
P
os
te
d
on

31
J
an

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
70
66
84
52
.2
29
80
04
5/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

On the dynamics of the singularly perturbed Logistic difference

equation with two different continuous arguments

A. M. A EL-Sayed1, Sanaa Salman2, and Ali Abo-Bakr1

1Alexandria University Faculty of Science
2Alexandria University

April 05, 2024

Abstract

Here, we study the dynamics of the singularly perturbed logistic difference equation with two different continuous arguments.

First of all, local stability of the fixed points is investigated by analyzing the corresponding characteristic equations of the

linearized equations. Secondly, we illustrate that the considered system exhibits Hopf bifurcation. A discretized analogue of

the original system is obtained using the method of steps. Local stability and bifurcation analysis of the discretized system

are investigated. Explicit conditions for the occurrence of a variety of complex dynamics such as fold and Neimark-Sacker

bifurcations are reached. We compare the results with those of the associated difference equation with continuous argument

when the perturbation parameter $\epsilon \longrightarrow 0$ and with those of the logistic delay differential equation with two

different delays when $\epsilon \longrightarrow 1$. Finally, numerical simulations including Lyapunov exponent, bifurcation

diagrams and phase portraits are carried out to confirm the theoretical analysis obtained and to illustrate more complex

dynamics of the system.
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Abstract

Here, we study the dynamics of the singularly perturbed logistic differ-
ence equation with two different continuous arguments. First of all, local
stability of the fixed points is investigated by analyzing the corresponding
characteristic equations of the linearized equations. Secondly, we illustrate
that the considered system exhibits Hopf bifurcation. A discretized analogue
of the original system is obtained using the method of steps. Local stability
and bifurcation analysis of the discretized system are investigated. Explicit
conditions for the occurrence of a variety of complex dynamics such as fold
and Neimark-Sacker bifurcations are reached. We compare the results with
those of the associated difference equation with continuous argument when
the perturbation parameter ε −→ 0 and with those of the logistic delay dif-
ferential equation with two different delays when ε −→ 1. Finally, numerical
simulations including Lyapunov exponent, bifurcation diagrams and phase
portraits are carried out to confirm the theoretical analysis obtained and to
illustrate more complex dynamics of the system.

Keywords: Logistic equation, Singular perturbation, Local stability, Bifurcation,
Chaos.

1 Introduction

In many problems it is meaningless not to have dependence on the past. Time
delays occur so often that to ignore them is to ignore reality [19]. A singularly
perturbed equation is a differential equation involving at least one delay term and
the highest derivative is multiplied by a small parameter [3,14,27,30]. It arises in
applications where delays and perturbations play a role [2, 6, 23,26].
One of the principal mathematical instruments of modern nonlinear dynamics is
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the difference equation with continuous argument given in the form

x(t) = f(x(t− 1)), t ∈ [0, T ]. (1.1)

Let ε ∈ (0, 1], the equation

ε
dx

dt
+ x(t) = f(x(t− 1)), t ∈ [0, T ],

is considered as a singular perturbation of the difference equation with contin-
uous argument(1.1) [16, 17]. We can consider the left hand side of (1.2) as an
approximation to the function x(t+ ε):

x(t+ ε) = x(t) + ε
dx

dt
+ ... .

So, it is reasonable to expect that singular perturbed equations to behave as its
associated difference equation with continuous argument when the perturbation
parameter ε −→ 0 [18].
Models which have only one delay are often used when the other delays are small
and insignificant to dynamical behaviors [22]. However, this assumption may not
be applicable in many cases. Furthermore, there are systems that single delay
can not stabilize, however, adding a second delay can stabilize the same sys-
tem [25]. Therefore, models with multiple delays are of great interest. These
equations have significant physical and biological background and exhibit rich dy-
namics [4, 5, 11–13,15,21,28,29].

Consider the Logistic difference equation with two different continuous arguments

x(t) = ρx(t− 1)(1− x(t− 2)), t ∈ [0, T ] (1.2)

and its singularly perturbed equation given in the form

ε
dx

dt
+ x(t) = ρx(t− 1)(1− x(t− 2)) t ∈ [0, T ] (1.3)

with the initial condition

x = x0, t ≤ 0.

