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Abstract

To explore the impacts of regional evolution and impulses on the persistence or extinction of species, a generalized logistic

model with impulses in an evolving domain is proposed and researched. Firstly, the ecological reproduction index, which is

regarded as a threshold value, is introduced and characterized. Secondly, in the case of monotone or non-monotone impulsive

function, the asymptotic behavior of population is fully investigated and the sufficient conditions for the solution to persist, be

extinct or blow up are given. Finally, numerical simulations results indicate that whatever impulse is, larger periodic evolution

rates are more favorable for species. However, impulsive harvesting has a negative impact on persistence of species, while birth

pulse admits a positive impact and even results in blowup.
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1 Introduction

Mathematical models have been extensively employed as credible models to explore the devel-
opment of theories of spaces ecology for quite some time [2,8,21,34], in which the core problem is
how the distribution and existence of species are influenced by growth, death [12], diffusion [24]
and so on. When the population dynamics is composed of growth, diffusion, continuous com-
ponents as well as discrete components, the spread and sustainable existence of the population
are not apparently characterized by the classical logistic models, and for such a case, the impul-
sive reaction diffusion models offer a more reasonable description for these hybrid systems [20].
Besides, pulse perturbation, such as Tang and Chen in [28] proposed pesticide application,
Kot and Lewis et al. in [17] introduced species invasion and the release of natural enemies
at some fixed points, can also affect persistence or extinction of species, so the understanding
of the role of impulses is of extreme importance. An ordinary differential equation with birth
pulse and impulsive harvesting was investigated in [15]; a nonlocal dispersal model with a birth
pulse was researched in [30]; the impulsive reaction-diffusion predator-prey systems was set
up in [22] to study the population dynamics; and time delayed equations with impulses were
proposed in [4, 11]. Taking these into account, partial differential reaction-diffusion equations

∗The work is partially supported by the NNSF of China (Grant No. 11771381).
†Corresponding author. Email: zglin@yzu.edu.cn (Z. Lin).
‡Carlos Alberto Santos acknowledges the support of CNPq/Brazil Proc. No 311562/2020− 5.
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with impulses play a vital role in population dynamics and in such various forms of impulses,
population growth in most cases is accomplished by the birth pulse of new individuals, and
impulsive harvesting also affects the density of population, so we introduce here a generalized
logistic equation with birth pulse or impulsive harvesting to research the persistence, extinction
and blowup of species.

When researchers set up reaction-diffusion models with or without impulses to study space
ecology, the domain considered in most cases is fixed, while it turns out that regional varia-
tions can have an effect on species too. For example, in 1952, Turing [29] first found pattern
generation in a fixed domain, and Turing patterns in a growing domain were observed and
studied. Taking this fact into consideration, in 1995, the changes in the stripe pattern of the
angelfish Pomacanthus observed by Kondo and Asia [18] were more consistent with the actual
observed pattern, which means regional growth plays an important role in model generation.
What’s more, as in [10], the size of habits will change with abiotic factors such as temperature,
humidity and soil environment, which also exert an effect on population dynamics; please refer
to, for example, [13,25] and references therein. To describe the effects of regional expansion on
population dynamics, some shifting domains are gradually introduced in mathematical models.
For example, Crampin et al. in [6, 7] discussed a reaction-diffusion pattern on a growing do-
main; Jiang et.al [14] established a diffusive logistic equation on a periodically evolving domain
and found that domain evolution rate ρ(t) has impacts on persistence of species, that is: if
ρ−2(t) < 1, the periodical domain evolution has a positive effect on population, otherwise, it
has a negative effect on survival of species. The region variations mentioned above are already
known, however, more complex free boundary problems, which mean the shifting boundaries
of habit are unknown, are proposed. For example, Kawai and Yamada in [19] proposed a free
boundary problem and characterized spreading phenomena; Du and Ni in [9] analysed free
boundary problems with nonlocal diffusion.

Based on the above, we introduce an impulsive reaction-diffusion equation in a periodically
evolving domain to consider the impacts of evolving domain and impulses on persistence, ex-
tinction and blowup of species. With the condition of Dirichlet boundary, a one-dimensional
generalized logistic model with impulses is as follows:

ut = duxx + r(t)u(K−u)
K+V u

, t ∈ ((nT )+, (n+ 1)T ], x ∈ (0, l),

u(t, 0) = u(t, l) = 0, t > 0,

u(0, x) = u0(x), x ∈ [0, l],

u((nT )+, x) = g(u(nT, x)), x ∈ (0, l).

