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Abstract

Analysis of long-term trends in abundance provide insights into population dynamics. Population growth rates are the emergent

interplay of fertility, survival, and dispersal, but the density feedbacks on some vital rates (component) can be decoupled from

density feedback on population growth rates (ensemble). However, the mechanisms responsible for this decoupling are poorly

understood. We simulated component density feedbacks on survival in age-structured populations of long-living vertebrates

and quantified how imposed nonstationarity (density-independent mortality and variation in carrying-capacity) modified the

ensemble feedback signal estimated from logistic-growth models to the simulated abundance time series. The statistical detec-

tion of ensemble density feedback was largely unaffected by density-independent processes, but catastrophic and proportional

mortality eroded the effect of density-dependent survival on ensemble-feedback strength more strongly than variation in carrying

capacity. Thus, phenomenological models offer a robust approach to capture density feedbacks from nonstationary census data

when density-independent mortality is low.
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Abstract 34 

Analysis of long-term trends in abundance provide insights into population dynamics. 35 

Population growth rates are the emergent interplay of fertility, survival, and dispersal, but the 36 

density feedbacks on some vital rates (component) can be decoupled from density feedback 37 

on population growth rates (ensemble). However, the mechanisms responsible for this 38 

decoupling are poorly understood. We simulated component density feedbacks on survival in 39 

age-structured populations of long-living vertebrates and quantified how imposed 40 

nonstationarity (density-independent mortality and variation in carrying-capacity) modified 41 

the ensemble feedback signal estimated from logistic-growth models to the simulated 42 

abundance time series. The statistical detection of ensemble density feedback was largely 43 

unaffected by density-independent processes, but catastrophic and proportional mortality 44 

eroded the effect of density-dependent survival on ensemble-feedback strength more strongly 45 

than variation in carrying capacity. Thus, phenomenological models offer a robust approach 46 

to capture density feedbacks from nonstationary census data when density-independent 47 

mortality is low. 48 

 49 

INTRODUCTION 50 

Compensatory density feedback describes a population’s ability to return to the 51 

environment’s carrying capacity in response to an increase in population size (sensu 52 

Herrando-Pérez et al. 2012b). This phenomenon is driven by adjustments to individual fitness 53 

imposed by variation in per-capita resource availability, and associated processes of 54 

predation, competition, parasitism, and dispersal (Fowler 1981; Matthysen 2005; Eberhardt et 55 

al. 2008; Herrando-Pérez et al. 2012a). As survival and fertility rates ebb and flow in 56 

response to variation in population density, it is theoretically possible to detect the density-57 

feedback signal in time series of abundance monitored at regular intervals over a sufficient 58 

period (Brook & Bradshaw 2006; Herrando-Pérez et al. 2012a). There is now considerable 59 

evidence that survival and fertility track population trends in many vertebrate (Eberhardt 60 

2002; Paradis et al. 2002; Owen-Smith & Mason 2005; Pardo et al. 2017; Saunders et al. 61 

2018; Doyle et al. 2020; Margalida et al. 2020; Morrison et al. 2021; Stillman et al. 2021) 62 

and invertebrate (Azerefegne et al. 2001; Bonsall & Benmayor 2005; McGeoch & Price 63 

2005; Jepsen et al. 2009; Maud et al. 2015; Marini et al. 2016; Ma 2021) species. Therefore, 64 

given the irreplaceable importance of long-term monitoring of population size in applied 65 

ecology and conservation (Herrando-Pérez et al. 2012a), assessing the presence of 66 
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compensatory signals in censuses of population abundance remains an essential tool in the 67 

ecologist’s toolbox (Bellier et al. 2016). 68 

The family of self-limiting population-growth models including logistic growth curves 69 

(‘phenomenological models’ hereafter) are convenient for describing density-feedback 70 

signals in abundance time series (Eberhardt et al. 2008). These models use census data to 71 

quantify the net effect of population size N on the rate of instantaneous growth r (Berryman 72 

& Turchin 2001). Expressed as a proportional change in N between two time (t) steps (e.g., 73 

years or generations), the assumption is that r = loge(Nt+1/Nt) summarises the combination or 74 

‘ensemble’ (Herrando-Pérez et al. 2012a) of all feedback mechanisms operating on 75 

individual ‘component’ demographic rates (Münster-Swendsen & Berryman 2005). The 76 

problem is that population growth rates can be insensitive to variation in particular 77 

demographic rates (Kolb et al. 2010; Battaile & Trites 2013; Bürgi et al. 2015). Thus, across 78 

109 observed censuses of bird and mammal populations, the strength of ‘component density 79 

feedback’ (on demographic rates) explained only < 10% of the strength of ‘ensemble density 80 

feedback’ (on population grow rate) using phenomenological models and after controlling for 81 

time-series length and body size (Herrando-Pérez et al. 2012a). The reasons for such 82 

decoupling are not well understood. 83 

Determining the partial effects of different underlying mechanisms responsible for the 84 

decoupling of component and ensemble density feedbacks is most often impossible for real 85 

abundance time series. This analytical limitation occurs because the multiple, density-86 

dependent and -independent mechanisms generating population fluctuations change 87 

themselves through time — a condition known as ‘nonstationarity’ (sensu Turchin 2003). We 88 

therefore constructed stochastic, age-structured populations with known, component density 89 

feedback on survival and imposed nonstationarity to population size via multiple 90 

demographic scenarios emulating density-independent mortality and variation in carrying 91 

capacity through time. We then simulated multiannual time series of abundance from those 92 

populations and estimated the strength of ensemble density feedbacks from these. Our 93 

prediction was that ensemble density feedbacks should track component feedbacks if survival 94 

has a demographic impact, mediated by population size, on the population growth rate of 95 

long-lived vertebrates, while our demographic framework allowed the quantification of true 96 

and false detection of ensemble density feedbacks. 97 

 98 

METHODS 99 
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Our overarching aim was to simulate populations of long-living species and their time series 100 

of abundance with various sources of nonstationarity. We describe below the set of test 101 

species, the simulation of the base population model, component density feedbacks on 102 

survival and time series of population abundance, the demographic scenarios considered, and 103 

the phenomenological models used to quantify ensemble density feedbacks. 104 

 105 

Test species 106 

As the variability in population growth rates is driven primarily by survival rates for slower 107 

life-history species of mammals (Heppell et al. 2000; Oli & Dobson 2003) and birds (Sæther 108 