In this paper, local stability of the fixed points of (1.3) is investigated by analyzing
the corresponding characteristic equations of the linearized equations. Secondly,
we illustrate that the considered equation (1.3) exhibits Hopf bifurcation. A dis-
cretized analogue of (1.3) is obtained using the method of steps. Local stability
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and bifurcation analysis of the discretized system are investigated. Also, we com-
pare the results of (1.3) when the perturbation parameter ε −→ 1 with the results
that introduced in [10] concerning with the logistic differential difference equation
with two different delays

dx

dt
= −x(t) + ρx(t− 1)(1− x(t− 2)), t ∈ [0, T ],

x(t) = x0, t ≤ 0.

In section 3, numerical simulations are carried out to confirm the theoretical anal-
ysis obtained and to illustrate more complex dynamics of the system.

2 Main results

2.1 Existence and uniqueness

Theorem 1. Problem (1.3) has a unique solution x ∈ C[0, T ], 0 ≤ x(t) ≤ 1.

Proof. Define the operator F from C[0, T ] into C[0, T ] by

Fx(t) = x0e
−t
ε +

ρ

ε

∫ t

0
e
s−t
ε x(s− 1)(1− x(s− 2))ds.

Now we want to show that F is contraction :

|Fx− Fy| = ρ

ε

∫ t

1
e
s−t
ε |x(s− 1)(1− x(s− 2))− y(s− 1)(1− y(s− 2))|ds

≤ ρ

ε

∫ t

1
e
s−t
ε [|x(s− 1)− y(s− 1)|+ |x(s− 2)− y(s− 2)|]ds

≤ ρ

ε
[max
[1,T ]
|x(s− 1)− y(s− 1)|

∫ t

1
e
s−t
ε ds+ max

[1,T ]
|x(s− 2)− y(s− 2)|

∫ t

1
e
s−t
ε ds].

Hence,

‖Fx− Fy‖[0,T ] ≤ ρ‖x− y‖[0,T ](2− e
−(T−1)

ε − e
−(T−1)

ε )

≤ 2ρ‖x− y‖[0,T ].

If ρ < 1
2 , then F is contraction map and the solution of (1.2) exists uniquely.

3



2.2 Local stability and Hopf bifurcation

There are two fixed points of (1.3) namely (x1)fix = 0 and (x2)fix = 1− 1
ρ .

It is easy to obtain the conditions for local asymptotic stability of the fixed point
(x1)fix = 0 by checking the eigenvalues of the linearized system [24].

The linearized equation at the neighborhood of (x1)fix = 0 is

ε
dx

dt
= −x(t) + ρx(t− 1). (2.1)

Assuming a trial solution x(t) = eλt. Then the characteristic equation reads

ελ+ 1− ρe−λ = 0. (2.2)

Lemma 1. [14] All roots of the characteristic equation λ+ c+ be−λ = 0, where c
and b are real, have negative real parts if and only if

c > −1, c+ b > 0, b <
√
c2 + ξ2,

where ξ = −c tanξ, 0 < ξ < π if c 6= 0 and ξ = π
2 if c = 0.

Applying lemma 1 to to equation(2.2) with c = 1
ε , b = −ρ

ε , we get the next
theorem.

Theorem 2. The fixed point (x1)fix = 0 of (1.3) is unstable if ρ < ρ0 or ρ > 1

where ρ0 = −
√

1 + (εξ)2, ξ = −tan(ξ)
ε , 0 < ξ < π, and is stable if ρ0 < ρ < 1.

Now we discuss the Hopf bifurcation.

Theorem 3. When the parameter ρ passes through the critical value ρ1 = ερ0 =

−ε
√

1
(ε)2

+ ξ2, ξ = −1
ε tanξ, 0 < ξ < π, there is a Hopf bifurcation.