(1.1)

All meanings of variables and parameters in model (1.1) are given below:
• u(t, x) expresses the density of species at time t and space x;
• d(> 0) is the diffusion rate;
• r(t)(> 0) means intrinsic growth rate of population;
• K(> 0) denotes the environmental capacity;
• V (−1 < V < 0) is a negative constant;
• g(u) is the impulsive function. If 0 < g(u)/u < 1, then g(u) represents impulsive harvesting

function, if g(u)/u > 1, then g(u) denotes birth pulse function.
Given that the evolution of domain is isotropic, similar to the method [26] used, we now

convert problem (1.1) into problem (1.2) in a fixed domain (0, l0)
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vt = d

ρ2(t)
vyy − ρ̇(t)

ρ(t)
v + r(t)v(K−v)

K+V v
, t ∈ ((nT )+, (n+ 1)T ], y ∈ (0, l0),

v(t, 0) = v(t, l0) = 0, t > 0,

v(0, y) = v0(y), y ∈ [0, l0],

v((nT )+, y) = g(v(nT, y)), y ∈ (0, l0),

(1.2)

where ρ(t) is the evolution rate, and T represents one period, satisfying ρ(t) = ρ(t+ T ).
Assuming that an impulse occurs at every time t = nT within the successive stage of growth

and disperse. Let’s make the following assumption for g(u)(u ≥ 0).

Hypothesis 1.1 g(u) is a continuous and once differentiable function for u ≥ 0, g(u) > 0
and g(u)/u is decreasing monotonically in respect to u for u > 0; while for u = 0, g(0) = 0,
g′(0) > 0.

Here we introduce three commonly used impulsive functions, and all three functions satisfy
the above-mentioned Hypothesis 1.1.

Firstly, the Beverton-Holt function [5]

g(u) =
mu

a+ u
(m, a > 0)

applies when there is competition between individuals who need to reproduce. Secondly, the
Ricker function [27]

g(u) = uer−bu (r, b > 0)

applies to more scramble competition between adults who attack the young within every unit
of resource in the process of reproduction, as was shown in [20]. Finally we introduce linear
impulse function

g(u) = cu (c > 0).

If c > 1, then g(u) represents birth pulse function, if 0 < c < 1, then g(u) represents impulsive
harvesting function.

On condition that g(v) = v(c = 1), i.e. g′(0) = 1, which means there is no impulse. If
V = 0, (1.2) is transformed into the classical logistic model in an evolving domain and has been
studied by Jiang and Wang in [14]. When −1 < V < 0, (1.2) is the generalized logistic model
and the threshold value utilized to determine the persistence, extinction and blowup of species
is calculated as [32]

D =

∫ T
0
r(t)dt

λ1

∫ T
0
ρ−2(t)dt

. (1.3)

If d < D, then v decays to 0 and species vanishes; If d > D and initial value is small, then v
stabilizes to a positive steady state, and species persists; if d > D and initial value is big, then
blowup takes place.

In comparison with the aforementioned problem without impulse, we are interested in two
essential aspects: On account of the presence of impulse, whether a new threshold value of
problem (1.2) to affect the persistence, extinction and blowup of species will be generated? and
what positive or negative impacts do evolution rate and impulses have on the longtime behaviors
of population dynamics? The ecological reproduction index, which is related to the impulsive
function g(u) and evolution rate ρ(t), is introduced in the following section for the sake of dealing
with the first issue. Sections 3 and 4 deal with the sufficient conditions for persistence, extinction
and blowup of species. Numerical simulations and ecological explanations are presented in
Section 5.
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2 The ecological reproduction index

Widely, R0, regarded as the basic reproduction number, is a key indictor for disease trans-
mission, seen in [1, 16, 33], and references therein. Additionally, R0, seen as the ecological
reproduction index, is a threshold value and can be employed to describe the asymptotic be-
havior of population in ecology and demography. Compared with (1.3), in this section, a
threshold value related to impulse and evolution rate is introduced and investigated.

Linearizing problem (1.2) at v∗ = 0, which is an equilibrium solution of periodic problem
(1.2), we obtain

vt = d
ρ2(t)

vyy + [r(t)− ρ̇(t)
ρ(t)

]v, t ∈ ((nT )+, (n+ 1)T ], y ∈ (0, l0),

v(t, 0) = v(t, l0) = 0, t > 0,

v((nT )+, y) = g′(0)v(nT, y), y ∈ (0, l0),

(2.1)

and take the following periodic eigenvalue problem into account
φt = d

ρ2(t)
φyy + [ r(t)+| ln g

′(0)|/T
R0

− ρ̇(t)
ρ(t)

]φ− | ln g
′(0)|
T

φ, t ∈ ((nT )+, (n+ 1)T ], y ∈ (0, l0),

φ(t, 0) = φ(t, l0) = 0, t > 0,

φ(0, y) = φ(T, y), y ∈ [0, l0],

φ((nT )+, y) = g′(0)φ(nT, y), y ∈ (0, l0).

