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1 Introduction, Preliminaries and Motivation

The Bessel functions, also well-known as the circular cylinder function, is the most frequently
used special function in the field of Mathematical Physics. No other special functions have re-
ceived such detailed treatment in willingly available treaties [23] as have the Bessel functions.
In fact a Bessel function is generally defined as a particular solution of a linear differential
equation of the second order known as Bessel’s equation [23].

We are motivated the works of Jodar et al., who established and deliberate the Bessel
Matrix function of first kind and Hypergeometric Matrix functions in [7, 8, 9, 10, 12, 21].
Shehata et al. [22] defined and studied the Extension of Bessel matrix functions. In sequel
to the study, we introduce Extended Generalized Bessel matrix function.

For our aim, we begin by recalling some well-known results and facts.
Let p is a matrix in CV*¥ and its o (p) denotes the set of all eigenvalues of p. The 2-norm
of p is denoted by ||p||, and described as

H@H = sup H@yHQ’
v [yl

where for any vector y in C is the Euclidean norm of 3.

If f(z) and g(z) are holomorphic functions defined in open set €2 in complex plane, R
and S are matrices in CV*Y such that o (R) C ©, o (S) C Q and RS = SR, then [16, P.
558],

f(©)g(S) = 9(5)f(p) (1.1)



The reciprocal gamma function denoted by I'™! (z) = ﬁ, which is an entire function in
complex plane. The image of R under the action of I'"!, denoted by I'™! (p), is a well-defined
matrix.
If p+nl is an invertable matrix for every non-negative integer n, then I" (R) is an invertible
matrix [16],

() (p+1)..(p+(n=1)D)T" (p+nl) =T""(p) (1.2)

is well defined. For any matrix p in CV*¥ the Pochhammer symbol is defined [16],

(©), = (@) (R+1).(p+(n—1)1) =T (p+nl) I (p),n>1:(p)y =1 (1.3)

Jédar and Cortés [7, P. 91, Theorem 1] have proved that for a positive stable matrix R in
CN*N and an integer n > 1,

[ (p) = lim (n—1)[(p),]"'n® (1.4)

n—oo

If p and S are positive stable matrices in CV*¥ then the Gamma matrix function [7, P. 91]
and the Beta matrix function [7, P. 92] are defined as,

— /ettpldt;tpl =exp ((p — 1) In?) (1.5)
0
and
1
B(p,S) = / (1 =¥t (L.6)
0

respectively. Subsequently if p and S are commuting positive stable matrices then

B(p,S)=06(59), (1.7)

commutatively is a necessary condition for the symmetry of the Beta matrix function [7, P.
93]. Also, we have

Bp.S) =T ()T ()T (p+9), (1.8)
and - -
/t@ T(1 )~y :/t@fu — )t (1.9)

where o and S are commuting matrices in CV*¥ such that @, S and p + S are positive
stable matrices.

Joédar et al. [8] introduced Bessel matrix functions of the first kind of order M as,

< (M I M
“” )( : ) , (1.10)

k=0
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where |z| < oo, |arg z| < 7.

Jédar and Cortés [10, P. 210 section 3] defined the hypergeometric matrix function

F(J,M;L;z) = i (‘])k(ML’j[(L)k]lz’f (1.11)

)
k=0

where J, K, L be matrices in CV*¥  C + nl is invertable for all integers n > 0.

In 1994, Jédar et al. [12, P. 57] introduced the nth Laguerre matrix polynomial as,

(1,6€) _ - (‘kak -1 _k
L&) (z) = Z—k! (n_k)!(zu)n[(m[)k] ", (1.12)

where [ be matrices in CV*V_ ¢ be a complex number with § (£) > 0.

The Jacobi matrix polynomials P,#?) (x), for parameter matrices A and B whose eigen-
values, A, all satisfy R (\) > 0 and yz = zy. For n > 0, the n-th Jacobi matrix polynomial
is defined [2, P. 793],

—nl,y+z+(n+1)I
A+1

(y+1),

(y,2) _
Pn (z) = n!