Proof. Assume that λ = iω0, ω0 ∈ R+ is a pure imaginary solution of (2.2) for
some parameter value ρ = ρ∗. This leads to the following equations

iω0 +
1

ε
− ρ∗

ε
e−iω0 = 0,

1

ε
− ρ∗

ε
cos(ω0) = 0,

ω0 +
ρ∗
ε
sin(ω0) = 0,
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1

ε
=
ρ∗
ε
cos(ω0),

ω0 =
ρ∗
ε
sin(ω0),

ω2
0 +

1

ε2
=
ρ∗
ε2

[cos(ω0)
2 + sin(ω0)

2] =
ρ∗
ε2
,

ρ∗ = ±ε

√
1

(ε)2
+ ω2

0,

ω0 =
−1

ε
tanω0.

By Theorem 2, ρ∗ = −ε
√

1
ε2

+ ω2
0 is the critical value of ρ, where ω0 is the root of

ω0 = −1
ε tanω0, 0 < ω0 < π.

The condition d(Re(λ))
dρ |ρ=ρ∗ 6= 0 is the last condition for occurrence of a Hopf

bifurcation.
To show that this condition is satisfied, let λ = k(ρ) + iω(ρ) and using (2.2), we
get

k + iω +
1

ε
− ρ

ε
e−k−iω = 0,

k +
1

ε
− ρ

ε
e−kcosω = 0, (2.3)

ω +
ρ

ε
e−ksinω = 0, (2.4)

differentiate (2.3) and (2.4) with respect to ρ, we obtain

ε
dk

dρ
− e−kcos(ω) + ρe−kcos(ω)

dk

dρ
+ ρe−ksin(ω)

dω

dρ
= 0,

ε
dω

dρ
+ e−ksin(ω) + ρe−kcos(ω)

dω

dρ
− ρe−ksin(ω)

dk

dρ
= 0,

Solving for dk
dρ , we obtain

d(Re(λ))

dρ
|ρ=ρ∗=

d(Re(λ))

dρ
|k=0,ω=ω0,ρ=ρ∗ ,

=
εcos(ω0) + ρ∗

(ε+ ρ∗cos(ω0))2 + (ρ∗sin(ω0))2
,
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=
ερ∗cos(ω0) + ρ2∗

ρ∗[(ε+ ρ∗cos(ω0))2 + (ρ∗sin(ω0))2]
,

=
ε+ ρ2∗

ρ∗[(ε+ ρ∗cos(ω0))2 + (ρ∗sin(ω0))2]
6= 0.

This completes the proof.

The linearized equation at the neighborhood of (x2)fix = 1− 1
ρ is

ε
dy

dt
= −y(t) + y(t− 1)− (ρ− 1)y(t− 2), (2.5)

where y(t) = x(t)− (1− 1
ρ).

The characteristic equation is of the form

ελ+ 1− e−λ + (ρ− 1)e−2λ = 0. (2.6)

Theorem 4. When the parameter ρ passes through the critical value ρ = ρ∗ =
1−

√
(cos(ω0)− 1)2 + (εω0 + sin(ω0))2, ω0 = 1

ε [(cos(ω0)− 1)tan(2ω0)− sin(ω0)],
there is a Hopf bifurcation.

Proof. Assume that λ = iω0, ω0 ∈ R+ is a pure imaginary solution of (2.6) for
some parameter value ρ = ρ∗. This leads to the following equations

iεω0 + 1− e−iω0 + (ρ∗ − 1)e−i2ω0 = 0,

1− cos(ω0) + (ρ∗ − 1)cos(2ω0) = 0,

εω0 + sin(ω0)− (ρ∗ − 1)sin(2ω0) = 0,

(ρ∗ − 1)2 = (cos(ω0)− 1)2 + (εω0 + sin(ω0))
2,

ρ∗ = 1±
√

(cos(ω0)− 1)2 + (εω0 + sin(ω0))2,

εω0 + sin(ω0)

cos(ω0)− 1
=
sin(2ω0)

cos(2ω0)
,

ω0 =
1

ε
[(cos(ω0)− 1)tan(2ω0)− sin(ω0)].