(2.2)

The eigenvalue problem is written in this form to ensure the positivity of R0, which can
be seen in (2.3). Similar as [23] in a growing domain, [31] in a fixed domain and [25] in
a periodic evolving domain, the principal eigenvalue R0 of problem (2.2) is regarded as the
ecological reproduction index, and a corresponding eigenfunction φ(t, y) is positive. The explicit
expression of R0 will be given in the following.

Theorem 2.1 Assume that the environment changes periodically with respect to t. The eco-
logical reproduction index of problem (1.2) can be precisely expressed as

R0 =

∫ T
0
r(t)dt+ | ln g′(0)|

dλ1

∫ T
0
ρ−2(t)dt− ln g′(0) + | ln g′(0)|

, (2.3)

where λ1(> 0) is the principal eigenvalue of −∆ in (0, l0) that meets the requirement of homo-
geneous Dirichlet boundary condition at x = 0 and x = l0.

Proof: Let
φ(t, y) = α(t)ψ(y),

where α(t) is to be determined, ψ(y) is the corresponding eigenfunction of λ1, which satisfies
the eigenvalue problem {

−ψ′′(y) = λ1ψ(y), y ∈ (0, l0),

ψ(0) = ψ(l0) = 0.
(2.4)

Substituting φ(t, y) = α(t)ψ(y) into the reaction diffusion equation in (2.2), and then inte-
grating both sides from 0+ to t, yield

α(t) = ce
∫ t
0 −

dλ1
ρ2(τ)

+(
r(τ)+| ln g′(0)|/T

R0
− ρ̇(τ)
ρ(τ)

)dτ− | ln g
′(0)|
T

t
, (2.5)
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where c = α(0+). Since
α(0+) = g′(0)α(0),

taking t = T at (2.4), we have

α(T ) = α(0+)e
∫ T
0 −

dλ1
ρ2(t)

+
r(t)+| ln g′(0)|/T

R0
dt−| ln g′(0)|

= g′(0)α(0)e
∫ T
0 −

dλ1
ρ2(t)

+
r(t)+| ln g′(0)|/T

R0
dt−| ln g′(0)|

.

On account of α(T ) = α(0), we can eventually figure out that

R0 =

∫ T
0
r(t)dt+ | ln g′(0)|

dλ1

∫ T
0
ρ−2(t)dt− ln g′(0) + | ln g′(0)|

(> 0).

�

3 The case of monotone impulsive function

In this section, we consider the case where impulsive function g(u) is nondecreasing, and then
take more general case of g(u) into consideration in the next section.

Hypothesis 3.1 g(u) is nondecreasing for u ≥ 0.

Example 3.1 Beverton-Holt function: g(u) = mu/(a+ u) (m, a > 0).

In order to research the impacts of the basic reproduction indexR0 on population dynamics,
we first make the following Hypothesis 3.2 about monotonic impulsive function g(u).

Hypothesis 3.2 There exist positive constants D, δ < σ, and ν > 1, such that g(u) ≥
g′(0)u−Duν for 0 ≤ u ≤ δ.

Theorem 3.1 Assume that Hypothesis 1.1 and R0 < 1 hold. For small initial value v0(y) and
−1 < V < 0, the solution of problem (1.2) satisfies lim

t→∞
v(t, y) = 0 uniformly for y ∈ [0, l0].

Proof: Constructing

ṽ(t, y) = Me(1−1/R0)
∫ t
0 r(τ)+| ln g′(0)|/Tdτφ(t, y),

where φ(t, y) (≤ 1) is a positive eigenfunction of problem (2.2) corresponding to the reproduction
index R0, and M is to be chosen later. To all appearances, ṽ(t, y) is a solution of the following
linear problem

vt = d
ρ2(t)

vyy + [r(t)− ρ̇(t)
ρ(t)

]v, t ∈ ((nT )+, (n+ 1)T ], y ∈ (0, l0),

v(t, 0) = v(t, l0) = 0, t > 0,

v(0, y) = Mφ(0, y), y ∈ (0, l0),

v((nT )+, y) = g′(0)v(nT, y), y ∈ (0, l0).

