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Abstract

The canine distemper virus is a major threat to the already endangered wild dogs. We propose an evidence-based mathematical

model of canine distemper in the wild to predict the rate and possibility of disease spread under a different scenario. We find

the endemic and disease-free equilibrium points and the condition for their stability from the model. The bifurcation analysis

of the model shows how the endemic equilibrium can be transformed into the disease-free equilibrium through parameters that

represent fundamental ecological properties. The sensitivity of these parameters to the secondary disease spread points out the

specific interaction rates and a birth rate that should be targeted to reduce the CDV outbreak. We suggest target parameters

for controlling the disease outbreak considering the plausibility of manipulating them in terms of implications besides the

sensitivity of the parameters. Finally, this article proposes two specific control strategies based on this modeling framework:

isolation and birth-control-reintroduction. Since the isolation strategy may be cost-intensive, we modify our model to quantify

the isolation rate necessary to reduce the disease outbreak. We suggest that the birth-control-reintroduction strategy based on

the proposed model is cost-effective for a small contaminated area.
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Summary

The canine distemper virus is a major threat to the already endangered wild dogs.
We propose an evidence-based mathematical model of canine distemper in the wild
to predict the rate and possibility of disease spread under a different scenario. We
find the endemic and disease-free equilibrium points and the condition for their sta-
bility from the model. The bifurcation analysis of the model shows how the endemic
equilibrium can be transformed into the disease-free equilibrium through parameters
that represent fundamental ecological properties. The sensitivity of these parameters
to the secondary disease spread points out the specific interaction rates and a birth
rate that should be targeted to reduce the CDV outbreak. We suggest target parame-
ters for controlling the disease outbreak considering the plausibility of manipulating
them in terms of implications besides the sensitivity of the parameters. Finally, this
article proposes two specific control strategies based on this modeling framework:
isolation and birth-control-reintroduction. Since the isolation strategy may be cost-
intensive, we modify our model to quantify the isolation rate necessary to reduce the
disease outbreak. We suggest that the birth-control-reintroduction strategy based on
the proposed model is cost-effective for a small contaminated area.
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1 INTRODUCTION

The airborne Canine distemper disease caused by Canine morbillivirus (canine distemper virus) is a significant concern in
wild and domestic animals of a European country for the last 200 years1. Although the disease is common in many animals, it
reduced the African wild dog population, particularly to the verge of extinction2,3,4,5,6. The disease is fatal primarily in wild
dogs due to its fast spread through high social interactions7. Several intervention measures can control the disease epidemic,
but understanding the disease-spreading dynamics through mathematical models is always a prime research interest. This
theoretical concept can help to identify the natural infection corridor and its control through several model parameters.

The reports on the past outbreaks identified some of the natural corridors of the infection for Canine distemper in Wild dogs.
The airborne CDV produces tiny buds in the infected individuals that explode after systematic dysfunction, mixes into the
air, and enters into a healthy individual upon infection2,5. The histopathological study on wild dogs introduced to Catskill,
New York from Namibia in 1981 confirmed the modes as mentioned earlier of Canine distemper infection8. A notable mass
death in wild dogs reduced their population in 2001 in Tanzania through the confirmed infection modes. The IUCN enlists
this African wild dog as an endangered species due to various stresses acting on it.9,10,11,12 revealed that habitat destruction,
human persecution, and other diseases such as rabies, CPV (Canine parvovirus)13 along with the Canine distemper, lowered
the African wild dog abundance to less than 5500. However, the canine distemper disease poses more threat over the other
mentioned stresses as the disease repeatedly reemerged since the first reported outbreak in 19676,14,15.

Despite the substantial evidence in the literature indicating the CDV as one of the critical detrimental causes for the wild dog
population, there is a major lacuna in mathematical modeling on the CDV epidemic. prager2011vaccination,pal2014dynamics
first portrayed the entire scenario of the spreading of CDV with the consortium of the mathematical modeling. Later16 proposed
a model with intervention measures on the concerned epidemic applicable to captive animals only. So the few models so far
failed to identify the control of the disease through its natural immunity.

Based on the lacunae, this article aims to answer the following questions- (a) What is the most sensitive natural modulator to
subdue the disease spread in Adults? (b) Which sub-population (adults or pups) is responsible for controlling the disease? (c)
What is the most effective natural regulator to increase the recovered population?

To meet these objectives, we develop a five compartmental model. We formulate the model based on natural corridors
of CDV infection. The transmission of the disease can occur from both infected adults and pups to susceptible adults
and pups. There is evidence of vertical transmission through the placenta or milking. Since the disease is airborne and
the incubation and recovery period are negligible concerning the maturation period, we assume all the newborns from
infected adults are also infected. The Adults’ mortality rate is much less, but the mortality rate in infected pups is very high
naturally. Besides, the maturation rates of the pups are high too. The disruptive endocrine chemicals (e.g., Bisphenol-A)
and other nutritional components in the food also play a crucial role in maturation time17,18. We believe that this model
can help to identify reasonable management measures to control the disease epidemics in the wild.

HISTORY OF THE CDV OUTBREAK

Detailed documentation of the Canine distemper outbreaks can separate the African wild dog population’s declining pat-
tern due to the disease and other stresses. The separation of disease-induced population decline from the other reduction
is necessary to simulate an epidemiological model. The first well-recorded outbreak of Wild dogs’ disease was from 1967
to 19686. There was another outbreak of the canine distemper among captive dogs in the Masai Mara in 1991, but all the
African wild dogs sampled in 1989 and 1990 were seronegative19. So the transmission might have been from any other
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animals.

The disease report in 2000 may not be the cause of the population reduction as only two dogs of a pack in Tanzania became
infected. On the other hand,20 reports the death of all juveniles and male wild dogs in two weeks in 1994 belonging to
a pack of twelve individuals from Chobe National Park in northern Botswana. The disease spread rapidly in the other
breeding packs in 2001. On December 21, 2000, deaths peaked from January 30 to February 6, 2001, when 15 wild dogs
died. The last death record was on February 13, 2001. 49 of the 52 animals died during this outbreak14. To the best of our
knowledge, the last documented report for the CDV infection was in the Serengeti ecosystem, Tanzania, in 200715. We
enlist all the outbreaks of the CDV in the African wild dogs in the table 1 . Potential area for applying the CDVmodel:
Based on the literature, African Wild Dogs are the major victim of the CDV. However, Dhole (Indian Wild Dogs), and
many other animals are affected by CDV outside Africa. Figure 1 shows the area with potential to face CDV attack on
wild animal populations based on niche-modelling framework21.

TABLE 1 Timeline of the outbreaks of Canine Distemper (CD) disease in the African Wild Dogs.

Timeline Event First report

1967–68 The first known CD outbreak 22

1981 Second and major CD outbreak 8

1994 Third and major CD outbreak 20

2000–01 Fourth known CD outbreak 14

2007 Fifth minor CD outbreak 15

FIGURE 1 Geographical niche of Canine distemper for our models’ application throughout the Globe as generated using Bio-
clim, general additive, and MaxEnt niche-modelling framework. The distribution shows that although the CDV affect Wild dog
population in Africa, it has potential to spread among the animal populations in Asia, Europe, Australia, South and North Amer-
ica. The model is based environment-CDV interaction and data from Global biodiversity information facility, World Climate
Data Base, and future climate prediction data of Climatic Research Unit.
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2 MODEL FORMULATION

A mathematical model is key to understand the epidemiology of disease under ecological and evolutionary contexts. We
propose a deterministic ordinary differential equation model to predict the dynamics of Canine Distemper disease transmis-
sion. The disease transmission rates are different in pups than the adults23. So, we divide the wild dog population (N(t))
majorly into adults and pups. Further, we divide each of the adults and pups into susceptible, infected, and recovered com-
partments. However, the pups mature into adults faster than they recover in wilds24,25,26. Hence, we neglect recovered pups in
our model. Therefore, our model comprises of five mutually disjoint compartments: susceptible adults (AS), infected adults
(AI ), recovered adults (AR), susceptible pups (PS), infected pups (PI ). In other words, the dog population in the model is
N(t) = AS(t) + AI (t) + AR(t) + PS(t) + PI (t) at a given time point t.