The condition d(Re(λ))
dρ |ρ 6= 0 is the last condition for occurrence of a Hopf bifur-

cation.
To show that this condition is satisfied, let λ = k(ρ) + iω(ρ) and using (2.6), we
get
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ε[k + iω] + 1− e−k−iω + (ρ− 1)e−2(k−iω) = 0,

εk + 1− e−kcosω + (ρ− 1)e−2kcos(2ω) = 0, (2.7)

εω + e−ksinω − (ρ− 1)e−2ksinω = 0, (2.8)

differentiate (2.7) and (2.8) with respect to ρ, we obtain

ε
dk

dρ
+ e−kcos(ω)

dk

dρ
+ e−ksin(ω)

dω

dρ
− 2(ρ− 1)e−2kcos(2ω)

dk

dρ

+e−2kcos(ω)− 2(ρ− 1)e−2ksin(2ω)
dω

dρ
= 0,

ε
dω

dρ
− e−ksin(ω)

dk

dρ
+ e−kcos(ω)

dω

dρ
− e−2ksin(2ω)

+ 2(ρ− 1)e−2ksin(2ω)
dk

dρ
− 2(ρ− 1)e−2kcos(2ω)

dω

dρ
= 0,

Solving for dk
dρ , we obtain

d(Re(λ))

dρ
|ρ=ρ∗=

dk

dρ
|k=0,ω=ω0,ρ=ρ∗ ,

=
2(ρ∗ − 1)− εcos(2ω0)− sin(2ω0)sin(ω0)− cos(2ω0)cos(ω0)

[ε+ cos(ω0)− 2(ρ∗ − 1)cos(2ω0)]2 + [sin(ω0)− 2(ρ∗ − 1)sin(2ω0)]2]

=
2(ρ∗ − 1)− εcos(2ω0)− cos(ω0)

[ε+ cos(ω0)− 2(ρ∗ − 1)cos(2ω0)]2 + [sin(ω0)− 2(ρ∗ − 1)sin(2ω0)]2]
.

Using (2.7) at k = 0, ρ = ρ∗, ω = ω0, we get

=
2ρ∗ − 3− εcos(2ω0)− (ρ∗ − 1)cos(2ω0)

[ε+ cos(ω0)− 2(ρ∗ − 1)cos(2ω0)]2 + [sin(ω0)− 2(ρ∗ − 1)sin(2ω0)]2
.

It is clear that for 0 < ρ∗ < 1 and 0 < ε < 1, d(Re(λ))
dρ |ρ=ρ∗ 6= 0.

Hence, at ρ = ρ∗ = 1−
√

(cos(ω0)− 1)2 + (εω0 + sin(ω0))2, the condition d(Re(λ))
dρ |ρ=ρ∗ 6=

0 is satisfied.

We can see that as ε→ 1, we get the same results obtained in [10].
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2.3 The discretized system

The I.V.P (1.3) can be writen as

ε
dx

dt
= −x(t) + ρx(t− 1)(1− y(t− 1)), (2.9)

y(t) = x(t− 1), (2.10)

x(t) = y(t) = x0, t ≤ 0.

The method of steps is used to get a discretized analogue of the system (2.9)-(2.10)
as follows [14]:

Let t ∈ (0, 1], then
y1(t) = x0,

x1(t) = x0e
−t
ε +

ρ

ε

∫ t

0
e
s−t
ε x(s− 1)(1− (y(s− 1)))ds

= x0e
−t
ε + ρx0(1− y0)(1− e

−t
ε ).

Let t −→ 1, then
y1(1) = x0,

x1(1) = x0e
−1
ε + ρx0(1− y1)(1− e

−1
ε ).

For t ∈ (1, 2], when t ≤ 1, take x(t) = x1 = x1(1), y1(t) = y1(1) = y1, then

y2(t) = x1(t),

x2(t) = x0e
−(t−1)

ε +
ρ

ε

∫ t

1
e
s−t
ε x1(1− (y1))ds

= x1e
−(t−1)

ε + ρx1(1− y1)(1− e
−(t−1)

ε ).

Let t −→ 2 , then
y2(1) = x1,

x2(2) = x1(1)e
−1
ε + ρx1(1)(1− y1(1))(1− e

−1
ε ).