& Bakke 2000), we parameterised the simulated populations to characterise the plausible 109 

dynamics of 21 long-lived species of extant (n = 8) and extinct (n = 13) Australian 110 

vertebrates from five taxonomic/functional groups (herbivore vombatiformes and 111 

macropodiformes, large omnivore birds, carnivores, and invertivore monotremes), spanning 112 

mean adult body masses of 1.7–2786 kg and generation lengths of 2.3–21 years (Bradshaw et 113 

al. 2021; Table 1). These species differ in their resilience to environmental change, and 114 

represent the slow end of the slow-fast continuum of life histories (Herrando-Pérez et al. 115 

2012c) where high survival rates make it possible that reproductive efforts are dispersed over 116 

the lifetime of individuals (Gaillard et al. 1989). A full justification of the selection of our 117 

test species can be found in Bradshaw et al. (2021). 118 

 119 

Base (age-structured) population model 120 

The population model for each test species was a stochastic (parameters resampled within 121 

their uncertainty bounds) Leslie transition matrix (M) following a pre-breeding design, with 122 

ω+1 (i) × ω+1 (j) elements (representing ages from 0 to ω years) for females only, where ω 123 

represents maximum longevity. Fertility (mx) occupied the first row of the matrix, survival 124 

probabilities (Sx) occupied the sub-diagonal, and the final diagonal transition probability 125 

(Mi,j) was Sω for all species ― except Vombatus ursinus (VU; common wombat), Thylacinus 126 

cynocephalus (TC; thylacine) and Sarcophilus harrisii (SH; devil) for which we set Sω = 0 to 127 

limit unrealistically high proportions of old individuals in the population given the evidence 128 

for catastrophic mortality at ω for the latter two species (Holz & Little 1995; Cockburn 1997; 129 

Oakwood et al. 2001). Multiplying M by a population vector n estimates total population size 130 

(Σn) at each forecasted time step (Caswell 2001). The base model was parameterised with n0 131 

= ADMw, where w is the right eigenvector of M (stable stage distribution), and A is the 132 

surface area of the study zone (A = 250,000 km2) so that the species with the lowest n0 would 133 
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have an initial population of at least several thousand individuals at the start of the 134 

simulations. Based on theoretical equilibrium densities (D, km-2) calculated for each taxon 135 

(Bradshaw et al. 2021), the species-specific carrying capacity K = DA. 136 

 137 

Density feedback on survival 138 

We simulated a compensatory density-feedback function by forcing a reduction modifier 139 

(Sred) of the Sx vector in each model according to Σn: 140 

𝑆red =
𝑎

1+(
∑n

𝑏
)
𝑐      [eq 1] 141 

where the a, b, and c constants for each species are adjusted to produce a stable population on 142 

average over 40 generations (40⌊𝐺⌉; see below) (Brook et al. 2006; Traill et al. 2010). This 143 

formulation avoided exponentially increasing populations, optimised transition matrices to 144 

produce parameter values as close as possible to the maximum potential rates of 145 

instantaneous increase (rm) (Bradshaw et al. 2021), and so ensured that long-term population 146 

dynamics were approximately stable at the species-specific K (see previous section). Here, 147 

𝐺 =
log((vTM)

1
)

𝜆1
      [eq 2] 148 

(vTM)1 is the dominant eigenvalue of the reproductive matrix R derived from M, and v is the 149 

left eigenvector (Caswell 2001) of M. Thus, the total projection length in years (q) varied 150 

across the 21 test species, from 92 (Dasyurus maculatus; DM; spot-tailed quoll) to 800 151 

(Genyornis newtoni; GN; mihirung) years (median = 324 years with 95 % interquartiles of 152 

[108, 762] years; Table 1), with one value of abundance being simulated per year. In each 153 

iteration and annual time step, the Sx vector was β-resampled assuming a 5% standard 154 

deviation of each Sx and a Gaussian-resampled mx vector. We deliberately avoided applying 155 

density-feedback functions to fertility to isolate the component feedback to a single 156 

demographic rate. 157 

 158 

Nonstationarity 159 

We added nonstationarity to our base population model through a catastrophic (density-160 

independent) mortality function to account for the probability of a catastrophic event (C) 161 

scaling to generation length among vertebrates (Reed et al. 2003): 162 

𝐶 =
𝑝𝐶

𝐺
      [eq 3] 163 

where pC  = probability of catastrophe set at 0.14 given this is the mean probability per 164 

generation observed across vertebrates (Reed et al. 2003). Once invoked at probability C, a β-165 
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resampled proportion centred on 0.5 to the β-resampled Sx vector induced a ~ 50% mortality 166 

event for that year (Bradshaw et al. 2013). A catastrophic event is defined as “… any 1-yr 167 

peak-to-trough decline in estimated numbers of 50% or greater” (Reed et al. 2003). The 168 

catastrophic function recreates the demographic effects of a density-independent process such 169 

as extreme weather events, fires, disease outbreaks, or human harvest. However, we 170 

considered the process here as a standard perturbation in all models, and then added specific 171 

types of additional perturbations per scenario (see demographic scenarios below). 172 

 173 

Abundance time series 174 

From the base models (parameterised to incorporate age structure, density feedbacks on 175 

survival, and catastrophic events in the Leslie matrices as described above), we generated 176 

multiannual abundance time series up to 40⌊𝐺⌉ for each species. We standardised projection 177 

length to 40⌊𝐺⌉ because there is strong evidence that the length of a time series (q) dictates 178 

the statistical power to detect an ensemble density-feedback signal in logistic growth curves 179 

(Brook & Bradshaw 2006). Here, we summed the n vector over all age classes to produce a 180 

total population size Nt,i for each year t of each iteration i. We rejected the first ⌊𝐺⌉-181 

equivalent years of each projection as a burn-in to allow the initial (deterministic) age 182 

distribution to calibrate to the stochastic expression of stability under compensatory density 183 

feedback. 184 

To ascertain the degree of nonstationary in the simulated abundance time series, we used 185 