The neuropathological symptoms-based diagnosis has confirmed re-emergence of the canine-distemper disease in recovered
wild dogs27. However, only after all individuals being infected and recovered, a small un-vaccinated population may gain herd
immunity against canine distemper for a long term28. Hence, the possible recovered dogs’ immunity loss motivates us to consider
the ’SIRS’ type model for a large wild dog population. The susceptible adult dogs may come to the concerned population at a
rate of � from other habitats. Some susceptible pups mature into adult susceptible at a rate of a. Also, previously recovered dogs
may become susceptible again at a rate of � after immunity loss. The airborne CDV may infect a susceptible adult at �1 rate in
the close presence of an infected adult and at �2 rate in the presence of an infected pup. Considering a natural mortality rate of
d in adult susceptible, we describe the adult susceptibles’ growth rate as-

dAS
dt

= � + aPS + �AR − �1ASAI − �2ASPI − dAS . (1)

The susceptible adults and recovered adults give birth to susceptible pups at b and r rates, respectively, after mating with a
noninfected wild dog. The susceptible pups get infected at the rate of �1 and �2 upon contact with infected pups and adults,
respectively. The pups’ natural mortality rates are as same as adults. Therefore the growth rate of the susceptible pups is-

dPS
dt

= bAS + rAR − �1PSPI − �2PSAI − aPS − dPS . (2)

As mentioned earlier, the infected adults may come from susceptible adults upon infection in the population. Also, some infected
pups mature into infected adults at a � rate. We assume the recovery rate of infected adults is 
 . Due to disease, the infected
adults die at a �1 rate in addition to its natural death rate. So the growth rate of infected adults is-

dAI
dt

= �1AIAS + �2ASPI + �PI − 
AI − �1AI − dAI . (3)

We assume that the infected adults give birth to infected pups at a rate of �3. Also, the infected pups come from susceptible
pups, as mentioned above. An infected pup either matures into a recovered adult at a rate of � or dies. Like infected adults, the
infected pups also have an additional disease-induced mortality rate �2 along with natural mortality. Therefore the growth rate
of infected pups is-

dPI
dt

= �1PSPI + �2PSAI + �3AI − �PI − �PI − �2PI − dPI . (4)

Here AS = AS(0) > 0, PS = PS(0) > 0, AI = AI (0) > 0, PI = PI (0) > 0, AR = AR(0) > 0. For the simplicity of calculation,
we consider p∗ = a + d; q∗ = 
 + d + �1; s∗ = � + � + d + �2; t∗ = d + �.

In our model, the recovered population increases both from the recovery of infected adults, and infected pups return to susceptible
after immunity loss and die at the natural death rate. Therefore the growth rate of recovered adults is-

dAR
dt

= �PI + 
AI − �AR − dAR. (5)
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So, our final proposed model is-
dAS
dt

= � + aPS + �AR − �1ASAI − �2ASPI − dAS ,

dPS
dt

= bAS + rAR − �1PSPI − �2PSAI − aPS − dPS ,

dAI
dt

= �1AIAS + �2ASPI + �PI − 
AI − �1AI − dAI ,

dPI
dt

= �1PSPI + �2PSAI + �3AI − �PI − �PI − �2PI − dPI ,

dAR
dt

= �PI + 
AI − �AR − dAR. (6)

The proposed mathematical model (6) is visualized in figure 2 for better understanding.

FIGURE 2 Schematic diagram of the model
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3 DYNAMICAL PROPERTIES OF THE MODEL

Theorem 1. The closed and bounded region D (⊂ R5+) is positively invariant and globally attracting for the proposed model
(6) irrespective of any non-negative initial conditions, where D = {(AS , PS , AI , PI , AR) ∈ R5 ∶ 0 ≤ N ≤ Z} with Z =
max{ �

d−m
, N(0)}.

Proof. The proposed model can be written in the following form:
dX
dt
= AX + B,

where X = (AS , PS , AI , PI , AR)T ,

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−(�1AI + �2PI + d) a 0 0 �
b −(�1PI + �2AI + p∗) 0 0 r

�1AI 0 −q∗ �2AS + � 0
0 �1PI + �2AI �3 −s∗ 0
0 0 
 � −t∗

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, and

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

�
0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. Here, p∗ = a + d, q∗ = 
 + d + �1, s∗ = � + � + d + �2, t∗ = d + �.

B is a positive vector. A(X) is a Metzler matrix ∀X ∈ R5. All off-diagonal entries of A(X) are non-negative. The system is
positively invariant in R5 for B ≥ 0. Starting from its initial state any trajectory of the system is stuck in R5 forever.

We sum up all population growth rate as
dN(t)
dt

= � + bAS + rAR + �3AI − �2PI − �1AI − dN (7)

to check the total growth rate of wild dogs.
It is clear that the equation (7) implies that dN

dt
≤ � + bAS + rAR − dN .

Let m = max{b, r, �3}; then,
dN
dt

≤ � + mAS + mAR + mAI − dN
or, dN

dt
≤ � + mN − m(PS + PI ) − dN

or, dN
dt

≤ �− (d −m)N , where d > m. The natural death rate (d) is lower than sum of birth rates b+ r+ �3, but it must be
greater than any single birth rate to maintain the population sustainability. Otherwise the wild dogs would have repopulate any
empty habitat exponentially (ref).
Hence

0 ≤ N(t) ≤ �
d − m

+
(

N(0) − �
d − m

)

e−(d−m)t

Therefore, as t → ∞, 0 ≤ N(t) ≤ �
d−m

for any t > 0, 0 ≤ N(t) ≤ Z, where Z = max { �
d−m

, N(0)}. Hereby we accomplish
the proof of boundedness.

3.1 Equilibrium analysis
Sometimes it is quite impossible to enumerate the closed-form expression of the non-linear dynamical system. Then the stability
analysis of the equilibrium points became the critical component in nurturing the system’s long-term behavior. This proposition
is also applicable for our proposed model (6) as the analytical expression of each population size is not tractable. So, we evaluate
the equilibrium points of the system (6). Mathematically the proposed system may have several fixed points. However, from the
context of epidemiological consideration, we select two equilibrium points, i.e., the Disease-free equilibrium point (henceforth,
DFE) and the endemic equilibrium points.

1. We express the disease equilibrium point by E0 = (e1, e2, 0, 0, 0), where e1 =
�(a+d)

d(a+d)−ab
and e2 =

�b
d(a+d)−ab

. Note that the
DFE is always feasible in any epidemiological system so it’s feasibility is trivial.
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2. Another fixed point be endemic equilibrium pointE(A∗S , P
∗
S , A

∗
I , P

∗
I , A

∗
R). The feasibility of the equilibrium point is given

in the following.

3.2 Stability analysis
3.2.1 Basic reproduction number
The basic reproduction number (henceforth, BRN) is a crucial measure in epidemiology to understand the virulence of the
disease. This BRN is defined by the rate at which new infections occur, i.e., the average number of cases produced due to
secondary infections. Thus, BRN can measure the maximum reproductive potential of an infectious disease. The BRN, usually
denoted by R0, provides a threshold condition for the stability of equilibrium points in any epidemic system.

Numerous methods are available to evaluate the analytical form of BRN, viz., (i) Jacobian approach, (ii) Next-generation
approach, (iii) The Castiloll-Chavez, Feng, and Huang approach30. However, the most popular method in the enumeration of
BRN is the approach of the ”Next Generation Matrix" (henceforth, NGM) method due to its ecological relevance. Generations
in epidemiology are defined as the waves of secondary infection that arise from each of the previous infections. Thus, the
number of secondary infections can be viewed as the first generation in any epidemiological system. As an instance, If Ri
indicates the reproduction number of the itℎ generation, then R0 is simply the number of infections generated by the index case,
i.e., the generation zero (0). Keeping these things in mind (Reference) proposes the NGM approach to evaluate the BRN.

The construction of the reproduction number with the NGM method comprises the development of two essential matrices
denoted by F and V . Here the matrices F , V account for the "new" infections and disease transfer between the infected
compartments, respectively. In our case, i.e., for the proposed model 6 the two matrices can be defined as

F =
[

�1e1 �2e1
�2e2 �1e2

]

& V =
[

q∗ −�
−�3 s∗

]

,

where, e1 =
�(a+d)

d(a+d)−ab
; e2 =

�b
d(a+d)−ab

; q∗ = 
 + d + �1 ; s∗ = � + � + d + �2.