For t ∈ (2, 3], when t ≤ 2, take x(t) = x2 = x2(2), y2(t) = y2(2) = y2, then

y3(t) = x2(t),

x3(t) = x2e
−(t−2)

ε +
ρ

ε

∫ t

2
e
s−t
ε x2(1− (y2))ds

8



= x2e
−(t−2)

ε + ρx1(1− y2)(1− e
−(t−2)

ε ).

Let t −→ 3 , then
y3(3) = x2,

x3(3) = x2e
−1
ε + ρx2(1− y2(1))(1− e

−1
ε ).

Repeating the process we deduce that the solution of (1.3) is given by

yn+1(t) = xn(t),

xn+1(t) = xne
−(t−n)

ε + ρxn(1− yn)(1− e
−(t−n)

ε ).

Let t −→ n+ 1, then
yn+1 = xn,

xn+1 = xne
−1
ε + ρxn(1− yn)(1− e

−1
ε ). (2.11)

2.4 Local stability and bifurcation analysis of the discretized sys-
tem

The system (2.11) has two fixed points (x∗1, y
∗
1) = (0, 0) and (x∗2, y

∗
2) = (1− 1

ρ , 1−
1
ρ).

(1) At (x∗1, y
∗
1) = (0, 0):

The Jacobian matrix calculated (x∗1, y
∗
1) = (0, 0) reads

J(0, 0) =

(
e

−1
ε + ρ(1− e

−1
ε ) 0

1 0

)
.

The characteristic equation

λ2 − λ(e
−1
ε + ρ(1− e

−1
ε )) = 0,

has two roots λ1 = 0 and λ2 = e
−1
ε + ρ(1− e

−1
ε ).

We can see that λ2 = 1 at ρ = 1, λ2 > 1 for ρ > 1 and λ2 < 1 when ρ < 1, then
we have

Proposition 1. The fixed point fix1 = (0, 0) is
1. a sink if ρ < 1,
2. a saddle if ρ > 1,
3. a non-hyperbolic if ρ = 1.
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The bifurcation associated with the appearance of an eigenvalue λ = 1 is called a
fold bifurcation and its condition implies that

det(J(0, 0, ρ∗)− I2) = 0,

where I2 is is the unit 2x2 matrix [20].

Lemma 2. If ρ = 1, then system (2.11) admits a fold bifurcation at (x∗1, y
∗
1) =

(0, 0).

Proof. The condition of the fold bifurcation gives

det

(
e

−1
ε + ρ∗(1− e

−1
ε )− 1 0

1 −1

)
= 0,

1− e
−1
ε − ρ∗(1− e

−1
ε ) = 0,

ρ∗(1− e
−1
ε ) = 1− e

−1
ε ,

then ρ∗ = 1.

(2) At (x∗2, y
∗
2) = (1− 1

ρ , 1−
1
ρ):

The Jacobian matrix calculated (x∗2, y
∗
2) = (1− 1

ρ , 1−
1
ρ) reads

J(1− 1

ρ
, 1− 1

ρ
) =

(
1 −(ρ− 1)(1− e

−1
ε )

1 0

)
.

The characteristic equation reads

λ2 − λ+ (ρ− 1)(1− e
−1
ε ) = 0.

Lemma 3. [1] Let F (λ) = λ2 + Pλ + Q. Suppose that F (1) > 0, and F (λ) = 0
has two roots λ1 and λ2. Then

1. F (−1) > 0 and Q < 1 if and only if |λ1| < 1 and |λ2| < 1 ;

2. F (−1) < 0 if and only if |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1);

3. F (−1) > 0 and Q > 1 if and only if |λ1| > 1 and |λ2| > 1;

4. F (−1) = 0 and P 6= 0, 2 if and only if λ1 = −1 and |λ2| 6= 1;

5. P 2− 4Q < 0 and Q = 1 if and only if λ1 and λ2 are complex and |λ1,2| = 1.

10



Proposition 2. The fixed point (x∗2, y
∗
2) = (1− 1

ρ , 1−
1
ρ) is

1. a sink if 1 < ρ < 2

1−e
−1
ε

,

2. a source if ρ > 2

1−e
−1
ε

.