Turchin’s (2003) definition of nonstationarity as temporally variant mechanisms generating 186 

population fluctuations. In that conceptual context, we calculated the mean and variance of 187 

return time (TR) — defined as the time required to return to equilibrium following a 188 

disturbance (Berryman 1999) — for each abundance time series as:  189 

�̅�R =
∑ 𝑇R𝑚
𝑀
𝑚=1

𝑀
      [eq 4] 190 

where �̅�R is the mean TR across M steps of the time series. For each mth time step, 191 

𝑇R𝑚 = 𝑆C𝑚 + 𝑆F𝑚       [eq 5] 192 

where: 𝑆C𝑚  is the number of complete time steps taken before reaching 𝑇R𝑚, and 𝑆F𝑚  is the 193 

fraction of time required to reach 𝑇R𝑚 in the Mth (final) step: 194 

𝑆F𝑚 =
𝑁𝑝−�̅�

𝑁𝑝−𝑁𝑎
      [eq 6] 195 

where 𝑁 is the mean of the abundance time series (a proxy for K), Np is the population size 196 

prior to crossing 𝑁, and Na is the population size after crossing 𝑁. 197 
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The variance of TR is:  198 

Var(𝑇R) =
∑ (𝑇R𝑚−�̅�R)

2𝑀
𝑚=1

𝑀−1
     [eq 7] 199 

Thus, when �̅�R ≪ Var(𝑇R) (i.e., �̅�R Var(𝑇R)⁄ ≪ 1), the time series is considered to be highly 200 

nonstationary (Berryman 1999).  201 

 202 

Demographic scenarios 203 

We generated 10,000 abundance time series over 40⌊𝐺⌉ for each test species in each of nine 204 

demographic scenarios that combined different types and magnitudes of nonstationarity in the 205 

form of density-independent (catastrophic and proportional) mortality and variation in 206 

carrying capacity (K) through time. Each times series represented the idiosyncratic 207 

demography of a unique population occupying an area of 250,000 km2 with zero dispersal 208 

(see above). 209 

We split the nine scenarios into two main groups: (1) eight testing the probability of a 210 

false negative (reduced detection of ensemble density feedback when a component feedback 211 

on survival existed), and (2) one testing the probability of a false positive (evidence of 212 

ensemble density feedback when a component feedback on survival was absent) (see details 213 

in Table 2). The false-negative scenarios included three subcategories: (1.1) i. fixed K with 214 

no perturbations other than the stochasticity imposed by resampling demographic rates in the 215 

Leslie matrices; (1.2) fixed K with generationally scaled catastrophes centred on 50% 216 

mortality ii. leading to �̅� ≅ 0, iii. as in ii, but with an additional, single ‘pulse’ perturbation of 217 

90% mortality applied across the entire age structure at 20 generations, iv. a ‘harvest’-like 218 

process where a consistent proportion of individuals is removed from the n vector at each 219 

time step to produce �̅� ≅ -0.001 (i.e., weak, monotonic decline in average population size), or 220 

v. as in iv, but where the resultant �̅� ≅ -0.01 (i.e., strong, monotonic decline in average 221 

population size); and (1.3) K fluctuations with vi. stochastically resampled K with a constant 222 

𝐾 and a constant variance (via resampling the b parameter in equation [1]), vii. as in vi, but 223 

where the resampling variance doubles over the projection interval (via a linear increase in 224 

the standard error used to resample the b parameter in equation [1]), and viii. as in vi, but 225 

where K declines at a rate of 0.001 over the projection interval (via decreasing the b 226 

parameter in equation [1]). 2. The false-positive scenario 2ix. tested for false positives in the 227 

ensemble signal by imposing a density-independent mortality via an increase in the 228 

probability of catastrophe pC in equation [3] to produce �̅� ≅ 0 over 40⌊𝐺⌉. In that scenario, 229 
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we removed the component density-feedback on survival (i.e., setting Sred = 1) ― 230 

theoretically, populations lack a carrying capacity in the absence of density feedbacks. 231 

 232 

Ensemble density feedbacks 233 

After generating 10,000 time series for each of the 21 species following the nine 234 

demographic scenarios (totalling 189,000 individual time series), we applied 235 

phenomenological models to each time series to test the statistical evidence for an ensemble 236 

compensatory density feedback, as well as quantify the strength of that feedback. Our 237 

phenomenological models included four variants of the general logistic growth curve 238 

(Verhulst 1838) following Brook and Bradshaw (2006): 239 

𝑟 = log𝑒 (
𝑁𝑡+1

𝑁𝑡
) = 𝛼 + 𝛽𝑁𝑡 + 𝜀𝑡    [eq 8] 240 

where Nt = population size at time t, α = intercept, β = strength of ensemble density feedback, 241 

and εt = Gaussian random variable with a mean of zero and a variance σ2 reflecting 242 

uncorrelated stochastic variability in the instantaneous rate of population change r. Our first 243 

two models are simple density-independent models (DI): (1) random walk, where α = β = 0, 244 

and (2) exponential growth, where β = 0. The second two variants are density-dependent or 245 

density-feedback models (DF): (3) Ricker-logistic (Ricker 1954), and (4) Gompertz-logistic 246 

(Nelder 1961), where Nt on the right side of equation [8] is replaced with loge(Nt). The latter 247 

two models represent alternative situations where population growth rate varies in response 248 

to unit (Ricker) or order-of-magnitude (Gompertz) changes in population size (Herrando-249 

Pérez et al. 2012b).  250 

After fitting each of the four phenomenological models to each time series, we calculated 251 

their relative likelihood by means of the Akaike’s information criterion (AIC) corrected for 252 

finite number of samples (AICc). We then expressed the evidence for an ensemble density-253 

feedback signal Pr(DF) as the sum of AICc weights (wAICc = model probability) (Burnham 254 

& Anderson 2002) for the Ricker- and Gompertz-logistic models (i.e., ΣwAICc-DF), and the 255 

evidence for a lack of such signal as the sum of AICc weights for random walk and 256 

exponential growth (i.e., ΣwAICc-DI). This follows the logic that if β ≠ 0 between r and Nt 257 

