we deduce

0 >
C

|x̄|β
Vλ(x̄)

≥ b2(x̄)Uλ(x̄) + Cb2(x̄)c2(x̄)|x̄|βUλ(x̄)

≥ 0.

It is a contradiction, and then we complete Step 1.

Step 2. The Step 1 provides a starting point, from which we can now move the
plane Tλ to the right as long as (3.1) holds to its limiting position. Let

λ̃ = sup{λ ≤ 0 | Uρ ≥ 0, Vρ ≥ 0, ∀x ∈ Σρ\{0λ}, ρ ≤ λ}. (3.12)

We claim that
λ̃ = 0,

or
Uλ̃(x) ≡ 0, Vλ̃(x) ≡ 0, ∀x ∈ Σλ̃\{0

λ̃}. (3.13)

If not, we suppose that λ̃ < 0, we have proved that the plane Tλ can be moved
further right. Namely, there exists some small δ > 0, such that for any λ ∈ (λ̃, λ̃+δ),
we have

Uλ(x) ≥ 0, Vλ(x) ≥ 0, ∀x ∈ Σλ\{0λ}, (3.14)

which is a contradiction with the definition of λ̃. Therefore, we deduce

λ̃ = 0.

Practically, when λ̃ < 0, we have

Uλ̃(x) > 0, Vλ̃(x) > 0, ∀x ∈ Σλ̃\{0
λ̃}. (3.15)

Otherwise, at least one of Uλ̃(x) and Vλ̃(x) is greater than or equal to zero.

Without loss of generality, we may assume that Uλ(x) ≥ 0, namely, there exists
some point x̃ such that

Uλ̃(x̃) = min
x∈Σλ̃\{0λ̃}

Uλ̃(x) = 0.

It follows that

(−∆)
α
2Uλ̃(x̃) =Cn,αPV

∫
Rn

−Uλ̃(y)

|x̃− y|n+α
dy

=Cn,αPV

∫
Σλ̃

−Uλ̃(y)

|x̃− y|n+α
dy + Cn,αPV

∫
Rn\Σλ̃

−Uλ̃(y)

|x̃− y|n+α
dy

=Cn,αPV

∫
Σλ̃

−Uλ̃(y)

|x̃− y|n+α
dy + Cn,αPV

∫
Σλ̃

Uλ̃(y)

|x̃− yλ̃|n+α
dy

≤Cn,α
∫

Σλ̃

(
1

|x̃− yλ̃|n+α
− 1

|x̃− y|n+α
)Uλ̃(y)dy

≤0.

(3.16)
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On the other hand,

(−∆)
α
2Uλ̃(x̃) =

1

|x̃λ̃|a
ūp
λ̃
(x̃)v̄q+1

λ̃
(x̃)− 1

|x̃|a
ūp(x̃)v̄q+1(x̃)

=
1

|x̃λ̃|a
ūp(x̃)v̄q+1

λ̃
(x̃)− 1

|x̃|a
ūp(x̃)v̄q+1(x̃)

=
1

|x̃λ̃|a
ūp(x̃)v̄q+1

λ̃
(x̃)− 1

|x̃|a
ūp(x̃)v̄q+1

λ̃
(x̃) +

1

|x̃|a
ūp(x̃)v̄q+1

λ̃
(x̃)

− 1

|x̃|a
ūp(x̃)v̄q+1(x̃)

=ūp(x̃)[(
1

|x̃λ̃|a
− 1

|x̃|a
)v̄q+1

λ̃
(x̃) +

1

|x̃|a
(v̄q+1

λ̃
(x̃)− v̄q+1(x̃))]

>0,

(3.17)

which is a contradiction. Therefore, we obtain (3.15).

By Lemma 2.3 and Lemma 2.4, we claim that for λ̃ < 0 and ε > 0 sufficiently
small,

Uλ̃(x), Vλ̃(x) ≥ C > 0, ∀x ∈ Bε(0
λ̃)\{0λ̃}.

Combining with the above bounded away from 0, we deduce that for δ > 0, there
exists some constant c0 > 0 such that

Uλ̃(x), Vλ̃(x) ≥ c0, ∀x ∈ (Σλ̃−δ\{0
λ̃}) ∩BR0(0).

For ε, δ � |λ̃|, 0λ̃ ∈ (Σλ̃−δ\{0λ̃})∩BR0(0), since Uλ and Vλ depend on λ continuously,
we have

Uλ̃(x), Vλ̃(x) ≥ 0, ∀x ∈ (Σλ̃−δ\{0
λ̃}) ∩BR0(0).

By Lemma 2.2, we know that if

Uλ(x̂) = min
Σλ

Uλ < 0,

then there exists a large R0 such that

|x̂| ≤ R0.