Definition 1. The bifurcation correspondence to the existence of λ1,2 = e±iθ0,
0 < θ0 < π is called a Neimark-Sacker bifurcation [20].

Lemma 4. If ρ = 1 + 1

1−e
−1
ε

, then system (2.11) admits a Neimark-Sacker bifur-

cation at (x∗1, y
∗
1) = (0, 0).

Proof. The characteristic equation

λ2 − λ+ (ρ− 1)(1− e
−1
ε ) = 0,

has two roots

λ1,2 =
1±

√
1− 4(ρ− 1)(1− e

−1
ε )

2
. (2.12)

We can see that when
1− 4(ρ− 1)(1− e

−1
ε ) < 0,

the two roots are complex. Then for ρ > 1 + 1

4(1−e
−1
ε )

, we can write

λ1,2 =
1± i

√
4(ρ− 1)(1− e

−1
ε )− 1

2
.

Suppose that λ1,2 = e±iθ0 , 0 < θ0 < π for some parameter value ρ = ρ∗ >
1 + 1

4(1−e
−1
ε )

, then

λ1λ2 =
1− 1 + 4(ρ∗ − 1)(1− e

−1
ε )

4
= 1,

(ρ∗ − 1)(1− e
−1
ε ) = 1,

ρ∗ = 1 +
1

1− e
−1
ε

. (2.13)

Thus at ρ = ρ∗ = 1 + 1

1−e
−1
ε

, we have λ1,2 = e±
iπ
3 and the system admits a

Neimark-Sacker bifurcation.

We can see that as ε→ 1, we get the same results obtained in [10].
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3 Numerical simulations

In this section, we perform numerical simulations to confirm theoretical analysis
obtained.
In Figure 1, we can see that as ε→ 0 in (2.11), we get the same results obtained
in [9].

(a) Bifurcation diagram of (2.11) as ε→ 0. (b) Liapunov exponent of (2.11) as ε→ 0.

Figure 1: Dynamics of the system(2.1) as ε→ 0.

In Figure 3 and Figure 4, we can see that as ε → 1 in (2.11), we get the same
results obtained in [10].
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(a) Bifurcation diagram of (2.11) as ε→ 1. (b) Liapunov exponent of (2.11) as ε→ 1.

Figure 2: Dynamics of the system(2.11) as ε→ 1.

(a) ρ = 2.55 (b) ρ = 2.6

(c) ρ = 2.65 (d) ρ = 2.7

Figure 3: Phase portraits of (2.11) for different values of ρ as ε→ 1.
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Figure 5 illustrate more complex dynamics of the system by giving phase portraits
of the system (2.11) for different values of ρ at which the map is chaotic and
different values of ε.

(a) ρ = 2 and ε = 0.001 (b) ρ = 2.01 and ε = 0.01

(c) ρ = 2.03 and ε = 0.25 (d) ρ = 2.42 and ε = 0.5

Figure 4: Phase portraits of the system (2.11) for different values of ρ and ε.

4 Conclusion

In this work, we studied the dynamics of the singularly perturbed logistic differ-
ence equation with two different continuous arguments. First of all, we obtained
fixed points and discussed their local stability by analyzing the corresponding
characteristic equations of the linearized equations. secondly, we show that the
equation exhibits Hopf bifurcation and we have reached explicit conditions for
its occurrence. Then, the method of steps is applied to obtain a discrete ana-
logue of the considered system. We investigated local stability conditions of the
fixed points of the discretized system. Explicit conditions for the occurrence of
a variety of complex dynamics such as fold and Neimark-Sacker bifurcations are
reached. By letting the perturbation parameter tends to one, it is illustrated that
the singularly perturbed logistic difference equation with two different continu-

14



ous arguments behaves as the logistic delay differential equation with two delays.
Finally, numerical simulations including Lyapunov exponent, bifurcation diagram
and phase portraits carried out to confirm the theoretical analysis obtained and
to illustrate more complex dynamics of the system.
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