(Ricker) or loge(Nt) (Gompertz) is more likely than β = 0 (random walk and exponential 258 

growth), then there is stronger statistical support for an ensemble density feedback in the time 259 

series than not (i.e., ΣwAICc-DF > ΣwAICc-DI implies Pr(DF) > 0.5). 260 

We estimated the strength of the ensemble density-feedback signal as the negative value 261 

of �̂� estimated from the Gompertz-logistic model. We used the Gompertz-logistic �̂�, instead 262 
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of the Ricker-logistic �̂�, to estimate this strength because only the former characterises the 263 

multiplicative nature of demographic rates (Doncaster 2008; Herrando-Pérez et al. 2012a). 264 

To compare the component density feedback applied to survival in the stochastic age-265 

structured models to the ensemble density feedback estimated from the abundance time series 266 

under the nine demographic scenarios, we plotted the negative value of Gompertz �̂� relative 267 

to 1 – Sred across all 21 species modelled. 268 

We tested the correlation between ensemble and component density-feedback strength, 269 

and between ensemble strength and the degree of stationarity, across species by calculating a 270 

bootstrapped estimate of Spearman’s correlation ρ (treating relative differences in the metrics 271 

as ranks). We uniformly resampled 10,000 times from the 95% confidence interval of each 272 

metric for each species and demographic scenario, calculating ρ in turn, and then calculating 273 

the median and 95% confidence interval of ρ. The relationships between ensemble and 274 

component density-feedback strength (as well as between ensemble strength and stationarity) 275 

showed some non-linearity, so we also fit simple exponential plateau models of the form y = 276 

ymax - (ymax - y0)e-kx to these relationships. Here, y0 is the starting value of component strength, 277 

ymax is the maximum component strength (- Gompertz �̂�), k = rate constant (in units of x-1), 278 

and x is the component strength (1 – Sred). 279 

 280 

RESULTS 281 

Statistical evidence for density feedback  282 

For each test species, when the simulated populations were subjected to a compensatory 283 

density feedback on survival (age-structured Leslie matrices), the median probability for a 284 

statistical signal of ensemble compensatory density-feedback (Pr(DF) = ΣwAICc-DF; see 285 

Materials and methods) across 10,000 times series of abundance was near unity (> 0.99) for 286 

the stable (�̅� ≅ 0) trajectories and most demographic scenarios (Fig. S1–S2 and S3 for 287 

probability density plots of Pr(DF) across scenarios and the bootstrapped mean Pr(DF) per 288 

species and scenario, respectively). Only the declining stochastic K scenario (1.3viii) had a 289 

slightly smaller median Pr(DF) at 0.95. For the false-positive scenario (2ix), the median 290 

Pr(DF) was 0.322. Generally, the extant dasyurid S. harrissii (SH; devil) and the flightless 291 

bird Dromaius novaehollandiae (DN; emu) had the weakest evidence for density feedback 292 

across the different scenarios (Fig. S3). 293 

In summary, if a component density feedback was present, the phenomenological models 294 

mostly detected the ensuing ensemble feedback (true positive) ― regardless of whether a 295 
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simulated population was perturbed via density-independent removal of individuals, or 296 

altered K dynamics ― in > 9 of every 10 time series; while false positives (component 297 

feedback absent, ensemble feedback detected) occurred in < 4 of every 10 times series.  298 

 299 

Degree of simulated stationarity 300 

The addition of the generationally scaled 50% catastrophic (density-independent) mortality 301 

reduced stationarity from a median of �̅�R Var(𝑇R)⁄  ~ 0.28 (scenario 1.1i) to ~ 0.08 (scenario 302 

1.2ii) (Fig. 1A). The scenarios imposing a catastrophic 90% mortality as a pulse at 20 303 

generations (1.2iii), or additional proportional mortality driving a moderately (1.2iv; �̅� = -304 

0.01) or rapidly (1.2v; �̅� = -0.001) declining population over 40 generations, all reduced 305 

stationarity by approximately the same amount relative to the scenario without catastrophic 306 

mortality (1.1i) (Fig. 1C). For the scenarios emulating fluctuations in K (1.3vi–viii), adding 307 

stochasticity to K slightly increased stationarity relative to a fixed-K scenario (Fig. 1E). Only 308 

when the stochastic K was forced to decline (scenario 1.3viii), the abundance time series 309 

became highly nonstationary (Fig. 1E). The false-positive scenario (2.ix) resulted in 310 

negligible change to stationarity when comparing populations experiencing (Fig. 2A), or not 311 

experiencing (Fig. 2B), a component density feedback on survival.  312 

 313 

Strength of density feedback 314 

While the magnitude of statistical evidence for density feedback was largely invariant across 315 

all demographic scenarios including a component density feedback on survival (Fig. S1 and 316 

S2; see above), the estimated strength of the ensemble density feedback (-Gompertz β, see 317 

Materials and methods) was highly sensitive to the type of perturbation the population 318 

experienced. The addition of the generationally scaled 50% catastrophic (density-319 

independent) mortality under a fixed K (scenarios 1.1i vs. 1.2ii) reduced the correlation 320 

(median ρ = 0.893 and 0.881, respectively) and slope between ensemble feedback strength 321 

and component feedback strength (1 – Sred) across the 21 test species (Fig. 1B). The 322 

catastrophic pulse scenario (1.2iii) returned the closest correlation (median ρ = 0.929) 323 

between ensemble and component feedback strengths, although it also depressed the slope of 324 

the relationship relative to the Kfixed scenario (Fig. 1D). These correlations were weakest for 325 

the �̅� = -0.001 and �̅� = -0.01 scenarios (1.2v–vi; median ρ = 0.009 and -0.051, respectively), 326 

which also captured a signal of depensation (population growth rate increases with 327 

population size) in some abundance time series (Fig. 1D). For the demographic scenarios 328 
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emulating fluctuations in K (1.3), the correlation between unit change in ensemble and 329 

component density feedback strength was generally higher than those where �̅� < 0 (Fig. 1F; 330 

median ρ ranging from 0.803 to 0.881), with the strongest mismatch occurring when K 331 

declined by a rate of 0.001 (scenario 1.3viii) (Fig. 1F; see also Fig. S4). For the false-positive 332 

scenario (2ix), all estimated ensemble feedback strengths enveloped 0 (Fig. 2B), meaning that 333 

the estimated slopes of the r ~ loge(Nt) relationships could not be differentiated from zero.  334 