Hence x̂ ∈ (Σλ\Σλ−δ) ∩BR0(0).

For sufficiently large R0, similar to (3.4), we obtain

Vλ(x̂) < 0.

Therefore, there exists some point x̄ such that

Vλ(x̄) = min
Σλ

Vλ < 0.

If x̄ ∈ BC
R0
∩ Σλ, similar to (3.10), we have

0 >
C

|x̄|β
Vλ(x̄) ≥ b2(x̄)Uλ(x̄). (3.18)

14



Meanwhile, for Uλ at x̂, similar to (3.7), we have

C

|ε+ δ|α
Uλ(x̂) ≥ c1(x̂)Vλ(x̂). (3.19)

By (3.18) and (3.19), we have

b2(x̄)|x̄|βc1(x̂)|ε+ δ|α ≥ C. (3.20)

We know that c1(x̂) is bounded, and b2(x̄)|x̄|β is also bounded for |x̄| > R0. Hence
for ε, δ sufficiently small, (3.20) does not hold namely, x̄ /∈ BC

R0
∩ Σλ.

Combining with Lemma 2.1, let

narrow region Ω = (Σλ\Σλ−δ) ∩BR0(0),

while Uλ and Vλ satisfy system (2.8), we have

Uλ(x), Vλ(x) ≥ 0, ∀x ∈ (Σλ\Σλ−δ) ∩BR0(0).

Now, we conclude that neither Uλ nor Vλ has negative minimum in Σλ\{0λ}.
Therefore, we obtain

Uλ(x), Vλ(x) ≥ 0, ∀x ∈ Σλ\{0λ}.

This completes the proof of (3.15). Therefore we have

λ̃ = 0.

Similarly, we can move the plane from x1 = +∞ near to the left, and we can
show that

Uλ(x), Vλ(x) ≤ 0, ∀x ∈ Σλ\{0λ}.
Therefore, we deduce

λ̃ = 0, Uλ̃(x) ≡ 0, Vλ̃(x) ≡ 0, ∀x ∈ Σλ̃\{0
λ̃}.

Since the direction of x1-axis is arbitrary, we have ū and v̄ are radially symmetric
about the origin.

For any point z0 ∈ Rn apply the Kelvin transform centered at z0, and by an
entirely similar argument, one can show that ū and v̄ are radially symmetric about
z0.

Let z1 and z2 be any two points in Rn and we choose the coordinate system so
that the midpoint

z0 =
z1 + z2

2

is the origin. Since ū and v̄ are radially symmetric about z0, we have

u(z1) = u(z2), v(z1) = v(z2).

This implies that u and v must be constants.

But positive constant solutions do not satisfy system (1.3). Namely, in subcrit-
ical case, there is no positive solution for system (1.3). �

15



3.2 System in critical case

In this subsection, we still utilize the Kelvin transform of u and v centered
at the origin. In critical case, namely, n + α + γ − p(n − α) − (q + 1)(n − β) =
0, n + α + γ − (p + 1)(n− α)− q(n− β) = 0, we will show that either ū and v̄ are
symmetric about the origin or some point.

We still use the notations in the subcritical case. The argument is quite similar
to, but not entirely the same as that in the subcritical case. Hence we still present
some details here.
Proof of Theorem 1.2. In critical case, similar to (3.2), we have

(−∆)
α
2Uλ(x) ≥ b̄1(x)Uλ(x) + c̄1(x)Vλ(x),

where b̄1(x) = Cūp−1(x)v̄q+1(x), c̄1(x) = Cūpλ(x)v̄q(x).
Similarly, we get

(−∆)
β
2 Vλ(x) ≥ b̄2(x)Uλ(x) + c̄2(x)Vλ(x),

where b̄2(x) = Cūp(x)v̄q(x), c̄2(x) = Cūp+1
λ (x)v̄q−1(x).

It is easy to derive that

b̄1(x) ∼ 1

|x|2α+γ
, c̄1(x) ∼ 1

|x|α+β+γ
, as |x| → ∞.

b̄2(x) ∼ 1

|x|α+β+γ
, c̄2(x) ∼ 1

|x|2β+τ
, as |x| → ∞.

The remaining proof is the same as that in the subcritical case.

We can show that, for λ sufficiently negative,

Uλ(x), Vλ(x) ≥ 0, ∀x ∈ Σλ\{0λ}.

Defined
λ̃ = sup{λ ≤ 0 | Uρ ≥ 0, Vρ ≥ 0, ∀x ∈ Σρ\{0λ}, ρ ≤ λ}.

We consider two possible cases.