Note that the inverse of the matrix V consists of the property of Z sign pattern, i.e., the off-diagonal entries are either negative
or zero. So, the BRN can be obtained from the following equation

R0 = �(FV −1),

where � indicates the spectral radius, i.e., the dominant eigen value of the matrix FV −1 . Thus,

FV −1 =

[ e1(s∗�1+�3�2)
q∗s∗−�3�

e1(��1+q∗�2)
q∗s∗−�3�

e2(s∗�2+�1�3)
q∗s∗−�3�

e2(q∗�1+��2)
q∗s∗−�3�

]

.
Let �1 and �2 be two eigen values of the matrix FV −1 with

�1 =
e1(�1s∗ + �2�3) + e2(�2� + �1q∗) +

√

[e1(�1s∗ + �2�3) − e2(�2� + �1q∗)]2 + 4e1e2(�1� + �2q∗)(�2s∗ + �1�3)
2(q∗s∗ − �3�)

�2 =
e1(�1s∗ + �2�3) + e2(�2� + �1q∗) −

√

[e1(�1s∗ + �2�3) − e2(�2� + �1q∗)]2 + 4e1e2(�1� + �2q∗)(�2s∗ + �1�3)
2(q∗s∗ − �3�)

Without loss generality, let us consider �1 as the dominant eigenvalue of the matrix FV −1. So the analytical expression of BRN
is given by,

R0 =
e1(�1s∗ + �2�3) + e2(�2� + �1q∗) +

√

[e1(�1s∗ + �2�3) − e2(�2� + �1q∗)]2 + 4e1e2(�1� + �2q∗)(�2s∗ + �1�3)
2(q∗s∗ − �3�)

(8)
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3.2.2 Local stability of the disease free equilibrium point
Theorem 2. For our proposed system (6), the disease-free equilibrium(E0) is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.

Proof. Jacobian at the disease free equilibrium point(E0).

J (E0) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−d a −�1e1 −�2e1 �
b −p∗ −�2e2 −�1e2 r
0 0 �1e1 − q∗ �2e1 + � 0
0 0 �2e2 + �3 �1e2 − s∗ 0
0 0 
 � −t∗

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Eigenvalues of JE0 are −t
∗ and other four are given by the roots of the equation

 4 + S1 3 + S2 2 + S3 + S4 = 0. (9)

Where,
S1 = −(�1e1 − q∗ + �1e2 − s∗) + (d + p∗),
S2 = (�1e1 − q∗)(�1e2 − s∗) − (�2e1 + �)(�2e2 + �3) − (d + p∗)(�1e1 − q∗ + �1e2 − s∗),
S3 = (�1e1 − q∗)(�1e2 − s∗)(d + p∗) − (�2e1 + �)(�2e2 + �3)(d + p∗) − (dp∗ + ab)(�1e1 − q∗ + �1e2 − s∗),
S4 = −(�2e1 + �)(�2e2 + �3)(dp∗ + ab) + (�1e1 − q∗)(�1e2 − s∗)(dp∗ + ab).
Clearly, all roots of equation (9) are either negative or have negative real parts if R0 < 1. Hence, the disease free equilibrium
point (E0) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Remark 1. In our system (6), aR0 < 1 implies that a small inflow of infected wild dog populations into packs would not generate
a massive outbreak. As a result, the persistence of the disease decreasing in time.

3.2.3 Global stability of the disease free equilibrium point
Theorem 3. The DFE (E0) point in our proposed system (6) becomes globally asymptotically stable for R0 < 1.

Proof. The system (6) can be written in the following form (Using theorem of Catillo-Chavez in31)32

dX
dt

= T (X, I),
dI
dt

= U (X, I), U (X, 0) = 0,

where X = [AS , PS , AR] and I = [AI , PI ] denote the uninfected and infected compartments, respectively.
E0 = (X∗, 0) denotes the disease-free equilibrium of this system.

Now, we will show the two conditions of Castillo-Chavez theorem31.

T (X, 0) =
⎡

⎢

⎢

⎣

� + aPS + �AR − dAS
bAS + rAR − aPS − dPS

−dAR − �AR

⎤

⎥

⎥

⎦

Solving the ODEs by equating both sides, we get

AR(t) = AR(0)e−(d+�)t

AS(t) =
[�
d
+ a
d
PS(t) +

�
d
AR(t)

]

−
[�
d
+ a
d
PS(0) +

�
d
AR(0) − AS(0)

]

e−dt

PS(t) =
[ b
a + d

AS(t) +
r

a + d
AR(t)

]

−
[ b
a + d

AS(0) +
r

a + d
AR(0) − PS(0)

]

e−(a+d)t

Thus, limt→∞ AR = 0
Let, limt→∞ AS = m and limt→∞ PS = n.
Solving above equations, we get

m = �
d
+ ( a

d
)n,

n = ( b
a + d

)m.
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Solving above equations we get, m = �(a+d)
d(a+d)−ab

= e1 and n =
b�

d(a+d)−ab
= e2.

Therefore, limt→∞ AS = m = e1 and limt→∞ PS = n = e2.
Hence the system (6) satisfy the first condition.

dI
dt

= U (X, I),

where, U (X, I) =
[

�1ASAI + �2ASPI + �PI − q∗AI
�1PSPI + �2PSAI + �3AI − s∗PI

]

.

Now, we can write U (X, I) in the form of : U (X, I) = AI − Û (X, I),
where,

A =
[

�1AS − q∗ �2AS + �
�2PS + �3 �1PS − s∗

]

, and Û (X, I) =
[

0
0

]

Here, matrix A is a M-matrix because the off-diagonal entries of A are non-negative and Û (X, I) = 0.
Hence, the system (6) also satisfy the second condition.
So, our disease free equilibrium point(E0)is globally asymptotically stable for R0 < 1.
This completes the proof.

3.2.4 Existence of the endemic equilibrium point
For our proposed model (6), an endemic equilibrium point E(A∗S , P

∗
S , A

∗
I , P

∗
I , A

∗
R). From the equilibrium equations of our

proposed (6), we have
A∗S =

Y1−Y2PS
Y3+Y4PS

,

A∗I =
X1P 2S+X2PS+X3

X4P 2S+X5PS+X6
,

P ∗I =
W1P 3S+W2P 2S+W3PS+W4

(W5−W6PS )(X4P 2S+X5PS+X6)
,

A∗R =
Z1P 3S+Z2P

2
S+Z3PS+Z4

(Z5−Z6PS )(X4P 2S+X5PS+X6)
.

With
X1 = p∗t∗�1(�1�1 − �2�2) − bt∗�1(��2 + q∗�1),
X2 = p∗t∗s∗(�2�2 − �1�1) − p∗t∗�1(�1s∗ + �2�3) + bt∗�1(q∗s∗ − ��3) + bt∗s∗(��2 + q∗�1),
X3 = p∗t∗s∗(�1s∗ + �2�3) − t∗s∗b(q∗s∗ − ��3),
X4 = r(�2�2 − �1�1)(��2 − 
�1) − t∗�1�2(�1s∗ + �2�3) − t∗�1�3(�2�2 − �1�1) +
t∗�1�2(�1s∗ + �2�3) − t∗�2s∗(�2�2 − �1�1),
X5 = r(��3 + 
s∗)(�2�2 − �1�1) + r(��2 − 
�1)(�1s∗ + �2�3) − t∗�1�3(�1s∗ + �2�3) − t∗�2s∗(�1s∗ + �2�3),
X6 = r(��3 + 
s∗)(�1s∗ + �2�3),
Y1 = q∗s∗ − ��3, Y2 = ��2 + q∗�1, Y3 = �1s∗ + �2�3, Y4 = �2�2 − �1�1,
Z1 = (��2 − 
�1)X1, Z2 = X2(��2 − 
�1) +X1(��3 + 
s∗), Z3 = X3(��2 − 
�1) +X2(��3 + 
s∗),
Z4 = X3(��3 + 
s∗), Z5 = t∗s∗, Z6 = t∗�1, W1 = �2X1, W2 = �2X2 + �3X1,
W3 = �2X3 + �3, W4 = X3�3, W5 = s∗, W6 = �1.

Now, from equilibrium equations using above values of AS ,AI ,PI ,AR, we get the following equations of PS :

A1P
6
S + A2P

5
S + A3P

4
S + A4P

3
S + A5P

2
S + A6PS + A7 = 0 (10)

The expression of the coefficients are in Appendix A.
By applying the Descartes’ rule of signs on the equation given in 10, we listed the unique positive root of this equation in table
3 .
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TABLE 3 Descartes’ rule of signs for unique endemic point.