Overall, when an ensemble density feedback was detected from time series of abundance, 335 

density-independent mortality eroded the extent by which true compensatory density 336 

feedbacks on survival translated into an ensemble compensatory density feedback in 337 

population trends more than fluctuations in K, with the most faulty outcome in fact inferring 338 

depensatory population growth rates from some populations only experiencing density 339 

compensation on survival.  340 

On the other hand, the stationarity metric �̅�R Var(𝑇R)⁄  was a weak (median ρ = 341 

0.547, -0.086, and -0.113 for the pulse, �̅� = -0.001, and �̅� = -0.01 scenarios, respectively) 342 

predictor of the estimated strength of ensemble feedback when density-independent mortality 343 

was imposed (Fig. 3). However, stationarity was a reasonable (median ρ = 0.756, 0.786, and 344 

0.844 for the Kstochastic, Kstochastic with increasing variance, and declining Kstochastic scenarios, 345 

respectively) predictor of the ensemble signal for the fluctuating K scenarios (Fig. 4; see also 346 

Fig. S4).  347 

  348 

DISCUSSION 349 

Our simulations reveal several new insights into how ensemble (population growth rates) and 350 

component (vital rates) density feedbacks can be decoupled. First, the statistical detection of 351 

true ensemble feedback strength through phenomenological models is little affected by 352 

nonstationarity per se. Second, the estimation of ensemble feedback strength through 353 

phenomenological models (logistic growth curves; see Introduction) are particularly sensitive 354 

to density-independent mortality leading to population decline, but they are less sensitive to 355 

moderate fluctuations in carrying capacity. Third, the concern that density-independent 356 

processes can invoke false evidence of ensemble signals of compensation are not borne out 357 

by our simulations, at least with respect to density-independent mortality.  358 

The mechanisms underlying those trends are nuanced by species’ life histories. For 359 

instance, in long-living terrestrial vertebrates (our focus), density feedbacks might operate on 360 

fertility to compensate for pathogen-induced adult mortality (McDonald et al. 2016), those 361 
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feedbacks might be stronger on survival versus fertility when populations are near or far from 362 

carrying capacity, respectively (Sæther et al. 2016), and survival can be entirely driven by 363 

climatic conditions and density-independent predation (Hebblewhite et al. 2018). In one of 364 

the best-studied systems in this regard, Soay sheep from St. Kilda Archipelago (United 365 

Kingdom) demonstrate that the demographic role of density and weather varies across sexes 366 

and age classes in mild winters, but survival is reduced consistently in all individuals in years 367 

of bad weather and high population abundance (Coulson et al. 2001). Much less-studied than 368 

herbivores, inter-pack aggression in carnivores with strong social hierarchies like wolves 369 

might shape survival at high densities, but be demographically irrelevant at low densities 370 

resulting from prey shortages and/or hunting or culling (Cubaynes et al. 2014). Our study 371 

lends credence to the application of phenomenological models to the former types of studies 372 

addressing the long-term effect of vital rates on population abundance, provided there is 373 

enough information available for describing population trends. 374 

Our approach and results do not, of course, explain all possible scenarios leading to the 375 

decoupling of ensemble and component feedback signals. For example, many other density-376 

independent factors that we did not consider can dampen the demographic role of social and 377 

trophic interactions mediated by population size (Herrando-Pérez et al. 2012a). Along with 378 

the confounding effects of sampling error (Staples et al. 2004; Knape & de Valpine 2012), 379 

some of those factors include immigration (Lieury et al. 2015), spatial heterogeneity in 380 

population growth rates (Thorson et al. 2015; Johnson et al. 2016), fluctuating age structure 381 

(Hoy et al. 2020), and environmental state shifts (Lande et al. 2002; Turchin 2003; Wu et al. 382 

2007). Furthermore, our choice to limit the component mechanisms to feedback on a single 383 

demographic rate (albeit, applied to all age classes) for the sake of simpler interpretation 384 

could limit the application of our conclusions. For example, additional density-feedback 385 

mechanisms operating independently on other demographic rates, such as fertility and 386 

dispersal, could potentially complicate the interpretation derived from phenomenological 387 

models.  388 

Simulating closed populations potentially inflated the phenomenological model’s capacity 389 

to detect the component signal, because permanent dispersal could alleviate per capita 390 

reductions in fitness as a population approaches carrying capacity. We also limited our 391 

projections to a standardised 40 generations, but even expanding these to 120 generations 392 

resulted in little change in the stationarity metric (Fig. S5). Complementary studies focussing 393 

on the faster end of the life-history continuum could provide further insights, even though our 394 

range of test species still precipitated a life-history signal in terms of component (Fig. S6) 395 
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and ensemble density-feedback strengths and stationarity (Fig. S7, S8) declining with 396 

increasing generation length. However, this relationship faded when the trajectories 397 

simulated declines through proportional removal. Indeed, both evidence for (Holyoak & 398 

Baillie 1996) and strength of (Herrando-Pérez et al. 2012c) ensemble density feedback 399 

generally increase along the continuum of slow to fast life histories, because species with 400 

slow life histories are assumed to be more demographically stable when density 401 

compensation is operating (Sæther et al. 2002).  402 

While quantifying the true extent of all component density feedback mechanisms 403 

operating in real populations will remain challenging in most circumstances, 404 

phenomenological models can normally capture the evidence for and strength of the 405 

component density feedback mechanism at play. Appreciating the degree of nonstationarity 406 

and other types of perturbations affecting abundance time series can contextualise 407 

interpretations of ensemble density-feedback signals, especially where substantial density-408 

independent mortality leads to long-term population declines. Importantly, failing to capture 409 

density feedback in applied ecological models can lead to suboptimal conservation and 410 

management recommendations and outcomes (Herrando-Pérez et al. 2012a; Horswill et al. 411 

2017). 412 
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TABLE 1  Taxonomy and life-history characteristics of the 21 test species (all native to Australia) used to 

simulate age-structured populations and time series of population abundance. abb = abbreviation of scientific 

name, M = body mass (kg), GL = generation length (years), q = projection length (years) (Bradshaw et al. 