Case 1. λ̃ < 0

For this case, either

Uλ̃(x) = Vλ̃(x) ≡ 0, x ∈ Σλ̃\{0
λ̃},

or
Uλ̃(x), Vλ̃(x) > 0, x ∈ Σλ̃\{0

λ̃}. (3.21)

We suppose that there exists some point x̃ ∈ Σλ̃ such that

Uλ̃(x̃) = min
x∈Σλ̃

Uλ̃(x) = 0,

then
Uλ̃(x) ≡ 0, x ∈ Σλ̃\{0

λ̃}. (3.22)

Otherwise,

(−∆)
α
2Uλ̃(x̃) = Cn,αPV

∫
Rn

−Uλ̃(y)

|x̃− y|n+α
dy < 0.
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On the other hand,

(−∆)
α
2Uλ̃(x̃) = ūp

λ̃
(x̃)v̄q+1

λ̃
(x̃)− ūp(x̃)v̄q+1(x̃)

= ūp(x̃)(v̄q+1

λ̃
(x̃)− v̄q+1(x̃))

≥ 0.

It is a contradition. Hence (3.22) holds.

When Uλ̃(x) ≡ 0, by the anti-symmetry of Uλ, namely,

Uλ̃(x) = −Uλ̃(x
λ̃).

We derive that
Uλ̃(x) ≡ 0, x ∈ Rn.

Therefore, we have
(−∆)

α
2Uλ̃(x) = 0.

Since
(−∆)

α
2Uλ̃(x̃) = ūp

λ̃
(x̃)v̄q+1

λ̃
(x̃)− ūp(x̃)v̄q+1(x̃)

= ūp(x̃)(v̄q+1

λ̃
(x̃)− v̄q+1(x̃))

= 0.

It must be true that
v̄q+1

λ̃
(x̃) = v̄q+1(x̃), x ∈ Rn.

Therefore, we have
Vλ̃(x) ≡ 0, x ∈ Rn.

Similarly, if Vλ̃(x) = 0 somewhere, then we can prove that

Uλ̃(x) ≡ 0, x ∈ Rn.

When (3.21) holds, by using an entirely similar argument of Step 2 in subcritical
case. One can keep moving the plane Tλ, namely, there exists some small δ > 0,
such that for any λ ∈ (λ̃, λ̃+ δ), we have

Uλ(x) ≥ 0, Vλ(x) ≥ 0, ∀x ∈ Σλ\{0λ},

which is a contradiction with the definition of λ̃. Therefore (3.21) must not be true.

We conclude that
Uλ̃(x) = Vλ̃(x) ≡ 0, x ∈ Rn.

This implies u and v are symmetric about some point in Rn.

Case 2. λ̃ = 0

In this case, we can move the plane from near x1 = +∞ to the left, and derive
that

U0(x), V0(x) > 0, ∀x ∈ Σ0.

Hence, U0(x), V0(x) ≡ 0, ∀x ∈ Σ0.

This proves that ū and v̄ are symmetric about the origin. So are u and v. �
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4 Proof Theorem 1.4

Proof. We claim that if (1.3) does not admit any bounded solutions in Rn. Then
there exists C = C(n, p, q) > 0 such that any solutions (u, v) of (1.16) satisfies (1.17)
and (1.18). If not, there exists sequences Ωk, (uk, vk), yk ∈ Ωk such that (uk, vk)
solves (1.3) on Ωk and

Mk := u
p+q
α
k + v

p+q
β

k , k = 1, 2, · · ·

satisfies M(yk) > 2k dist−1(yk,Ωk). By the Doubling Lemma, it follows that there
exist xk ∈ Ωk such that

Mk(xk) > 2kdist−1(x,Ωk),

Mk(z) ≤ 2Mk(xk), |z − xk| ≤ kM−1
k (xk).

Write ρk = M−1
k (xk) and

ũk(y) := ρ
α
p+q

k uk(xk + ρky), ṽk(y) := ρ
β
p+q

k vk(xk + ρky), |y| ≤ k.

Clearly, ũk, ṽk are also solutions of system (1.3) for |y| ≤ k, and they also satisfy

[ũ
p+q
α
k + ṽ

p+q
β

k ](0) = 1, (4.1)

[ũ
p+q
α
k + ṽ

p+q
β

k ](y) ≤ 2, |y| ≤ k. (4.2)

By using Theorem 1.3 in [11] and Lemma 2.9 in [21], we deduce that some subse-
quence of (ũk, ṽk) converges in Cε+µ

loc to solutions (ũ, ṽ) of (1.3) in Rn, where ε and
µ satisfies the following conditions: for any ε > 0 and µ ∈ (0, 2), such that ε /∈ N,
and ε+ µ /∈ N. It a contradictions with the assumption of Theorem 1.1.

On the contrary, if the positive solution (u, v) of (1.3) satisfies the estimate
(1.17) and (1.18), by letting Ω→ Rn, we deduce

u = v = 0, in Rn.

This shows the nonexistence of positive solution. �
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