Cases A1 A2 A3 A4 A5 A6 A7 No. of sign
changes

No. of possible
positive roots

1 + + + + + + - 1 1

2 + + + + + - - 1 1

3 + + + + - - - 1 1

4 + + + - - - - 1 1

5 + + - - - - - 1 1

6 + - - - - - - 1 1

3.3 Local Stability of the Endemic equilibrium
The Jacobian matrix of our system (6) evaluated at the endemic point E is -

J (E) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−d − �1A∗I − �2P
∗
I a −�1A∗S −�2A∗S �

b −�1P ∗I − �2A
∗
I − p

∗ −�2P ∗S −�1P ∗S r
�1A∗I + �2P

∗
I 0 �1A∗S − q

∗ �2A∗S + � 0
0 �1P ∗I + �2A

∗
I �2P ∗S + �3 �1P

∗
S − s

∗ 0
0 0 
 � −t∗

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Now, we will write Jacobian in this way

J (E) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

J11 J12 J13 J14 J15
J21 J22 J23 J24 J25
J31 0 J33 J34 0
0 J42 J43 J44 0
0 0 J53 J54 J55

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Where,
J11 = −d − �1A∗I − �2P

∗
I , J12 = a, J13 = −�1A∗S , J14 = −�2A∗S , J15 = �,

J21 = b, J22 = −�1P ∗I − �2A
∗
I − p

∗, J23 = −�2P ∗S , J24 = −�1P ∗S , J25 = r,
J31 = �1A∗I + �2P

∗
I , J33 = �1A∗S − q

∗, J34 = �2A∗S + �,
J42 = �1P ∗I + �2A

∗
I , J43 = �2P ∗S + �3, J44 = �1P ∗S − s

∗,
J53 = 
 , J54 = �, J55 = −t∗.
The corresponding characteristic equation of the endemic equilibrium point (E) is

�5 + B1�4 + B2�3 + B3�2 + B4� + B5 = 0 (11)

The expression of the coefficients are in Appendix B.
Using the Routh-Hurtwitz condition, all roots of the equation (11) are either negative or have a negative real part if and only if
following conditions hold

Δ1 = B1 > 0, Δ2 =
|

|

|

|

|

B1 1
B3 B2

|

|

|

|

|

> 0, Δ3 =
|

|

|

|

|

|

|

B1 1 0
B3 B2 B1
B5 B4 B3

|

|

|

|

|

|

|

> 0,
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Δ4 =

|

|

|

|

|

|

|

|

|

B1 1 0 0
B3 B2 B1 1
B5 B4 B3 B2
0 0 B5 B4

|

|

|

|

|

|

|

|

|

> 0, and B5 > 0.

Or,

B1 > 0, (B1B2 − B3) > 0, B1(B2B3 − B1B4) − (B23 − B1Bs) > 0, (12)
−B1B5B22 + 2B1B4B5 + B1B2B3B4 − B

2
1B

2
4 + B2B3B5 − B

2
5 − B

2
3B4 > 0, B5 > 0.

Only upon satisfying the conditions (12), the endemic equilibrium point E is locally asymptotically stable.

3.4 Global Stability of the Endemic equilibrium point
Theorem 4. The Endemic equilibrium E is Globally asymptotically stable inside the region of attractionD if the following six
(1 − 6) conditions are satisfied:

1. k1�1A∗S + k2�2P
∗
S ≤ k1q∗

2. k1�P ∗I + k2p
∗P ∗S ≤ k1�A∗R

3. k1�2A∗S + k2�1P
∗
S + k1� ≤ k1�

A∗I
AI

4. k1� + k2r ≤ k1�
A∗S
AS
+ k2r

P ∗S
PS

5. � A
∗
R

AS
+ aP

∗
S

PS
≤ a PS

AS

6. bAS ≤ p∗PS

Remark:
Note that the construction of the Lyapunov function and to show the global stability criteria involved routine mathematics.
However, the problem becomes messy due to lengthy, complex, and untractable equations associated with the proof. For better
readability and understanding of the text, we have included the proof in the main manuscript.

Proof. Let us construct a Lyapunov function V (AS , PS , AI , PI , AR), such that V ≥ 0 and at a point E∗(A∗S , P
∗
S , A

∗
I , P

∗
I , A

∗
R),

V (A∗S , P
∗
S , A

∗
I , P

∗
I , A

∗
R) = 0;

Then,
V (AS , PS , AI , PI , AR) = k1(AS − A∗S − A

∗
S ln

AS
A∗S
) + k2(PS − P ∗S − P

∗
S ln

PS
P ∗S
) + k3(AI − A∗I − A

∗
I ln

AI
A∗I
) + k4(PI − P ∗I −

P ∗I ln
PI
P ∗I
) + k5(AR − A∗R − A

∗
R ln

AR
A∗R
);

dV
dt
= k1(1 −

A∗S
AS
) dAS
dt
+ k2(1 −

P ∗S
PS
) dPS
dt
+ k3(1 −

A∗I
AI
) dAI
dt
+ k4(1 −

P ∗I
PI
) dPI
dt
+ k5(1 −

A∗R
AR
) dAR
dt

;

dV
dt

= k1(1 − A∗S
AS
)
[

a(PS − P ∗S ) + �(AR − A
∗
R) − �1ASAI + �1A

∗
SA

∗
I − �2ASPI + �2A

∗
SP

∗
I − d(AS − A

∗
S)
]

+ k2(1 −
P ∗S
PS
)
[

bAS + rAR − �1PSPI − �2PSAI − p∗P ∗S
]

+ k3(1 −
A∗I
AI
)
[

�1ASAI + �2ASPI + �PI − q∗AI
]

+

k4(1 −
P ∗I
PI
)
[

�1PSPI + �2PSAI + �3AI − s∗PI
]

+ k5(1 −
A∗R
AR
)
[

�PI + 
AI − t∗AR
]

;

dV
dt
= − k1d

AS
(AS −A∗S)

2 + k1a
AS
(ASPS −ASP ∗S −A

∗
SPS +A

∗
SP

∗
S ) +

k1�
AS
(ASAR −ASA∗R −A

∗
SAR +A

∗
SA

∗
R) − k1�1AI (AS −A

∗
S) +

k1�1
AS
A∗SA

∗
I (AS −A

∗
S) − k1�2PI (AS −A

∗
S) +

k1�2
AS
A∗SP

∗
I (AS −A

∗
S) +

k2b
PS
AS(PS − P ∗S ) +

k2r
PS
AR(PS − P ∗S ) − k2�1PI (PS − P

∗
S ) −

k2�2AI (PS −P ∗S )−k2p
∗(PS −P ∗S )+k3�1AS(AI −A

∗
I )+

k3�2
AI
ASPI (AI −A∗I )+

k3�
AI
PI (AI −A∗I )−k3q

∗(AI −A∗I )+k4�1PS(PI −

P ∗I ) +
k4�2
PI
AIPS(PI − P ∗I ) +

k4�3
PI
AI (PI − P ∗I ) − s

∗k4(PI − P ∗I ) +
k5�
AR
PI (AR − A∗R) +

k5

AR
AI (AR − A∗R) − k5t

∗(AR − A∗R);

dV
dt
= −k1d

(AS−A∗S )
2

AS
+ k1aPS − k1aP ∗S −

k1a
AS
A∗SPS +

k1a
AS
A∗SP

∗
S + k1�AR − k1�A

∗
R −

k1�
AS
ARA∗S +

k1�
AS
A∗RA

∗
S − k1�1ASAI +
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k1�1A∗SAI + k1�1A
∗
SA

∗
I −

k1�1
AS
A∗2S A

∗
I − k1�2ASPI + k1�2A

∗
SPI + k1�2A

∗
SP

∗
I −

k1�2
AS
A∗2S P

∗
I + k2bAS −

k2b
PS
ASP ∗S + k2rAR −

k2r
PS
P ∗SAR − k2�1PSPI + k2�1P

∗
SPI − k2�2AIPS + k2�2P

∗
SAI − k2p

∗PS + k2p∗P ∗S + k3�1ASAI − k3�1ASA
∗
I + k3�2ASPI −

k3�2ASPI
A∗I
AI
+ k3�PI − k3�PI

A∗I
AI
− k3q∗AI + k3q∗A∗I + k4�1PSPI − k4�1PSP

∗
I + k4�2PSAI − k4�2PSAI

P ∗I
PI
+ k4�3AI −

k4�3AI
P ∗I
PI
− k4s∗PI + k4s∗P ∗I + k5�PI − k5�PI

A∗R
AR
+ k5
AI − k5
AI

A∗R
AR
− k5t∗AR + k5t∗A∗R;

We consider k1 = k3 and k2 = k4.
dV
dt
= − k1d

AS
(AS−A∗S)

2+k1aPS−k1aP ∗S−k1aP
∗
S
A∗SPS
ASP ∗S

+k1aPS
A∗SP

∗
S

ASPS
+k1�AR−k1�A∗R−k1�A

∗
R
A∗SAR
ASA∗R

+k1�AR
A∗SA

∗
R

ASAR
+k1�1A∗SAI+

k1�1A∗SA
∗
I − k1�1

A∗2S A
∗
I

AS
+ k1�2A∗SPI + k1�2A

∗
SP

∗
I − k1�2

A∗2S P
∗
I

AS
+ k2bAS − k2bA∗S

ASP ∗S
A∗SPS

+ k2rAR − k2rA∗R
P ∗SAR
PSA∗R

+ k2�1P ∗SPI +

k2�2P ∗SAI − k2p
∗PS + k2p∗P ∗S − k1�1ASA

∗
I − k1�2A

∗
SP

∗
I
ASPIA∗I
A∗SP

∗
I AI

+ k1�PI − k1�P ∗I
PIA∗I
P ∗I AI

− k1q∗AI + k1q∗A∗I − k2�1PSP
∗
I −

k2�2P ∗SA
∗
I
PSAIP ∗I
P ∗SA

∗
IPI
+k2�3AI −k2�3A∗I

AIP ∗I
A∗IPI

−k2s∗PI +k2s∗P ∗I +k5�PI −k5�P
∗
I
PIA∗R
P ∗I AR

+k5
AI −k5
A∗I
AIA∗R
A∗IAR

−k5t∗AR+k5t∗A∗R
Again, we consider, k2�3A∗I = k1�2A

∗
SP

∗
I and k5t∗A∗R = k1�2A

∗
SP

∗
I .