2021). 
 

taxonomic/functional 

group 

species abb M GL q status 

       
herbivore 

vombatiformes 

Diprotodon optatum DP 2786 18.1 724 extinct 

Palorchestes azael PA 1000 15.1 604 extinct 

Zygomaturus trilobus ZT 500 13.2 528 extinct 

Phascolonus gigas PH 200 10.7 428 extinct 

Vombatus ursinus VU 25 10.0 400 extant 

herbivore 

macropodiformes 

Procoptodon goliah PG 250 8.3 332 extinct 

Sthenurus stirlingi SS 150 8.1 324 extinct 

Protemnodon anak PT 130 7.8 312 extinct 

Simosthenurus occidentalis SO 120 7.8 312 extinct 

Metasthenurus newtonae MN 55 6.0 240 extinct 

Osphranter rufus OR 25 5.5 220 extant 

Notamacropus rufogriseus NR 14 6.3 252 extant 

large omnivore birds Genyornis newtoni GN 200 20.0 800 extinct 

Dromaius novaehollandiae DN 55 5.9 236 extant 

Alectura lathami AL 2.2 6.8 272 extant 

carnivores Thylacoleo carnifex TC 110 9.1 364 extinct 

Thylacinus cynocephalus TH 20 5.2 208 extinct 

Sarcophilus harrisii SH 6.1 3.1 124 extant* 

Dasyurus maculatus DM 2 2.3 92 extant 

invertivore 

monotremes 

Megalibgwilia ramsayi MR 11 16.4 656 extant 

Tachyglossus aculeatus TA 4 14.1 564 extant 

* extant in Tasmania, currently extinct in mainland Australia 
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TABLE 2   Demographic scenarios to quantify the detection of ensemble density-feedback signals in time series 

of abundance using phenomenological models (logistic growth curves) if a component density feedback on 

survival is present (1. H0: false negatives), or absent (2. H0: false positives). All scenarios were simulated over 

40 generations across 21 vertebrate species. Time series obtained from simulated age-structured populations 

(Leslie matrices) occupying 250,000 km2 with no dispersal. G = generation, N = population abundance, K = 

carrying capacity; �̅� = long-term mean instantaneous rate of population change, SD = standard deviation. See 

test species in Table 1. 

 

scenario catastrophe type description 

1. H0: false negatives 

(component feedback) 

  

   1.1 no catastrophic mortality or 

fluctuation in K 

  

i. Kfixed, �̅� ≅ 0 none stochastically resampled survival 

rates in age-structured population 

   
1.2 catastrophic mortality (50%) 

and stable K 

  

   ii. Kfixed; �̅� ≅ 0; sustained 

catastrophic mortality 

generationally scaled as in i, but with catastrophes 

      iii. Kfixed; �̅� ≅ 0; pulsed 

catastrophic mortality  

generationally scaled as in ii, but with a single 90% 

mortality pulse implemented at 

20G 

   iv. Kfixed; �̅� ≅ -0.001; 

sustained proportional 

mortality 

generationally scaled as in ii, but with proportional 

removal of individuals from the n 

vector such that �̅� = -0.001 

(slowly declining population) 

   v. Kfixed; �̅� ≅ -0.01; sustained 

proportional mortality 

generationally scaled as in iv, but where �̅� = -0.01 

(rapidly declining population) 

   
1.3 catastrophic mortality (50%) 

and fluctuation in K 

  

   vi. Kstochastic; �̅� ≅ 0 generationally scaled as in ii, but normally distributed K 

varying randomly at each time 

step (SD = 5%) 

   vii. Kstochastic with increasing 

variance; �̅� ≅ 0 

generationally scaled as in vi, but variance in K 

increased linearly from 5% to 

10% 

   viii. Kstochastic declining, forcing 

�̅� < 0 

generationally scaled as in vi, but K also decreases on 

average at a rate of -0.001 

   
2. H0: false positives (no 

component feedback) 

  

ix. no K; �̅� ≅ 0 temporally scaled probability of catastrophe 

increased over time such that �̅� ≅ 

0 (~ average stability) 
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FIGURE 1  (A, C, E) Truncated violin plots showing the distribution of the stationarity index �̅�R Var(𝑇R)⁄  

across 10,000 times series of population abundance per species and all 21 test species (see list in Table 1) 

obtained from age-structured populations subjected to a compensatory component density feedback on survival 

over 40 generations, according to nine demographic scenarios (detailed in Table 2). (B, D, F) Relationship 

between strength of ensemble (slope coefficient β of the Gompertz-logistic model  [-1]) and component (1 – 

the modifier Sred on survival) density feedback. (A-B) Scenarios without (blue: scenario 1.1i) and with (grey: 

scenario 1.2ii) generationally scaled 50% catastrophic (density-independent) mortality. (C-D) Stable projections 

with carrying capacity (K) fixed (darker grey; scenario 1.2ii), a pulse disturbance of 90% mortality at the first 20 

generations (20G; lighter grey; scenario 1.2iii), weakly declining (r ≅ -0.001; red; scenario 1.2iv), and strongly 

declining (r ≅ 0.01; blue; scenario 1.2v). (E-F) Stable projections with K fixed (darker grey; scenario 1.2ii), 

varying stochastically (Kstoch) around a constant mean with a constant variance (lighter grey; scenario 1.3vi), 

varying stochastically with a constant mean and an increasing variance (Kstoch↑Var; red; scenario 1.3vii), and 

varying stochastically with a declining mean and a constant variance (↓Kstoch; blue; scenario 1.3viii). The fitted 

curves across species are exponential plateau models of the form y = ymax - (ymax - y0)e-kx. Shaded regions 

represent the 95% prediction intervals for each type. Also shown are the mean probabilities of median density 

feedback (Pr(DF): sum of the Akaike’s information criterion weights for the Ricker- and Gompertz-logistic 

models across time series (ΣwAICc-DF). Compensation implies that survival and population growth wane as 

population abundance rises, and �̅�R >> Var(𝑇R) implies high stationarity. 
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FIGURE 2  (A) Truncated violin plots showing the distribution of the stationarity index �̅�R Var(𝑇R)⁄  across 10,000 times series of population abundance per species and all 

21 species (see species list in Table 1) obtained from age-structured populations subjected to a compensatory component density feedback on survival over 40 generations, 

according to two demographic scenarios (detailed in Table 2). Demographic scenarios include carrying capacity (K) fixed with (darker grey, scenario 1.2ii) and without 