2F1

“Ty] (1.13)

In 2018, Maged G. Bin-Saad and Nabel Saleh [15, P. 8] defined the following matrix version
of Kampé de Fériet of double hypergeometric function as follows

s [(0) £ (Bu): (o) | ]iﬂﬁ e [R5 I
o (Dv) = (E) s (Fa)| g rls!
(1.14)
l S -1r, —1
[H r+s] H (Ej>r H (ﬂ)s J,’Tys’
fo all matrice in (1.15)are i Y, such that [T (0, + 77 + 1), {1 (8, v, 11 7+ o1

are all invertable for integers (r,s) > 0.

They also defined the following matrix version of Srivastava and Daoust[14] multi-variable
hypergeometric function:
.

B Z Dorias(F2) 15426 [<Q1)2r+38}_1 [(QQ)HJ [(Q?)),urs} [(I)r+sj| [(S1)]2"y?

gl
r,s=0 s

(P 32) (Py:1,2): ——;——;
(Q :2,3),(Q2:1,1),(Q3:1,1) ,(R:1,1) : ——; (51 : 1)

2:0;0
F4:0;1

(1.15)
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for all matrices in (1.15) are in CV*¥ 'such that (D; + 1 + sI) wherej =1,2,3, (R+rI +sI), (Si+ sI)
are all invertable for integers (r,s) > 0.

Fox-Wright function [4] defined as following form,

_ (@i, Yiip| ] _ o~ Dlon + Aik) -~ D(ay, + Apk) 2%
pPal2) = 5 [(ﬁj, Zi)q Z} =2 T(B1 + Bik)---T(B, + Bgk) k!

(1.16)

where i =1,2,--- ,p; j=1,2,--- gand z,«;, §; € C, and the coefficients A, ..., 4, € Rt
and By, ..., B, € R* satisfying the following condition

q p
Y z-> vi> -1 (1.17)
j=1 i=1

In 2013, Salehbhai et al. [18, P. 2] introduced Extended Generalized Bessel Function in
following manner,
(=1)"

o z 2k+v
mo z 1.1
wo(2) ;F(l—l—mu—l—hk) k!<2> ’ (1.18)

where, h € N, |z| < o0, |argz| < m, m andv € C.

We need to use the following facts in our study.
For g is a matrix in CN*N | we have [10],

(©)min = (@)l +m), (1.19)

The duplication formula for the Gamma function [10, P. 276],

! =200, ;)

,(2n+ 1)t =2"1(1), (g) : (1.20)

n

where, n > 0.

We also need the following successive integral formula [17, P. 22, Entry 2.47]

o0

[ (v o viF o) Cay =2 () TEOTOZ0

2/ T(A+pu+1)
0

Main Results:

2 Generalized Wright Hypergeometric Matrix Func-
tion

In this section, we establish Genralized Wright Hypergeometric Matrix function and its con-
vergence condition.



The Generalized Wright Hypergeometric matrix function ,1, (Y1,Y2, ..., Yp; 21, Zs, ... Zy; 2)
defined by

p¢q (Z) = pwq (<Ai,ai)1 ;Z>

_ io: (A +an) T (Ay + agn) ... T (A, +an) T (B + fin) T (By + fan) ... T 71 (B, + Byn) 2"

n!
n=0

(2.1)
is bounded for matrices Y;, Z; € CV*N 1 <i<p, 1 <j <gsuchthat 8; +nl; 1<j<gq
are invertable for all integers n > 0.

We are interested to study of the Generalized Wright Hypergeometric matrix function
and Extended Generalized Bessel matrix function. We also establish an important property
of the Generalized Wright Hypergeometric matrix function by proving the following result.

Theorem 2.1. Let Y1,Ys, ..., Yp, Z1, Za, ..., Z, be matrices in CV*N such that
Y(Z1) +v(Z2)+ . +7(Zy) > 6 (Y1) + 0 (Ya) + ... + 5 (Y)) (2.2)
and p <1+ q. Then the series (2.1) is absolutely convergent for |z| = 1.