dV
dt
= − k1d(AS−A∗S )

2

AS
+ K1�1A∗SA

∗
I (2 −

A∗S
AS
− AS

A∗S
) + k1�2A∗SP

∗
I (3 −

A∗S
AS
− ASPIA∗I

A∗SP
∗
I AI

− AIP ∗I
A∗i PI

) + k1aPS − k1aP ∗S − k1aP
∗
S
A∗SPS
ASP ∗S

+

k1aPS
A∗SP

∗
S

ASPS
+ k1�AR − k1�A∗R − k1�A

∗
R
A∗SAR
ASA∗R

+ k1�AR
A∗SAR
ASAR

+ k1�1A∗SAI + k1�2A
∗
SPI + k2bAS − k2bA

∗
S
ASP ∗S
A∗SPS

+ k2rAR −

k2rA∗R
P ∗SAR
PSA∗R

+ k2�1P ∗SPI + k2�2P ∗SAI − k2p∗PS + k2p∗P ∗S + k1�PI − k1�P ∗I
PIA∗I
P ∗I AI

− k1q∗AI + k1�P ∗I − k2�1PSP ∗I −

k2�2P ∗SA
∗
I
PSAIP ∗I
P ∗SA

∗
IPI

+ k2�3AI − k2s∗PI + k2s∗P ∗I + k5�PI − k5�P
∗
I
PIA∗R
P ∗I AR

+ k5
AI − k5
A∗I
AIA∗R
A∗IAR

− k5t∗AR.

Let, A = k1d(AS−A∗S )
2

AS
, B = K1�1A∗SA

∗
I (2 −

A∗S
AS
− AS

A∗S
) and C = k1�2A∗SP

∗
I (3 −

A∗S
AS
− ASPIA∗I

A∗SP
∗
I AI

− AIP ∗I
A∗IPI

).
dV
dt
= −A+B+C −k1aPS −k1aP ∗S −k1a

A∗SPS
AS

+k1a
A∗SP

∗
S

PS
+k1�AR−k1�A∗R−k1�

A∗SAR
AS

+k1�
A∗SA

∗
R

AS
+k1�1A∗SAI +k1�2A

∗
SPI +

k2bAS − k2b
P ∗SAS
PS

+ k2rAR − k2r
P ∗SAR
PS

+ k2�1P ∗SPI + k2�2P
∗
SAI − k2p

∗PS + k2p∗P ∗S + k1�PI − k1�
A∗IPI
AI

− k1q∗AI + k1�P ∗I
Now, let k1a = k2p∗.
dV
dt
= −A + B + C − k1a

A∗SPS
AS

+ k1a
A∗SP

∗
S

PS
+ k1�AR − k1�A∗R − k1�

A∗SAR
AS

+ k1�
A∗SA

∗
R

AS
+ k1�1A∗SAI + k1�2A

∗
SPI + k2bAS −

k2b
P ∗SAS
PS

+ k2rAR − k2r
P ∗SAR
PS

+ k2�1P ∗SPI + k2�2P
∗
SAI − k2p

∗PS + k2p∗P ∗S + k1�PI − k1�
A∗IPI
AI

− k1q∗AI + k1�P ∗I .

dV
dt
= −A+B+C+AI

(

k1�1A∗S + k2�2P
∗
S − k1q

∗)+
(

k1�P ∗I + k2p
∗P ∗S − k1�A

∗
R

)

+PI
(

k1�2A∗S + k2�1P
∗
S + k1� − k1�

A∗I
AI

)

+

AR
(

k1� + k2r − k1�
A∗S
AS
− k2r

P ∗S
PS

)

+ k1A∗S
(

� A
∗
R

AS
+ aP

∗
S

PS
− a PS

AS

)

+ k2
(

bAS − p∗PS
)

− k2b
P 8SAS
PS

.

The first term above is clearly negative and for the second term, we consider x1 =
A∗S
AS

, X2 =
AS
A∗S

. Then we get A
∗
S

AS
+ AS

A∗S
≥ 2

[A.M ≥ G.M ]. For third term we again consider x1 =
A∗S
AS
, x2 =

ASPSA∗I
A∗SP

∗
I AI

, x3 =
AIP ∗I
A∗IPI

and then applying A.M ≥ G.M, we get
A∗S
AS
+ ASPIA∗I

A∗SP
∗
I AI

+ AIP ∗I
A∗IPI

≥ 3.

Therefore, dV
dt

≤ 0.

3.4.1 Bifurcation Analysis
The qualitative change of the equilibrium points in any non-linear dynamical system with the alteration of the parameter values
is termed as Bifurcation analysis. This method helps to describe the variation of the ecological state due to the change of
equilibrium magnitudes. Here we propose a theorem expressing the bifurcation analysis for our system (6).

Theorem 5. The proposedmodel (6) shows a transcritical bifurcationwith respect to the parameter �2 if the following conditions

1. 2�1w1w3(v3 − v1) + 2�∗2w1w4(v3 − v1) + 2�1w2w4(v4 − v2) + 2�2w2w3(v4 − v2) < 0

2. w4e1(v3 − v1) > 0

hold.
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Proof. To study transcritical bifurcation for our proposed, we use the theorem in Castilo-Chavez and Song33.
In our case, let �2 be the bifurcation parameter and using R0 = 1, we have �2 = �∗2 .
A is the Jacobian matrix at the disease free equilibrium point.

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−d a −�1e1 −�∗2e1 �
b −p∗ −�2e2 −�1e2 r
0 0 �1e1 − q∗ �∗2e1 + � 0
0 0 �2e2 + �3 �1e2 − s∗ 0
0 0 
 � −t∗

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Now, let w = (w1, w2, w3, w4, w5)t be the right eigen vector of A.
Then,
Aw = 0w implies that

−dw1 + aw2 − �1e1w3 − �∗2e1w4 + �w5 = 0 (13)

bw1 − p∗w2 − �2e2w3 − �1e2w4 + rw5 = 0 (14)

(�1e1 − q∗)w3 + (�∗2e1 + �)w4 = 0 (15)

(�2e2 + �3)w3 + (�1e2 − s∗)w4 = 0 (16)


w3 + �w4 − t∗w5 = 0 (17)
From equation (15) and (16), we get
w3 = −

�∗2e1+�
�1e1−q∗

w4

w5 =
�(�1e1−q∗)−
(�∗2e1+�)

t∗(�1e1−q∗)
w4

Multiplying (13) by b and (14) by d, then adding (13) and (14)
w2 = [

t∗(�1e1−q∗)(b�∗2e1+d�1e2)+
(b�+rd)(�
∗
2e1+�)−t

∗(�∗2e1+beta)(b�1e1+d�2e2)−�(b�+rd)(�1e1−q
∗)

t∗(�1e1−q∗)(ab−dp∗)
]w4

Multiplying (13) by p∗ and (14) by a, then adding (13) and (14)
w1 = [

t∗(�1e1−q∗)(�∗2e1p
∗+�1e2a)+
(�∗2e1+�)(p

∗�+ar)−t∗(�∗2e1+�)(�1e1p
∗+�2e2a)−�(�1e1−q∗)(p∗�+ar)

t∗(�1e1−q∗)(ab−dp∗)
]w4

Again, let v = (v1, v2, v3, v4, v5) be the left eigen vector of A.
Then,
vA = 0A, ⇐⇒ (vA)t = 0, ⇐⇒ Atvt = 0.
Now the transpose of the matrix A is

At =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−d b 0 0 0
a −p∗ 0 0 0

−�1e1 −�2e2 �1e1 − q∗ �2e2 + �3 

−�∗2e1 −�1e2 �∗2e1 + � �1e2 − s∗ �
� r 0 0 −t∗

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. Here, Atvt = 0 implies that

−dv1 + bv2 = 0 (18)

av1 − p∗v2 = 0 (19)

−�1e1v1 − �2e2v2 + (�1e1 − q∗)v3 + (�2e2 + �3)v4 + 
v5 = 0 (20)

−�∗2e1v1 − �1e2v2 + (�
∗
2e1 + �)v3 + (�1e2 − s

∗)v4 + �v5 = 0 (21)

�v1 + rv2 − t∗v5 = 0 (22)
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From equation (18) and (22), we get
v1 =

b
d
v2, and

v5 =
b�+rd
t∗d

v2.
Now, multiplying equation (20) by (�∗2e1 + �) and equation (21) by (�1e1 − q

∗), and subtracting equation (21) from (20), we get
v4 = [

t∗be1(�1�+�∗2q
∗)+t∗d{�2e2(�∗2e1+�)−�1e2(�1e1−q

∗)}+(b�+rd){�(�1e1−q∗)−
(�∗2e1+�)}
t∗d{(�2e2+�3)(�∗2e1+�)−(�1e2−s

∗)(�1e1−q∗)}
]v2.