(lighter grey, scenario 2ix) component compensatory density-feedback on survival, the latter including an increase in the probability of 50% catastrophic (density-

independent) mortality to produce stable population growth rates around 0 (see scenarios in Table 2). (B) Relationship between strength of ensemble (slope coefficient β  [-

1] of the Gompertz-logistic model) and generation length (years) across the 21 species. Probabilities of density feedback (Pr(DF) = sum of the Akaike’s information criterion 

weights for the Ricker and Gompertz models) calculated across simulations gave median Pr(DF) = 0.994 and 0.322 for the two stable scenarios without and with component 

feedback on survival, respectively. 
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FIGURE 3  Relationships between the stationarity index �̅�R Var(𝑇R)⁄  and the strength of ensemble density 

feedback (slope coefficient β  [-1] of the Gompertz-logistic model) for four scenarios with 50% catastrophic 

(density-indepent) mortality across 21 test species (see Table 1) over 40 generations, including (A) carrying 

capacity (K) fixed (scenario 1.2ii), (B) a pulse disturbance of 90% mortality at 20 generations (20G; scenario 

1.2iii), (C) weakly declining (r ≅ -0.001, scenario 1.2iv), and (D) strongly declining (r ≅ 0.01, scenario 1.2v) 

populations (scenarios detailed in Table 2). The fitted curves across species exponential plateau models of the 

form y = ymax - (ymax - y0)e-kx. Shaded regions represent the 95% prediction intervals for each type. ρmed are the 

median Spearman’s ρ correlation coefficients for the relationship between the ensemble strength and stationarity 

index across species (resampled 10,000 times; see Fig. S4 for full uncertainty range of ρ in each scenario). 
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FIGURE 4  Relationships between the stationarity index �̅�R Var(𝑇R)⁄  and the strength of ensemble density 

feedback (slope coefficient β  [-1] of the Gompertz-logistic model) across 21 test species (see list in Table 1) 

over 40 generations for four scenarios (scenarios detailed in Table 2) with 50% catastrophic (density-

independent) mortality, including (A) carrying capacity (K) fixed (scenario 1.2ii), (B) K varying stochastically 

(Kstoch) around a constant mean with a constant variance (scenario 1.3vi), (C) K varying stochastically with a 

constant mean and increasing variance (Kstoch ↑Var, scenario 1.3vii), and (D) K varying stochastically with a 

declining mean and a constant variance (↓Kstoch, scenario 1.3viii). The fitted curves across species exponential 

plateau models of the form y = ymax - (ymax - y0)e-kx. Shaded regions represent the 95% prediction intervals for 

each type. ρmed are the median Spearman’s ρ correlation coefficients for the relationship between the ensemble 

strength and stationarity index across species (resampled 10,000 times; see Fig. S4 for full uncertainty range 

under each scenario). 
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SUPPORTING INFORMATION 
 
FIGURE S1  Probability of an ensemble compensatory density-feedback signal (Pr(DF) = ΣwAICc-DF = sum 

of Akaike’s information criterion weights across the Ricker- and Gompertz-logistic models — see Materials and 

methods) in abundance time series for simulated populations of 21 long-lived species of Australian mammals 

and birds (see list in Table 1)  subjected to  compensatory density feedback on survival and experiencing 50 % 

catastrophic (density-independent) mortality over 40 generations. Each probability surface represents one of the 

21 test species (see list in Table 1), so plots show the overlapping median probability density over 10,000 times 

series of abundance per species and for each of four demographic scenarios (detailed in Table 2), including (A) 

a carrying capacity is fixed (Kfixed) with 50 % catastrophic (density-independent) mortality (scenario 1.2ii), (B) a 

pulse disturbance of 90% mortality at 20 generations (20G; scenario 1.2iii), and (C) weakly declining (�̅� ≅ -

0.001; scenario 1.2iv) and (D) strongly declining (�̅� ≅ 0.01; scenario 1.2v) populations. See Fig. S3 for 

bootstrapped mean Spearman correlation coefficients for each scenario. 
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FIGURE S2  Probability of an ensemble compensatory density-feedback signal (Pr(DF) = ΣwAICc-DF = sum 

of Akaike’s information criterion weights across the Ricker- and Gompertz-logistic models — see Materials and 

methods) in abundance time series for simulated populations of 21 long-lived species of Australian mammals 

and birds (see list in Table 1) subjected to compensatory density feedback on survival and experiencing 

fluctuations in carrying capacity (K) along with 50 % catastrophic (density-independent) mortality  over 40 

generations. Each probability surface represents one of the 21 test species (see list in Table 1), so plots show the 

overlapping median probability density over 10,000 times series of abundance per species and for each of four 

demographic scenarios (detailed in Table 2), including (A) a stable demographic projection where K is fixed 

(Kfixed) (scenario 1.2ii), (B) K varies stochastically (Kstoch) around a constant mean with a constant variance 

(scenario 1.3vi), (C) K varying stochastically with a constant mean and increasing variance  (Kstoch↑Var; 

scenario 1.3vii), and (C) K varying stochastically with a declining mean and a constant variance (↓Kstoch; 

scenario 1.3viii). See Fig. S3 for bootstrapped mean Spearman correlation coefficients for each scenario. 
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FIGURE S3  Bootstrapped mean (with 80 % confidence intervals; 100,000 resamples) probability of an 

ensemble compensatory density-feedback signal (Pr(DF) = ΣwAICc-DF = sum of Akaike’s information criterion 

weights across the Ricker- and Gompertz-logistic models — see Materials and methods) in abundance time 

series for simulated populations of 21 long-lived species of Australian mammals and birds for populations (see 

list in Table 1) subjected to compensatory density feedback on survival and experiencing fluctuations in 

carrying capacity (K) and/or 50 % catastrophic (density-independent) mortality (scenarios detailed in Table 2).  