(3.1)

It is easy to see that

ṽt −
d

ρ2(t)
ṽyy +

˙ρ(t)

ρ(t)
ṽ − r(t)ṽ(K − ṽ)

K + V ṽ
= r(t)ṽ(V + 1)(

1

K/ṽ + V
).
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Due to 0 < ṽ(t, y) ≤M , we obtain

K

ṽ
+ V ≥ K

M
+ V .

If 0 < M ≤ K, combined with −1 < V < 0, then

K

ṽ
+ V ≥ K

M
+ V ≥ 1 + V > 0,

so

ṽt −
d

ρ2(t)
ṽyy +

˙ρ(t)

ρ(t)
ṽ − r(t)ṽ(K − ṽ)

K + V ṽ
= r(t)ṽ(V + 1)(

1

K/ṽ + V
) > 0.

Recalling that g(v) ≤ g′(0)v by the Hypothesis 1.1, we have ṽ((nT )+, y) = g′(0)ṽ(nT, y) ≥
g(ṽ(nT, y)).

We now choose M = K, if the initial value v0(y) ≤ Kφ(0, y), we acknowledge that ṽ(t, y) is
an upper solution of problem (1.2), that means

v(t, y) ≤ ṽ(t, y), t > 0, y ∈ [0, l0].

Consequently, by the fact that lim
t→∞

ṽ(t, y) = 0 for R0 < 1, it is clear to see that lim
t→∞

v(t, y) = 0

uniformly for y ∈ [0, l0]. �

In order to explore the asymptotic behavior of solution to problem (1.2) in the case of
R0 > 1, the following periodically auxiliary problem (3.2) is first given, then the relationship
between solutions of periodic problem (3.2) and initial boundary problem (1.2) are investigated.

vt = d
ρ2(t)

vyy − ρ̇(t)
ρ(t)
v + r(t)v(K−v)

K+V v
, t ∈ ((nT )+, (n+ 1)T ], y ∈ (0, l0),

v(t, 0) = v(t, l0) = 0, t > 0,

v(0, y) = v(T, y), y ∈ [0, l0],

v((nT )+, y) = g(v(nT, y)), y ∈ (0, l0).

(3.2)

Theorem 3.2 Assume that impulsive function g(u) satisfied Hypotheses 1.1, 3.1, 3.2 and R0 >
1. For −1/(1 + M) < V < 0, the auxiliary periodic problem (3.2) admits a unique positive
periodic solution, where

M = (g′(0)e
∫ T
0 r(t)dt − 1)e

∫ T
0 r(t)dtρ−m/

∫ T

0

r(t)e
∫ t
0 r(s)ds

ρ(t)
dt.

Proof: We first construct an upper solution ṽ(t, y) of perodic problem (3.2). Let ṽ(t, y) = W (t),
we have K + VW (t) < K, and W (t) meets the equations set

Wt = (r(t)−
˙ρ(t)

ρ(t)
)W (t)− r(t)

K
(V + 1)W 2(t), t ∈ ((nT )+, (n+ 1)T ],

W (t) = W (t+ T ), t > 0,

W ((nT )+) = g′(0)W (nT ) ≥ g(W (nT )), n = 1, 2, . . . .

(3.3)

thus
ṽt − d

ρ2(t)
ṽyy + ρ̇(t)

ρ(t)
ṽ − r(t)ṽ(K−ṽ)

K+V ṽ

= Wt + ρ̇(t)
ρ(t)
W − r(t)W (1− (V+1)W

K+VW
)

= Wt + ρ̇(t)
ρ(t)
W − r(t)W + r(t) V+1

(K+VW )
W 2.

6



If K + VW > 0, then

ṽt −
d

ρ2(t)
ṽyy +

ρ̇(t)

ρ(t)
ṽ − r(t)ṽ(K − ṽ)

K + V ṽ
> Wt + (

ρ̇(t)

ρ(t)
− r(t))W +

r(t)

K
(V + 1)W 2 = 0.

Adding to the fact that ṽ((nT )+, y) − g(ṽ(nT, y)) = W ((nT )+) − g(W (nT )) ≥ 0, obviously,
ṽ(t, y) = W (t) is an upper solution of problem (3.2).

Next, let’s take full advantage of equations in (3.3) to figure out W (t).
Integrating both sides of the first equation of problem (3.3) from (nT )+ to t, yields

W (t) =
e
∫ t
0 r(τ)dτW ((nT )+)ρ−1(t)

en
∫ T
0 r(t)dt +W ((nT )+)V+1

K

∫ t
nT

r(τ)e
∫ τ
0 r(s)ds

ρ(τ)
dτ
, t ∈ ((nT )+, (n+ 1)T ], (3.4)

therefore

W ((n+ 1)T ) = e
∫ (n+1)T
0 r(t)dtg′(0)W (nT )

en
∫T
0 r(t)dt+g′(0)W (nT )V+1

K

∫ T
0

r(t)e

∫ t+nT
0 r(s)ds

ρ(t)
dt

= e
∫T
0 r(t)dtg′(0)W (nT )

1+g′(0)W (nT )V+1
K

∫ T
0

r(t)e

∫ t
0 r(s)ds

ρ(t)
dt

.