Multiplying (20) by (�1e2 − s∗) and (21) by (�2e2 + �3), and subtracting equation (21) from (20), we derive
v3 = [

t∗b{�∗2e1(�2e2+�3)−�1e1(�1e2−s
∗)}+t∗be2(�1�3+�2s∗)+(b�+rd){
(�1e2−s∗)−�(�2e2+�3)}

t∗d{(�2e2+�3)(�∗2e1+�)−(�1e2−s
∗)(�1e1−q∗)}

]v2
Therefore,
w = (w1, w2, w3, w4, w5)t

Where,
w1 = t∗(�1e1 − q∗)(�∗2e1p

∗ + �1e2a) + 
(�∗2e1 + �)(p
∗� + ar) − t∗(�∗2e1 + �)(�1e1p

∗ + �2e2a) − �(�1e1 − q∗)(p∗� + ar);
w2 = t∗(�1e1 − q∗)(b�∗2e1 + d�1e2) + 
(b� + rd)(�

∗
2e1 + �) − t

∗(�∗2e1 + beta)(b�1e1 + d�2e2) − �(b� + rd)(�1e1 − q
∗);

w3 = −t∗(ab − dp∗)(�∗2e1 + �);
w4 = t∗(�1e1 − q∗)(ab − dp∗);
w5 = �(�1e1 − q∗)(ab − dp∗) − 
(�∗2e1 + �)(ab − dp

∗);
and
v = (v1, v2, v3, v4, v5)
where,
v1 = t∗b{(�2e2 + �3)(�∗2e1 + �) − (�1e2 − s

∗)(�1e1 − q∗)};
v2 = t∗d{(�2e2 + �3)(�∗2e1 + �) − (�1e2 − s

∗)(�1e1 − q∗)};
v3 = t∗b{�∗2e1(�2e2 + �3) − �1e1(�1e2 − s

∗)} + t∗be2(�1�3 + �2s∗) + (b� + rd){
(�1e2 − s∗) − �(�2e2 + �3)};
v4 = t∗be1(�1� + �∗2q

∗) + t∗d{�2e2(�∗2e1 + �) − �1e2(�1e1 − q
∗)} + (b� + rd){�(�1e1 − q∗) − 
(�∗2e1 + �)};

v5 = (b� + rd){(�2e2 + �3)(�∗2e1 + �) − (�1e2 − s
∗)(�1e1 − q∗)};

For sake of simplicity, we consider
x1 = AS , x2 = PS , , x3 = AI , x4 = PI , , x5 = AR
Then,
f1 = � + ax2 + �x5 − �1x1x3 − �2x1x1 − dx1;
f2 = bx1 + rx5 − �1x2x4 − �2x2x3 − ax2 − dx2;
f3 = �1x3x1 + �2x1x4 + �x4 − 
x3 − �1x3 − dx3;
f5 = �x4 + 
x3 − �x5 − dx5;
f5 = �x4 + 
x3 − �x5 − dx5;
Now, the coefficients a and b are calculated as follows using the theorem of Castillo-Chavez and Song. In order to find the values
of a and b, we have to calculate all the partial derivatives.
�2f1
�x4��2

= −e1,
�2f3
�x4��2

= e1,
�2f1
�x1�x3

= −�1,
�2f1
�x1�x4

= −�∗2 ,
�2f1
�x3�x1

= −�1,
�2f1
�x4�x1

= −�∗2 ,
�2f2
�x2�x3

= −�2,
�2f2
�x2�x4

=

−�1,
�2f2
�x3�x2

= −�2,
�2f2
�x4�x2

= −�1,
�2f3
�x1�x3

= �1,
�2f3
�x1�x4

= �∗2 ,
�2f3
�x3�x1

= �1,
�2f3
�x4�x1

= �∗2 ,
�2f4
�x2�x3

= �2,
�2f4
�x2�x4

=

�1,
�2f4
�x3�x2

= �2,
�2f4
�x4�x2

= �1 and all other partial derivatives are zero.
Putting these all values in a and b, we get
a = 2�1w1w3(v3 − v1) + 2�∗2w1w4(v3 − v1) + 2�1w2w4(v4 − v2) + 2�2w2w3(v4 − v2) and
b = w4e1(v3 − v1)

4 SENSITIVITY ANALYSIS

Sensitivity analysis (henceforth, SA) is a vital tool in mathematical modeling to characterize the influence of the input param-
eters. This method comprises two techniques, i.e., first, the Uncertainty analysis (henceforth, UA), and second the SA. Based
on the structure of the model, one can distinguish UA into two parts, viz., (i) epistemic, (ii) aleatory34. The first one describes
the uncertainty in the deterministic system, and that of the second one is for stochastic dynamics. Since our proposed model
(6) explains the deterministic scenario, so we choose the epistemic approach. Numerous methods are available to delineate the
UA viz., response surface process, differential analysis, etc., but34 illustrate the most parsimonious approach to conduct the UA
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and SA. The author applies two techniques, (i) Monte Carlo (henceforth, MC) simulation and (ii) Latin-Hyper Cube sampling
(henceforth, LHS), to perform the UA. It is worthy of mentioning that the uncertainty analysis follows the sensitivity analysis.

The goal of SA is to recognize those inputs such as the initial conditions, parameter values, etc., that would certainly influence
the uncertainty analysis, hence the model outcomes. Sensitivity analysis can also be distinguished in the local and global sense.
The local SA is generally applied when the input factors such as the model parameters and initial population sizes are known
with a small level of uncertainty. The partial derivative approach is the best one to describe the local SA35. Nevertheless, in
most ecological problems, the input of the model parameters and initial sizes are often unknown, which provides a biased result
for the local SA. In this connection, one needs to perform the global SA followed by the methods of34. The author describes
two methods, (i) the partial rank correlation coefficient (henceforth, PRCC) and (ii) the e-Fast algorithm to conduct global SA.
Here we follow the first method, i.e., the PRCC approach to perform the global SA for our model (6). The detailed procedure to
perform the global SA is mentioned in the article of34.
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FIGURE 3 Sensitivity analysis is performed on the basic reproduction number (R0) based on our proposed model with the Latin Hypercube Sampling (LHS) method
where the number of sample size is 1000. The value of the input (model) parameters are listed in the table. The asterisk (*) sign indicates the PRCC of the corresponding
parameters have a significant difference from zero with 5% level of accuracy. The figure projects that the model parameter �1 has the highest positive correlation with R0.

The motto of SA in case of our dynamical system (6) is to identify the ecological parameters that would certainly affect the
basic reproduction number (R0). According to the protocol mentioned by the author we calculate the PRCC of the parameters a,
�1, �2, d, b, �1, �2, �3, �, 
 , �2, �, �1, �, �, r with respect to R0. Note that we initially perform the LHS protocol in conducting
the UA, where we consider the parameter values from a biologically feasible region. The figure 3 represent the measure of
correlation between R0 and the other model parameters. Infection rate of susceptible pups (PS) in contact to infected pups (PI ),
i.e., �1 stands to be the most correlated and henceforth most sensitive parameter in the enumeration of BRN (R0).

5 NUMERICAL SIMULATIONS

This section is devoted to the verification of analytical results by rigorous numerical simulation using MATLAB. Firstly, we
examine the behaviour of the system near R0 = 1. As found in the global stability results of the disease free equilibrium, it is
expected that the disease will die out for R0 < 1. However, to perform the numerical simulation we take parameters from Table
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2 and initial conditions are taken as AS(0) = 5000, PS(0) = 100, AI (0) = 1, PI (0) = 1 and AR(0) = 0. All the parameters
are fixed except �2. The time series solutions of the compartments are depicted in Fig. 4 (A) when R0 < 1 (�2 = 9 × 10−4)
and in Fig. 4 (B) when R0 > 1 (�2 = 3 × 10−3). It can be observed that the equilibrium approaches disease free state when
R0 = 0.8555 < 1 and the disease becomes endemic whenever R0 = 1.3979 > 1. The corresponding equilibrium values for
R0 = 0.8555 are (61.03, 80.51, 0.00, 0.00, 0.00) and (46.02, 54.78, 6.93, 1.87, 3.59) for R0 = 1.3979. Therefore, the analytical
results for stability of DFE is verified.
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FIGURE 4 Time evolution of the populations when (A) R0 < 1 and (B) R0 > 1. Parameter values are taken from Table 2
except in (A) we take �2 = 0.0009.
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FIGURE 5 Transcritical bifurcation diagrams with respect to the basic reproduction number for (A) equilibrium density of AI
and (B) equilibrium density of PI .