Proof. From (2.2), there exists a positive number 7 such that
V(2) 47 (Z) + o7 (Z,) = (G (V1) + 5 (Ya) + o+ 6 (¥;)) = 20 (2.3)

Now,

L4 [F (Y1 + ain) T (Yo + agn) ..T (Y, + a,n) T (Z1 + Bin) T (Zy + Ban) .77 (Z, + Byn)
n!

B nltn {(nAlf (Y1 + aln)> oY <an1" (Yp + apn)) Y
n(n —1)! (n—1)! (n—1)!
x ((n— )T (Z + Bin)n” =) L (n = 1)IT7 (Z, + Byn) nPan™ %) (n — 1) P70 1]
(2.4)
On taking § (—Z;) = —v (%),
next, employing the Schiir decomposition of matrix A [12]

Y

]| < et i <HYHM> (t>0) (2.5)

1 <|Y||r21nt)
[ < fle ™| < 2™y et

s=0

5

(t>1). (2.6)



On using equation (2.5) and (2.6), this yields
(L0 P L NI P L

< ndDH(V2) 448 (Vp) —7(Z1)—v(22).. —7(Zq)

L (Iilrdmn) | [ (Hyznmmn) Q (HYHMnn) 2
!
5=0 > s§= s=0
< (120t mn) ) (I\leﬁ lnn) =t (11Z,]1r* 1nn)
X | ' ..¢ lim '
=0 S: =0 S T—00 =0 S:

p+q

ot (max (| Adl] - Al 1 Bill 1Byl rd )

s!
s=0

From (2.4) and (2.8), we get

nh_{g) n F(Y1+a1n)F(Y2+azn)--AF(Yp-FCYp”)F_ln(!Zl-i'ﬁl”)F_l(Z2+,32”)-~~~F_1(Zr1+ﬂq”)
< tim oo 22000 | oSO | (= 0 (24 i) (29)
n—oco (n—1) (n—1)

oo [ ((n = DT (Zy + Byn) n=29) || (n — 1) oo,

where,
1 s +q
ot (max {1Vill o ¥l 120 1 Zl1} 7 )
(2.10)
s!
s=0
Since,
lim n™"5 =0, (2.11)
n—oo
7}1_2}0 nltn F(Y1+a1n)F(Y2+a2n)~--F(Yp-l-ap")r_;(!zl-i-ﬁl")r_1(Z2+ﬁ2n)-~1—‘_1(Zq+5q”)
, (2.12)
— 0

for |z]| =1 and p < g+ 1.

Further using comparision theorem of numerical series of positive numbers, leads to
(2.1). O

3 Extended Generalized Bessel Matrix Function

In this section, we introduce Extended Generalized Bessel Matrix Function in terms of Gen-
eralized Wright Hypergeometric Matrix Function. We also obtain integral representation of
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B
B I

The Extended Generalized Bessel Matrix function is defined as follows.

B (z) = (g)Mowl { BM L) ‘ (%2)] (3.1)

where, A, B and M are matrices in CV*¥ satisfied the conditions R (a) > 0 for all eigenval-
uesa € 0 (A), R(m) > —1, R(b) > —1 for all eigenvalues m € o (M), b € o (B) respectively.
Also (Ak + BM + I) is matrix in CV*N such that (Ak + BM + I) is an invertable matrix
for every integer k > 0.

In light of (2.1), we can write,

o1 { (_BM+I;A) ‘ <_TZQ>} :i U (Bk];4+Ak+I> <_j2>k‘ (3:2)

k=0

Arrive at conclusion that Extended Generalized Bessel matrix function §Jy, [?] is entire
function.