On account of W ((n+ 1)T ) = W (nT ), we derive that

W (nT ) =
g′(0)e

∫ T
0 r(t)dt − 1

V+1
K
g′(0)

∫ T
0

r(t)e
∫ t
0 r(s)ds

ρ(t)
dt
. (3.5)

Since R0 > 1, then g′(0)e
∫ T
0 r(t)dt > 1. It is observed that W (nT ) > 0 and

W (t) =
Ke

∫ t
0 r(τ)dτ (g′(0)e

∫ T
0 r(t)dt − 1)ρ−1(t)

(V + 1)[(g′(0)e
∫ T
0 r(t)dt − 1)

∫ t
nT

r(τ)e
∫ τ
0 r(s)ds

ρ(τ)
dτ + en

∫ T
0 r(t)dt

∫ T
0

r(t)e
∫ t
0 r(s)ds

ρ(t)
dt]
.

Finally, we should verify that K + VW > 0.
In fact, for the simplicity and transparency of the result, we denote

ρm = min
t∈((nT )+,(n+1)T ]

ρ(t),

and

M = (g′(0)e
∫ T
0 r(t)dt − 1)e

∫ T
0 r(t)dtρ−m/

∫ T

0

r(t)e
∫ t
0 r(s)ds

ρ(t)
dt,

direct calculation gives that

W (t) < Ke
∫ t
0 r(τ)dτ (g′(0)e

∫T
0 r(t)dt−1)ρ−1(t)

(V+1)en
∫T
0 r(t)dt ∫ T

0
r(t)e

∫ t
0 r(s)ds

ρ(t)
dt

< K(g′(0)e
∫T
0 r(t)dt−1)e

∫T
0 r(t)dtρ−1(t)

(V+1)
∫ T
0

r(t)e

∫ t
0 r(s)ds

ρ(t)
dt

< KM
V+1

.

Paying attention to the condition that

−1/(M + 1) < V < 0,

it is easy to verify that W (t) < −K/V i.e. W < −K/V holds.

7



Next, we construct its lower solution. Let

v̂(t, y) =


εφ(nT, y), t = nT,

ε ρ1
g′(0)

φ((nT )+, y), t = (nT )+,

ε ρ1
g′(0)

e[G(t)−δ](t−nT )φ(t, y), t ∈ ((nT )+, (n+ 1)T ],

(3.6)

where G(t) = e−
t
T

∫ t
0

1
T

(1 − 1/R0)r(t)e
t
T dt > 0, φ(t, y) (> 0) is an eigenfunction to problem

(2.2) corresponding to R0 and ε (> 0) is sufficiently small. Furthermore, we choose δ = G((n+

1)T )/2 (> 0) and ρ1 = g′(0)e−T
G((n+1)T )

2 (< g′(0)), such that v̂(nT, y) = v̂((n + 1)T, y). Since
Te

t
TG(t) =

∫ t
0
(1−1/R0)r(t)e

t
T dt, then TG′(t)+G(t) = (1−1/R0)r(t). For any t ∈ ((nT )+, (n+

1)T ] and y ∈ (0, l0) , we derive that

v̂t − d
ρ2(t)

v̂yy +
˙ρ(t)

ρ(t)
v̂ − r(t)v̂(K−v̂)

K+V v̂

= ε ρ1
g′(0)

e(G(t)−δ)(t−nT )[(G′(t)(t− nT ) +G(t)− δ)φ

+ φt − d
ρ2(t)

φyy +
˙ρ(t)

ρ(t)
φ−

r(t)φ(K−ε ρ1
g′(0) e

(G(t)−δ)(t−nT )φ)

K+V ε
ρ1
g′(0) e

(G(t)−δ)(t−nT )φ
]

≤ ε ρ1
g′(0)

e(G(t)−δ)(t−nT )[(TG′(t) +G(t))φ− δφ

+ φt − d
ρ2(t)

φyy +
˙ρ(t)

ρ(t)
φ−

r(t)φ(K−ε ρ1
g′(0) e

(G(t)−δ)(t−nT )φ)

K+V ε
ρ1
g′(0) e

(G(t)−δ)(t−nT )φ
].