Demographic scenarios (see details in Table 2) include (A) K fixed (Kfixed) with no catastrophic mortality (no 

cat; scenario 1.1i), and with catastrophic mortality in combination with (B) Kfixed (cat; scenario 1.2ii), (C) a 

pulse disturbance of 90% mortality at 20 generations (20G; scenario 1.2iii), (D) weakly declining (�̅� ≅ -0.001; 

scenario 1.2iv) and (E) strongly declining (�̅� ≅ 0.01; scenario 1.2v) populations, (F) K varying 

stochastically(Kstoch) around a constant mean with a constant variance (scenario 1.3vi), (G) K varying 

stochastically with a constant mean and increasing variance (Kstoch↑Var; scenario 1.3vii), and (H) K varying 

stochastically with a declining mean and a constant variance (↓Kstoch; scenario 1.3viii). The vertical dashed line 

at Pr(DF) = 0.5 in each panel is the point below which the evidence for a density-independent model [Pr(DI) = 

ΣwAICc-DI = sum of Akaike’s information criterion weights across the random walk and exponential models] is 

greater than Pr(DF). See Table 2 for species abbreviations. 
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FIGURE S4  Bootstrapped (10,000 iterations) Spearman’s correlation ρ between (A) ensemble density 

feedback strength (- Gompertz slope β, the reduction of survival as population density increases) and component 

feedback strength on survival (1 – Sred, the reduction in survival as population density increases), and (B) 

ensemble feedback strength and the stationarity metric �̅�R Var(𝑇R)⁄  for 10,000 simulated populations across 

each of 21 long-lived species of Australian mammals and birds for populations (see list in Table 1) subjected to 

compensatory density feedback on survival and experiencing fluctuations in carrying capacity (K) and/or 50 % 

catastrophic (density-independent) mortality (scenarios detailed in Table 2) . Demographic scenarios include K 

fixed (Kfixed) with no catastrophic mortality (no cat; scenario 1.1i), and catastrophic mortality in combination 

with Kfixed (cat; scenario 1.2ii), a pulse disturbance of 90% mortality at 20 generations (20G; scenario 1.2iii), 

weakly declining (�̅� ≅ -0.001; scenario 1.2iv) and (E) strongly declining (�̅� ≅ 0.01; scenario 1.2v) populations, 

K varying stochastically(Kstoch) around a constant mean with a constant variance (scenario 1.3vi), K varying 

stochastically with a constant mean and increasing variance (Kstoch↑Var; scenario 1.3vii), and K varying 

stochastically with a declining mean and a constant variance (↓Kstoch; scenario 1.3viii). 
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FIGURE S5  Truncated violin plots showing the distribution of the stationarity index �̅�R Var(𝑇R)⁄  across 

10,000 time series of population abundance per species and all 21 species (see species list in Table 1) obtained 

from age-structured populations for scenarios showing carrying capacity fixed with component compensatory 

density-feedback on survival and 50% catastrophic (density-independent) mortality to produce stable population 

growth rates around 0 over 40 (scenario 1.2ii; detailed in Table 2) and 120 generations (G). 
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Fig. S6. Relationship between strength of component density feedback and generation length (years) across 

10,000 time series of population abundance for each of 21 test species (see list in Table 1) obtained from age-

structured populations subjected to a compensatory component density feedback on survival over 40 generations 

for a demographic scenario with constant carrying capacity and no catastrophic (density-independent) mortality 

(scenario 1.1i; detailed in Table 2). The dashed grey line indicates a least-squares-fitted (adjusted coefficient of 

regression R2 = 0.58) exponential plateau model of the form: y = ymax - (ymax - y0)e-kG, where y0 = starting value 

of component strength, ymax = maximum component strength, k = rate constant (years-1) and G = generation time 

(years). Species notation: DP = Diprotodon optatum, PA = Palorchestes azael, ZT = Zygomaturus trilobus, PH 

= Phascolonus gigas, VU Vombatus ursinus (herbivore vombatiform); PG = Procoptodon goliah, SS = 

Sthenurus stirlingi, PT = Protemnodon anak, SO = Simosthenurus occidentalis, MN = Metasthenurus newtonae, 

OR = Osphranter rufus (herbivore macropodiformes); GN = Genyornis newtoni, DN = Dromaius 

novaehollandiae (large omnivore birds) , AL = Alectura lathami; TC = Thylacoleo carnifex, TH = Thylacinus 

cynocephalus, SH = Sarcophilus harrisii (carnivores) , DM = Dasyurus maculatus; MR = Megalibgwilia 

ramsayi; TA = Tachyglossus aculeatus (invertivore monotremes).  
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FIGURE S7  Relationships between the stationarity index �̅�R Var(𝑇R)⁄  and generation length across 10,000 

times series of population abundance per species and all 21 test species (see list in Table 1) obtained from age-

structured populations subjected to a compensatory component density feedback on survival over 40 

generations, according to seven demographic scenarios (detailed in Table 2). Demographic scenarios include 

(A) carrying capacity K fixed (Kfixed; scenario 1.2ii), (B) a pulse disturbance of 90% mortality at 20 generations 

(20G; scenario 1.2iii), (C) weakly declining (�̅� ≅ -0.001; scenario 1.2iv) and (D) strongly declining (�̅� ≅ 0.01; 

scenario 1.2v) populations, (E) K varying stochastically (Kstoch) around a constant mean with a constant variance 

(scenario 1.3vi), (F) K varying stochastically with a constant mean and increasing variance (Kstoch↑Var; scenario 

1.3vii), and (G) K varying stochastically with a declining mean and a constant variance (↓Kstoch; scenario 

1.3viii). 
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FIGURE S8  Relationships between the strength of ensemble (- Gompertz slope β, the reduction of survival as 

population density increases) and generation length across 10,000 times series of population abundance per 

species and all 21 test species (see list in Table 1) obtained from age-structured populations subjected to a 

compensatory component density feedback on survival over 40 generations, according to seven demographic 

scenarios (detailed in Table 2). Demographic scenarios include (A) carrying capacity K fixed (Kfixed; scenario 

1.2ii), (B) a pulse disturbance of 90% mortality at 20 generations (20G; scenario 1.2iii), (C) weakly declining (�̅� 

≅ -0.001; scenario 1.2iv) and (D) strongly declining (�̅� ≅ 0.01; scenario 1.2v) populations, (E) K varying 

stochastically (Kstoch) around a constant mean with a constant variance (scenario 1.3vi), (F) K varying 

stochastically with a constant mean and increasing variance (Kstoch↑Var; scenario 1.3vii), and (G) K varying 

stochastically with a declining mean and a constant variance (↓Kstoch; scenario 1.3viii). 

 