Theorem 3.1. For |z| < oo; |arg z| < m and n € N, the Extended Generalized Bessel
Matriz function defined by (3.1) satisfy the following integral representation

B (Z)M 2?5 BM+1)I
A (2) = %/exp (s[—{— 1 ) s~ (BMADL g (3.3)

Proof. The contour integral representation for the reciprocal gamma function is given as

[13],
1 1 ty—2z

C

On using (3.4), we can say that

1
I (BM + Ak + 1) = o / e s~ (BMAARED) g (3.5)
e
From (3.5) and (3.1), we get
B = 2 M —(BM+Ak+I)
AJM (Z):;m/e S ds (36)
=0

Cc

On interchanging the order of the integration and summation in the R.H.S. of (3.6), we find
that i
M o9—M 22k (5-A)
B _ s g—(BM+I) S
A (2) " /e s 2 5% ds (3.7)



After further simplification leads to,

5"
B (2) = ~2— /exp <s] +— ) 5~ (BMADI g (3.8)

[]

Theorem 3.2. Ford, M, B € C, R(0) >0, R(M) >0, R(A) >0,a, A€ R, 0 <R () <
A the Mellin-transform type integral formula involving the Extended Generalized Bessel Ma-
triz function is as follows.

T Y
/$5_1 <x+a+ Va? +2ax> BT (

0

Yy
dx
r+a+ v+ 2am>

M ANM+1.2), (A+M—6.2
:F(25) 21757Ma67’\7M(g) 213 ( N M )’( * i )

(%))

2 (BM +T;A), (A + M —6,2), (A + M,2)
(3.9)
Proof. From equation (3.1), we have
i “1(BM + Ak + I) y*+M ( 1 )2"“”
o 22n+M T+ a+ V2 + 2ax
i (3.10)
x/x5_1 <1: +a+Vvar+ 2@:1:)
0
On simplification, we get,
o (BM + Ak + I)y2+M [ ~A-M-2n
Z 227:M i /x5 1 :c+a+\/:c2+2a:c) dr. (3.11)
n=0 0
Use of (1.21), the equation (3.11) becomes,
5
7= —A—M-2n <2>
Z 2(=1)"(\+ M +2n)a >
(3.12)

['20) (A + M +2n—9) -1 (BM+Ak+[>y2n+M
T+ 0t 2n+ 0+ DTN+ M 20 40+ 1)22n il

Finally, we arrive at

r (25) 21767Ma’57)\7MyM

I = o7

— I'(A+ M + 2n) n!

(3.13)
0

Xia_Qn()\+M+2n)F()\+M+2n) Y (BM + Ak + I)T=* (A + M +2n +5+1)(—y2)”
)



4 Integral involving Laguerre matrix polynomial with
BJ
A M

In this section, we discuss other integral formula associated with Laguerre matrix polynomial
Lo (r) and Extended Generalized Bessel Matrix function &.J,;.

Theorem 4.1. Let o be a matriz in CN*N and B be a complex number with R (B) > 0,
R(oFip) >0, R(v+~v+1)>0,n€e Ny and §Jy is defined as (5.1). Then the integral is
of the general form

o0

/x”e‘”Lﬁf’ﬁ) (z) 8 Jar (p) do

0

Z (=)' T(n+a+1)(-D)f'wT(BM+ )T (v+y+k+1)
“KIT(n—k+ 1T (a+k+1)T (BM + Ak +1) 2T (BM + 1) ovtrtksl - (4.1)
v4k+y+1 v+k4+y+2
o F 2 ’ 2 __'MQ
4NV BM+1 BM+2 BM+3 BM+A| o2
A A A T A
Proof. Let L.H.S. of (4.1) is I and applying definition (3.1), we get

o

(=B)'T (n+ a + 1) (=1)" 2+ / by k1

v org 4.2

E:HFnf%+&ﬂwa+k+DFUM4+Ah+1 ey, (42)
0

We can write equation (4.2),

[e.9]

(_5) F(n+a+1)< 1)k 2ty —ox,.3k v
I_Zk'F n—k+ )F(Oé—i—k—l— )F(BM+Ak+ /6 23RtV o (43)