On account of
(TG′(t) +G(t))φ+ φt − d

ρ2(t)
φyy +

˙ρ(t)
ρ(t)
φ

= (1− 1
R0

)r(t)φ+ r(t)+| ln g′(0)|/T
R0

− | ln g
′(0)|
T

φ

= r(t)φ+ | ln g′(0)|/T
R0

φ− | ln g
′(0)|
T

φ

≤ r(t)φ,

we have
v̂t − d

ρ2(t)
v̂yy +

˙ρ(t)
ρ(t)
v̂ − r(t)v̂(K−v̂)

K+V v̂

≤ ε ρ1
g′(0)

e(G(t)−δ)(t−nT )φ[(r(t)(1−
K−ε ρ1

g′(0) e
(G(t)−δ)(t−nT )φ

K+vε
ρ1
g′(0) e

(G(t)−δ)(t−nT )φ
)− δ]

< 0.

Based on Hypothesis 3.2, for given positive constants D, δ (< σ), ν (> 1), there exists
sufficiently small ε (> 0), such that

v̂((nT )+, y)− g(v̂(nT, y))

= ε ρ1
g′(0)

φ((nT )+, y)− g(v̂(nT ), y)

= ερ1φ(nT, y)− g(v̂(nT, y))

≤ ερ1φ(nT, y)− g′(0)εφ(nT, y) +D(εφ(nT, y))ν

= [(ρ1 − g′(0)) +D(εφ(nT, y))ν−1]εφ(nT, y)

< 0.

thus, v̂(t, y) is a lower solution of problem (3.2).
In the following, the upper solution ṽ(t, y) and lower solution v̂(t, y) mentioned above are

employed to prove the existence of periodic solution to problem (3.2).
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Denote f(v, t) = −
˙ρ(t)

ρ(t)
v + r(t)v(K−v)

K+V v
, we choose M∗, which is sufficiently large, such that

F (v, t) = f(v, t) + M∗v is increasing with respect to v. In the following, initial value iteration
v̄(0) = ṽ and v(0) = v̂ are utilized to construct monotone iteration sequence {v̄(k)} and {v(k)}(k =
1, 2, . . .).

v̄
(k)
t − d

ρ2(t)
v̄

(k)
yy +M∗v̄(k) = M∗v̄(k−1) − ρ̇(t)

ρ(t)
v̄(k−1)

+ r(t)v̄(k−1)(K−v̄(k−1))

K+V v̄(k−1) , t ∈ ((nT )+, (n+ 1)T ], y ∈ (0, l0),

v
(k)
t − d

ρ2(t)
v

(k)
yy +M∗v(k) = M∗v(k−1) − ρ̇(t)

ρ(t)
v(k−1)

+ r(t)v(k−1)(K−v(k−1))

K+V v(k−1) , t ∈ ((nT )+, (n+ 1)T ], y ∈ (0, l0),

v̄(k)(t, 0) = v̄(k)(t, l0) = v(k)(t, 0) = v(k)(t, l0) = 0, t ∈ ((nT )+, (n+ 1)T ],

v̄(k)(0, y) = v̄(k−1)(T, y), v(k)(0, y) = v(k−1)(T, y), y ∈ (0, l0),

v̄(k)((nT )+, y) = g(v̄(k−1)((n+ 1)T, y)), y ∈ (0, l0),

v(k)((nT )+, y) = g(v(k−1)((n+ 1)T, y)), y ∈ (0, l0).

(3.7)

which yields
v̂ ≤ v(k) ≤ v(k+1) ≤ v̄(k+1) ≤ v̄(k) ≤ ṽ.

Next, it follows from the monotone bounded convergence theorem that the limits of sequences
(v̄(k), v(k)) exist. Let

lim
m→∞

v̄(k) = V̄ ∗ and lim
m→∞

v(k) = V ∗,

substituting into (3.7), we can see that V̄ ∗ and V ∗ are two periodic solutions to periodic problem
(3.2), satisfying

v̂ ≤ v(k) ≤ v(k+1) ≤ V ∗ ≤ V̄ ∗ ≤ v̄(k+1) ≤ v̄(k) ≤ ṽ.

Ultimately, we prove the uniqueness of T−periodic solution. To proceed, we suppose that
v1 and v2 are two solutions of problem (3.2) and define

S = {s ∈ [0, 1], sv1 ≤ v2, t ∈ [0, T ], y ∈ [0, l0]}.

Explicitly, F (v, t) is nondecreasing and f(v, t)/v is non-increasing with respect to v in [0, max
[0,T ]×[0,l0]

v2].