Now, to examine the transcritical bifurcation at R0 = 1, we draw bifurcation diagrams with respect to the infected adults
and pups. As we focused on the parameter �2 as a bifurcation parameter, we vary 10−5 ≤ �2 ≤ 5 × 10−3 only and all other
parameters are fixed. The fixed parameters are taken from Table 2 and the initial conditions are taken as AS(0) = 5000,
PS(0) = 100, AI (0) = 1, PI (0) = 1 and AR(0) = 0. The bifurcation diagrams with respect to AI (t) and PI (t) are shown in Fig.
5 (A) and Fig. 5 (B), respectively. We observe that the transcritical bifurcation occurs at R0 = 1 as shown analytically. This
confirms that R0 is a sharp threshold for the proposed model. In other words, the infected dog populations will die out if one
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maintain R0 < 1 for a sufficiently large period of time.

Further, we examine the global stability of the endemic equilibrium point numerically. To perform the numerical simulation
we take parameters values from Table 2 . The endemic equilibrium E(A∗S , P

∗
S , A

∗
I , P

∗
I , A

∗
R) is found to be (46.02, 54.78, 6.93,

1.87, 3.59) for this parameter set. Further, the conditions for the global asymptotic stability of the equilibrium are satisfied for
this particular parameter set. It is shown that the endemic equilibrium is globally asymptotically stable inside the region D in
AS −AI −PI and PS −AI −PI spaces (see Fig. 6 ). From the figures it is also observed that the solutions that originate inside
the region D, approach the points (A∗S , A

∗
I , P

∗
I ) and (P

∗
S , A

∗
I , P

∗
I ) in Fig. 6 (A) and Fig. 6 (B) respectively. Thus, the numerical

simulations also confirm that the endemic equilibrium is globally asymptotically stable in the AS −AI − PI and PS −AI − PI
spaces. Furthermore, we can show the global asymptotic stability of the endemic equilibrium in other spaces by proceeding
similarly.

FIGURE 6 Global stability of the endemic equilibrium in (A) AS - AI - PI and (B) PS - AI - PI spaces.

6 CONTROL STRATEGIES:

The Canine distemper disease in wild dogs is a major concern for naturalist, conservation biologist and environmental policy
makers. Our SIRS epidemiological model is useful to forecast the disease spread over time. Unlike existing models, this model
focuses on natural controls rather than intervention measures. Since the model is conceptually developed from the interactive
structure of African Wild dogs, the parameters of the model represent specific ecological aspects of African wild dogs. This
bridge between the natural aspects and parameters makes the model easier to implement in wild. For example, if a policy
focuses on the reintroduction of Wild dogs in an area, predicting the change in disease outbreak is plausible through tuning
the � parameters of the model. Similarly, the disease dynamics can be monitored and control through 15 eco-sociological
paths enlisted in table 2 through parameter tuning using this model. Among the 15 parameters, �1 is the most sensitive as
per our study. However, this study provides an order of parameters opening several combinations of parametric set to control
the disease outbreak based on the local and global scenario. The policymakers can choose the feasible parameters they can
control based on the ranking we provide through sensitivity analysis to drive a wild population from endemic equilibrium to
disease-free equilibrium.

We find the disease free equilibrium is both locally and globally stable. Therefore, once the wild dog population achieves
disease-free equilibrium, the population can withstand threats of new emergence of this disease for a long term. Since, under
six conditions provided in theorem 4, the endemic equilibrium is globally stable too, conservation strategists must focus on
disrupting these criteria based on feasibility. For example, Adding more Adult susceptible to break six conditions of global
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stability is a simple way to destabilize the endemic equilibrium. Sterilization of adult susceptible to control birth rate of pups
is another option to destabilize the endemic equilibrium. Since selective sterilization of wild dog population is harder than
introducing adult wild dogs, the introduction of susceptible seems to be more logical in terms of strategy development in a
diseased population. The transcritical-bifurcation analysis reveals regulation of infection rate of Susceptible adults in contact
with infected pups is the key to transform the endemic to disease-free equilibrium. Although, theoretically sound, this regu-
lation may turn out to be impractical during implementation. One way to lower the infection rate is monitoring the mobility
of reintroduced adult susceptible dogs by fencing and confining them in the breeding ground where the infected pups are less.
Such isolation techniques may work only in Sanctuaries or small conserved lands as it requires cost-intensive man power.

Strategy I: Isolation
In this section, we examine the effects of isolating infected dogs. Isolation of infected dogs can be prevention strategy
against canine distemper disease. There are studies indicating the necessity of isolating infected dogs (see https://www.
uwsheltermedicine.com/library/resources/canine-distemper-cdv). Thus, quantifying the effects of isolating adult and pups is an
important issue. It is assumed that infected adults and infected pups are isolated from the system at constant rates �1 and �2
respectively. After incorporating the isolation in the model, the modified system of equations take the following form

dAS
dt

= � + aPS + �AR − �1ASAI − �2ASPI − dAS ,

dPS
dt

= bAS + rAR − �1PSPI − �2PSAI − aPS − dPS ,

dAI
dt

= �1AIAS + �2ASPI + �PI − 
AI − �1AI − (d + �1)AI ,

dPI
dt

= �1PSPI + �2PSAI + �3AI − �PI − �PI − �2PI − (d + �2)PI ,

dAR
dt

= �PI + 
AI − �AR − dAR. (23)
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FIGURE 7 Effect of isolating infected adults and pups.

We vary the parameters �1 and �2 in the range [0, 0.1] while doing numerical simulations. For different levels of isolation rates,
the reduction in AI and PI are depicted in Fig. 7 . We observe that �1 is more effective than �2 in reducing the number of
infected adult dog population. On the other hand, �2 is more effective than �1 in reducing the number of infected pups. Further,
to quantify the effects of isolation more precisely, we calculate the percentage reduction of adult and pups infected dogs in the
50 days projection period. We use the following basic formula

Percentage reduction = Baseline cases − Cases with control
Baseline cases

× 100. (24)

https://www.uwsheltermedicine.com/library/resources/canine-distemper-cdv
https://www.uwsheltermedicine.com/library/resources/canine-distemper-cdv
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TABLE 4 Percentage reduction in total number of infected adult and pups for different levels of isolation.

Parameter values Reduction in AI Reduction in PI
�1 = 0.01 14.51 4.17
�1 = 0.05 47.87 17.89
�1 = 0.1 65.63 28.68
�2 = 0.01 0.41 8.65
�2 = 0.05 1.68 31.91
�2 = 0.1 2.76 47.98
�1 = 0.01,�2 = 0.01 14.91 12.59
�1 = 0.01,�2 = 0.05 16.14 35.13
�1 = 0.05,�2 = 0.01 48.23 25.67
�1 = 0.05,�2 = 0.05 49.33 46.18

The percentage reduction for both infected populations are reported in Table 4 . From observed values in percentage reduction,
it can be reinforced that �1 is more effective in reduction of canine distemper cases of infected adults. Maximum value of �1
(=0.1) can reduce infected adult cases upto 65.63%. The reason behind this observation may be that the transmission coefficient
of infected adults is greater than the transmission coefficient of infected pups. Maximum value of �2 (=0.1) can reduce pups
infection by 47.98%. However, it is also observed that when both infected populations are isolated at a moderate level (=0.05),
the percentage reduction in both infected populations show competitive results. Thus, we recommend moderate isolation of
both infected populations since it is effective as well as more feasible.

Although cost-intensive, isolating infected adults and pups from the wild is a possible solution to control the disease out-
break. Especially, if the contaminated zone is smaller in size, isolation strategy may work better than birth controlling. So we
modified the proposed model to incorporate isolation terms. The modified model (23) can predict the disease dynamics better
than the first proposed model under various isolation rates. The numerical simulation of the modified model also shows that the
isolation of both infected adults and pups together brings down the disease. Isolation of only adults still allows the susceptible
pups to be in contact with the infected pups and thus producing more secondary infection in pups. Therefore, isolating pups
is more important than isolating adults. There is a broad prospect of studying the disease dynamics with various intervention
measures with complicated forms based on the proposed model. Nonetheless, this proposed model set a framework to address
epidemiological complications to manage disease outbreak in wild animals.