0

On using the Gamma matrix function [7], and evaluating the inner integral, this gives

o0

I (3k 1
,/fwﬁ“ﬂﬂmz Btvty+l) (4.4)

gv+3k+y+1

0

From equation (4.3) and (4.4),

Z T(n+a+1) (1) u2T (3k + v+ +1) (45)
E'T( n—k+1) (a+k+1)T(BM + Ak + 1) gvt3ktr+1 :
Subsequently, using Legendre duplication formula [10, p. 276], this leads to
23k+u+7+1 V—i—3k—|—f)/—|—1 V+3k+’}/+2
T (3k 1) = T r L6



where,

2 1 1 1
(vt ktkty+1\ _ (v+kt+yt vt+k+y+ ’ (4.7)
2 2 L 2
and
F(u+2k+k+’y+2)_(u+k+’y+2> (V—i—k’—i—”y—i-Q) (48)
2 B 2 N 2 ' ’

On using (4.6) to (4.8), one can obtain

23k’+y+'y+1 ( V—&-k—;’y—i-l ) ( I/+k—5’y+2 )
NG

From (4.6) to (4.9) and using Legendre Duplication formula [10, P. 276] , we obtain

=T(w+y+k+1). (4.9)

]_i (_ﬁ)kr(n+0&+1)(_l)klu2k+u1"<BM+1)F(V+,y+k+1)22k
KT (n—k+ DT (a+k+1)T (BM + Ak + 1) 22T (BM + 1) 0¥ #3741

(v Ry (v kg2 ’
2 k 2 k
(4.10)

The use of (1.11), lead to desired result (4.1). O

5 Integral involving Jacobi matrix polynomial with £.J;,

In this section, we derive two stimulating integrals involving the product of §.Jy, with Ja-
cobi matrix polynomial P,““®) (z) which are expressed in terms of Kampé de Fériet and
Srivastava and Daoust matrix functions.

Theorem 5.1. For R(v) > —1,ve€ o (A),0 <R (n),R(u) € o (P), the following integral
formula in terms of Kampé de Fériet holds true:

PRIy BBy (L) pen) (1 22 g
/ (1+) ATMA L 4¢ ) 14+t
0

o ARM+L): =—— A2 —nl) A2 C+D+(n+1)1)| _ 2 2.0
=09 o A(Q;M+K+L):A(2A:BM+I),A(2;C+I)a%[ R
+EZ (M4 L) (C+ D+ (n+ D)D) (M + K + L)+ 1) (BM + 1),
pon |AEMAK AL == A@2onl + 1) AZGCHD+(n+2)])| o 200
“Fros A(2;M+K+L+21);A(2A:BM+2[),A(2;C+2I),21 R 7
(5.1)
where@:%(C—FI)HF_l(BM+I)P_1(M+K+L)P(M+L)F(P>(%)M and

I I+1
A(m;S):%,S+ 3 S+ml+1T

PRERS) ym =z
m m

10



Proof. We denote the first part of postulate (5.1) by I, further employing (3.1) and (1.13),
we get,

I = /tK—’(l +¢)" D i —(_ﬂi!)mr—l (BM + Ak +1) <—2 (1$+ t)) "
0 " ENGE)
N (CHD,(CH D+ (n+ 1) Dy (=D, [(C+ 1)) (1 - (1- —))
—~ n! k! 2 '

On computing, we find that

[:i S (=1)"TN(BM + Ak + 1) (B+1),(C+ D+ (n+ 1) 1), (—nl),[(C+ 1))

0 o n!m! k!
y <g>2mI+M<%)k‘/tP_](1 +t>_(K+L+M+kI+2mI)dt
0
(5.3)
From (1.9) and (5.3), we arrive at,
;o i " (CH+1I),(C+D+(n+1)I),(—nl) [(C+1I),]" [~ m(ﬁy
== n!m!k! 4 2
X[(M 4 K + L)y ] (M + L)y T ()T (M + L) T (M 4 K + L) (BM + 1) T (BM +1).
(5.4)

Now, on splitting the k- series into in even and odd terms [19, section 20, P. 200], we get,

= (M A+ K+ L)y o _1(M+L)2m+2k (BM+[);1k
I:@{ZZ[ ]m!(%)! )

m=0 k=0

X(C+ D+ (n+1) Dy (=nd) [(C+ D)y ™ <_Tx2)m (_Tm)%

£

m=0 k=0

X(C 4 Dt (04 1) Doy (D)3 [(C 4 D] (_sz>m <—sz> W}

. . N (5.5)
[(M + K+ L)2m+2k+1] (M + L)2m+2k+1 (BM + ])2jk+2A

m! (2k + 1)!