In the following, we prove the fact that 1 ∈ S, otherwise, suppose that s0 = supS < 1, then

(v2 − s0v1)t − d
ρ2(t)

(v2 − s0v1)yy +M∗(v2 − s0v1)

= f(v2, t) +M∗v2 − s0(f(v1, t) +M∗v1)

≥ f(s0v1, t) +M∗s0v1 − s0(f(v1, t) +M∗v1)

≥ 0

for t ∈ (0+, T ], y ∈ (0, l0).
For y ∈ (0, l0), v2(0+, y) − s0v1(0+, y) = g(v2(0, y)) − s0g(v1(0, y)) ≥ 0 is inferred by using

Hypothesises 1.1 and 3.1, as well as for t > 0, v2(t, 0) − s0v1(t, 0) = v2(t, l0) − s0v1(t, l0) = 0.
Hence the strong maximum principle asserts that

v2 − s0v1 > 0 or v2 − s0v1 ≡ 0, for t ∈ (0+, T ] and y ∈ (0, l0).

(i) If v2 − s0v1 > 0 is true for t ∈ (0+, T ] and y ∈ (0, l0). Since v1 and v2 are two periodic
solutions, we have v1(0, y) = v1(T, y) and v2(0, y) = v2(T, y), which signifies v2 − s0v1 > 0
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for t ∈ [0, T ], y ∈ (0, l0). Owning to Hopf boundary lemma, with ∂
∂η
|y=0 (v2 − s0v1) > 0,

∂
∂η
|y=l0 (v2−s0v1) < 0 for t ∈ [0, T ], where η delegates outward unit normal vector, there holds

a certain positive constant ε such that v2 − s0v1 > εv1. It follows that s0 + ε ∈ S, which is not
in accordance with the fact that s0 = supS.

(ii) If v2−s0v1 ≡ 0 is correct for t ∈ (0+, T ] and y ∈ (0, l0). By means of vt− d
ρ2(t)

vyy = f(v, t),

there holds f(v2, t) = s0f(v1, t). While f(v, t)/v is non-increasing with respect to v, which yields
f(v2, t) = f(s0v1, t) > s0f(v1, t). Consequently this case does not make sense either. �

The existence and uniqueness of positive periodic solution V ∗(t, y)(= V̄ ∗(t, y) = V ∗(t, y))
to problem (3.2) have been specifically demonstrated above. In the next, the relationships
between solutions to problems (3.2) and (1.2) are characterized in the case of R0 > 1.

Theorem 3.3 Suppose that Hypotheses 1.1, 3.1, 3.2 and R0 > 1 hold. For nonnegative and
nontrivial small initial value v0(y), the solution of problem (1.2) yields

lim
m→∞

v(t+mT, y) = V ∗(t, y), t ≥ 0, y ∈ [0, l0],

where V ∗(t, y) is the unique solution to periodic problem (3.2).

Proof: Step1 v0(y) > 0 holds for y ∈ (0, l0), otherwise, substituting t0 > 0 for t = 0, such
that v0(t0, y) > 0. Taking notice of φy(0, 0) > 0, φy(0, l0) < 0, by using Hopf boundary lemma,
a positive and sufficiently small ε can be selected to enable εφ(0, y) ≤ v(0, y). For such a given
ε, we choose the upper solution ṽ(t, y) = W (t) defined in (3.3) and the lower solution v̂(t, y)
defined in (3.6) satisfying

v̂(0, y) ≤ v(0, y) ≤ ṽ(0, y), y ∈ [0, l0]. (3.8)

Hence, g(v̂(0, y)) ≤ g(v(0, y)) ≤ g(ṽ(0, y)), which is equivalent to v̂(0+, y) ≤ v(0+, y) ≤ ṽ(0+, y).
It follows from the comparison principle that v̂(t, y) ≤ v(t, y) ≤ ṽ(t, y) for t ∈ (0+, T ] and

y ∈ [0, l0], and induction shows that

v̂(t, y) ≤ v(t, y) ≤ ṽ(t, y), t = nT, t ∈ [(nT )+, (n+ 1)T ], y ∈ [0, l0].

i.e. v(0)(t, y) ≤ v(t, y) ≤ v̄(0)(t, y), t ≥ 0, y ∈ [0, l0].
Step2 Owning to the initial value iteration process in Theorem 3.2, we obtain

v̄(1)((nT )+, y) = g(v̄(0)((n+ 1)T, y)), y ∈ (0, l0),

v(1)((nT )+, y) = g(v(0)((n+ 1)T, y)), y ∈ (0, l0),

v̄(1)(0, y) = v̄(0)(T, y), y ∈ (0, l0),

v(1)(0, y) = v(0)(T, y), y ∈ (0, l0).