Strategy II: Birth control and reintroduction
The sensitivity analysis of BRN for parameters through PRCC reveals that �1, b, and �1 have highest PRCC with BRN in
decreasing order among 10 significantly correlated parameters. Controlling �1 or infection rate of susceptible pups in contact
to infected pups is thus the most effective way to lower the BRN. However, this control measure is a cost-intensive strategy
requiring selective isolation of pups via manual survey. Especially an infected pup and a susceptible pup may belong to the care
of same mother. So isolating pups may make them vulnerable to other diseases without the nurture from their mothers. On the
other hand, controlling �1 is a relatively easier strategy than the aforementioned one. Lowering �1 or the infection rate of sus-
ceptible adults to infected adults also requires selective isolation of infected adults. However, infected adults produce infected
pups; their isolation do not separate pups from their mothers. Therefore, the scientific choice which is implacable seems to be
regulating the parameter with second highest b, i.e., birth rate of susceptible pups from susceptible adults. Lowering b means
reducing the birth rate of susceptible pups by preventing the mating rate of Susceptible adults in infected areas. Reducing the
birth rate of an endangered species may apparently incur the extinction risk of the population but re-introduction of the adults
from other areas eliminates the chance of extinction. Since, the birth controlling is limited to the diseased area only, other areas
can still produce enough pups to be matured into adults and transferred during reintroduction. Note that the wild-dog popu-
lation suffers from inbreeding depression, improvising their immunity. Lowering the b and increasing � together can reduce
this improvisation in a synergistic fashion. The increment in � is possible through reintroducing the susceptible in the wild
area where the disease is found. This reintroduction will increase the birth-rate of susceptible pups relative to the birth rate of
infected pups. Infected pups spread the disease more efficiently than others through interactions. The relative low abundance of
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infected pups can result in less interaction with infected pups, leading to reduced production of secondary infections. Thus, the
disease can be controlled through birth control and reintroduction.

7 CONCLUSION

Epidemiological model can predict the dynamics of Canine Distemper disease, which is a major threat to wild dog population.
The proposed epidemiological model provides insight to the path of disease outbreak through parameters. This article derive
control strategies from the proposed model based on the parameters. The two major strategies we proposed are isolation strategy
and birth-control-reintroduction strategy. This article concludes that a moderate isolation rate of infected adults and pups can
reduce the disease significantly. The birth-control and reintroduction strategy diminishes the disease by reducing the infected
pups and interaction with them. Finally, the outcome of this study can be imposed in the practical field by the conservation
policy makers.
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APPENDIX

A

A1 = aX4Z6W6Y4,
A2 = aX5Z6W6Y4 −X4(aZ5 − �Z6)W6Y4 − aX6Z6(W5Y4 −W6Y3) − �Z1W6Y4 + �1X1Y2W6Z6 − �2W1Y2Z6 + dY2W6Z6X4,
A3 = X4(aZ6−�Z6)(W5Y4−W6Y3)−aX4Y3W5Z6−�X4Z5Y3W5−(aZ5−�Z6)X5W6Y4−aX5Z6(W5Y4−W6Y3)+aZ6X6W6Y4+
�Z1(W5Y4 −W6Y3) − �Z2W6Y4 −�1X1(Y1Z6W6 +Y2Z5W6 +Y2Z6W5) +�1X2Y2W6Z6 −�2W2Y2Z6 +�2W1(Y1Z6 +Y2Z5) −
dX4(Y1W6Z6 + Y2W5Z6 +Z2Y2W6) + dX5Y2W6Z6,
A4 = �Z5X4(W5Y4 −W6Y3) +X4Y3W5(aZ5 − �Z6) + (aZ5 − �Z6)X5(W5Y4 −W6Y3) − aX5Y3W5Z6 − �X5Z5Y3W5 − (aZ5 −
�Z6)X6W6Y4−aZ6X6(W5Y4−W6Y3)+ �Z1Y3W5+ �Z2(W5Y4−W6Y3)− �Z3W6Y4−�1X2(Y1Z6W6+Y2Z5W6+Y2Z6W5)+
�1X1(Y1Z5W6 + Y1Z6W5 + Y2Z5W5) + �1X3Y2W6Z6 − �2W1Y1Z5 + �2W2(Y1Z6 + Y2Z5) − �2W3Y2Z6 − dX5(Y1W6Z6 +
Y2W5Z6 +Z2Y2W6) + dX4(Y1W6Z5 + Y2W5Z6 + Y1W5Z6) + dX6Y2W6Z6,
A5 = �Z5X4Y3W5 + �Z5X5(W5Y4 − W6Y3) + (aZ5 − �Z6)X5Y3W5 + X6(aZ5 − �Z6)(W5Y4 − W6Y3) − aY3W5Z6X6 −
�Z5Y3W5X6 + �Z2Y3W5 + �Z3(W5Y4 − W6Y3) − �Z4W6Y4 − �1X1Y1W5Z6 + �1X2(Y1Z5W6 + Y1Z5W5 + Y2Z6W5) −
�1X3(Y1Z6W6 + Y2Z5W6 + Y2Z6W5) − �2W2Y1Z5 + �2W3(Y1Z6 + Y2Z5) − �2W4Y2Z6 − dX4Y1W5Z5 + dX5(Y1W6Z5 +
Y2W5Z5 + Y1W5Z6) − dX6(Y1W6Z6 + Y2W5Z6 +Z2Y2W6),
A6 = �X5Z5Y3W5 + �X6Z5(W5Y4 − W6Y3) + (aZ5 − �Z6)Y3W5X6 + �Z3Y3W5 + Z4(W5Y4 − W6Y3) + �1X3(Y1Z5W6 +
Y1Z6W5+Y2Z5W5)−�1X2Y1W5Z5−�2W3Y1Z5+�2W4(Y1Z6+Y2Z5)+dX6(Y1W6Z5+Y2W5Z6+Y1W5Z6)−dX5Y1W5Z5,
A7 = �Z5Y3W5X6 + �Z4Y3W5 − �1X3Y1W5Z5 −W4Y1Z5 − dX6Y1W5Z5;

B

B1 = −(J11 + J22 + J33 + J44 + J55),

B2 = J11J22+J22J33+J33J11+J11J44+J22J44+J44J33+J55J11+J55J22+J55J33+J44J55−J35J43−J24J42−J12J21−J31J13,

B3 = J11J34J43 + J22J34J43 + J55J34J43 + J11J24J42 + J33J24J42 + J55J24J42 + J33J21J12 − J44J21J12 + J55J21J12 +
J31J13J22 + J31J13J44 + J31J13J55 − J11J22J33 − J11J22J44 − J22J33J44 − J11J33J44 − J11J22J55 − J22J33J55 − J11J33J55 −
J11J44J55 − J22J44J55 − J33J44J55 − J42J25J54 − J21J24J14 − J31J12J23 − J14J31J43 − J31J15J53,

B4 = J11J22J33J44 + J11J22J33J55 + J11J22J44J55 + J42J25J54J11 + J42J25J54J33 + J55J42J23J34 + J11J42J23J34 +
J21J12J34J43 + J21J24J15J55 + J21J24J14J33 + J31J12J23J44 + J31J12J23J55 + J31J13J45J54 + J14J31J43J22 + J14J31J43J55 +
J31J15J53J22 + J31J15J53J44 + J31J42J13J24 − J11J22J34J43 − J22J55J34J43 − J55J11J34J43 − J42J25J34J53 − J11J33J24J42 −
J33J55J24J42 − J55J11J24J42 − J33J44J21J12 − J44J55J21J12 − J55J33J21J12 − J21J24J15J54 − J21J24J13J34 − J31J12J24J43 −
J31J12J25J53 − J31J13J22J44 − J31J13J44J55 − J31J13J55J22 − J14J31J45J53 − J31J15J43J54 − J14J31J42J23,

B5 = J11J22J55J34J43 + J11J42J25J34J53 + J11J33J55J24J42 + J33J44J55J21J12 + J21J24J15J33J54 + J21J24J55J13J34 +
J31J12J23J45J54+J31J12J24J43J55+J31J12J25J53J44+J31J13J22J44J55+J14J31J22J45J53+J31J22J15J43J54+J31J42J13J54J25+
J14J31J42J23J55+J31J42J15J24J53−J11J22J33J44J55−J42J25J54J11J33−J55J11J42J23J34−J21J12J34J43J55−J21J24J15J34J53−
J21J24J14J55J33−J31J12J23J44J55−J31J12J24J45J53−J31J12J25J43J54−J31J13J22J45J54−J14J31J43J22J55−J31J15J53J22J44−
J31J42J13J24J55 − J14J31J42J25J53 − J31J42J15J23J54,
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