11



From (1.19), (1.20) and (5.5), yields,

=0 {i Zn: (M + K+ L)2m+2krl(_”—7)2k(0+ D+ (n+1) Dy [(C + 1)y ] (é):

m)!
m=0 k=0

X (M + L)y (BM + Dk + 22 (M + L) (C+ D+ (n+ 1) 1) (M + K + L) N(C+ 1)

2

- [(M + K+ L)2m+2k] _1(_”[ + D) (C+ D+ (n+2) 1)y [(M+ K+ L+ 21)%]_1

o m! (2k 4+ 1)!
_ (30N =2\ Pz 2k
<Dl nd (5) () ()7
(5.6)
afterwards applying (1.14), leads to (5.1). O

Theorem 5.2. For R(v) > —1,ve€c(A),0 <R (u),R(n) € o (P), the following integral
formula in terms of Srivastava and Daoust function holds true.

tPI pyEr@ By (T )\ pBo) (1 =) gy
/‘ (1+1) ACMATT ) 1+¢
0

= (3) TP (M QT (BM £ DT (M 4 P+ Q)

—?

M+Q:2,3),(B+CH+1:1,2);___;___
(M+P+Q.,%AGMHJ_&MJB+C+LLD(LLD;4@+IJ)

(5.7)

2:0:0
X Fioa

Proof. We consider the L.H.S. of assertion (5.7) as I and applying (3.1) and (1.13), afterwards
using following lemma [19]

ZZAnk —iiA(nJrk,k), (5.8)

n=0 k=0 n=0 k=0

and further interchanging the sequence of integration and summation, we get

— )" (BM 4+ A+ k) + 1) (B4 1), o (B+C+(n+k+1)1),(—n—k),

:ZZ nlk! (n —1—2‘)!

n=0 k=0

o0

M-+2n1+2k1 K
(B+1),]” <2> (7> /tPI(l 4 1)~ MEPHQEZRLEBRD gy
0

12
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From (1.9) and (5.9), we get

:ﬁifj 1) (BM + A(n+ k) + )T (BM + 1) (B + 1), (B+C+ (n+ k+1)1),
2.2 T (BM + D)nlk! (n+k —1)]
1
M+2n]+2kl k
B+ 0 (2) 3) [
0

(5.10)

On employing the definition of Beta matrix function (1.8), we obtain

-1

(1) [(BM + 1) g T (BM 4+ 1) (B+C+ Dy [(B+C +1),,)]

1=2.2 nlk!(1)

-1

n=0 k=0 Ftn
B M+2n1+2kl 72\ kD (P)T (M 4 Q 4 3kI + 2nl)
B+1),]7' (% = .
[(B+1),] (2> <2> T'(P+M+Q+3kI +2nl)
(5.11)
After simplification leads to,
T —1
1:<2) T(P)T (M +Q) T (BM+ DT (M+P+Q)
X (M + Q)yyyaiy(B+C A+ Dy -1 -
% ZZ )o “'FZ‘;] 2 (M + P+ Q)gpr ) [(BM T I)A(n+k)]
n=0 k=0 n. ( )kJrn
1 =22\ " 223\
x[((B+C+ D)) (B+DS(—) (5 )
(5.12)
on account of (1.15), this leads to assertion (5.7). O

6 Concluding remark

We obtained an Extended Generalized Wright Hypergeometric function and Extended Gen-
eralized Bessel matrix function. Some properties of these extended functions such as conver-
gence condition , integral formula, and integral representations have been obtained. Obtained
results can play important role in Mathematical Physics and classical analysis.
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