(3.9)

There holds
v(1)(0, y) = v(0)(T, y) ≤ v(T, y) ≤ v̄(0)(T, y) = v̄(1)(0, y),

for t = 0, y ∈ [0, l0], and

v(1)(0+, y) = g(v(0)(T, y)) ≤ g(v(T, y)) = v(T+, y) ≤ g(v̄(0)(T, y)) = v̄(1)(0+, y),

for t = 0+, y ∈ [0, l0]. Thus, v(1)(t, y) ≤ v(t+ T, y) ≤ v̄(1)(t, y) holds for t ∈ (0+, T ], y ∈ [0, l0],
by comparison argument, and induction asserts that v(1)(t, y) ≤ v(t+ T, y) ≤ v̄(1)(t, y) for t ≥ 0
and y ∈ [0, l0].
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Step3 We conclude that for any m,

v(m)(t, y) ≤ v(t+mT, y) ≤ v̄(m)(t, y), t ≥ 0, y ∈ [0, l0].

In fact, m = 0 is valid, as is seen in Step1, and m = 1 is correct, which is presented by
Step2. The above result can be obtained by iteration. This, together with the fact that
lim
m→∞

v(m)(t, y) = lim
m→∞

v̄(m)(t, y) = V ∗(t, y) in Theorem 3.2, where V ∗(t, y) is the unique T-

periodic solution of problem (3.2), yields the desired result. �

4 The case of non-monotone impulsive function

Compared with monotone impulsive function in Section 3, we will use the conclusion obtained
above to discuss more general case where g(u) is non-monotonic, and the core point is to find
two monotone functions to approach g(u) from above and below, respectively.

Example 4.1 Ricker function: g(u) = uer−bu (r, b > 0).

Motivated by work of Lewis and Li in [20], to study the dynamics of the population when
the impulse function is non-monotonic, we first make the following assumption.

Hypothesis 4.1 There is a positive constant σ such that g(u) is nondecreasing with respect to
u for 0 ≤ u ≤ σ.

Choosing d = 0 in problem (3.2), now we take the following problem into consideration
vt = −

˙ρ(t)
ρ(t)
v + r(t)v(K−v)

K+V v
, t ∈ ((nT )+, (n+ 1)T ],

v(0) = v(T ),

v((nT )+) = g+(v(nT )), y ∈ (0, l0),

(4.1)

where g+(u) is defined as
g+(u) = max

v∈[0,u]
g(v).

We can not say that the solution of problem (4.1) is unique because the monotonicity of g+(u)
u

is unknown, but it can be obtained according to Theorem 3.2 that the above problem has a
minimum positive solution v+

min(t) for R0 > 1, then we define

β+ = v+
min(0), g−(u) = min

v∈[u,β+]
g(v).

It is effortless to see from the definition that g+(u) are nondecreasing for u ≥ 0, g−(u) ≤
g(u) ≤ g+(u) and g+′(0) = g′(0), simultaneously there exists σ0(> 0) such that g+(u) = g(u)
for σ0 < σ.

In the following, we consider the auxiliary systems

vt = d
ρ2(t)

vyy −
˙ρ(t)

ρ(t)
v + r(t)v(K−v)

K+V v
, t ∈ ((nT )+, (n+ 1)T ], y ∈ (0, l0),

v(t, 0) = v(t, l0) = 0, t > 0,

v(0, y) = v0(y), y ∈ [0, l0],

v((nT )+, y) = g+(v(nT, y)), y ∈ (0, l0)

(4.2)
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and 

vt = d
ρ2(t)

vyy −
˙ρ(t)

ρ(t)
v + r(t)v(K−v)

K+V v
, t ∈ ((nT )+, (n+ 1)T ], y ∈ (0, l0),

v(t, 0) = v(t, l0) = 0, t > 0,

v(0, y) = v0(y), y ∈ [0, l0],

v((nT )+, y) = g−(v(nT, y)), y ∈ (0, l0).

(4.3)

Since g−(u) ≤ g(u) ≤ g+(u), if 0 ≤ v0(y) ≤ β+, then for any arbitrary solution v(t, y) of
problem (1.2), the comparison principle gives that

0 ≤ v−(t, y) ≤ v(t, y) ≤ v+(t, y) ≤ v+
min(t), (4.4)

where v−(t, y) and v+(t, y) are solutions to problems (4.3) and (4.2), respectively.
The above two problems have the same ecological reproduction index R0, which is deter-

mined by Theorem 2.1, and the solutions of problems (4.2) and (4.3) have the same asymptotic
behavior in accordance with Theorems 3.1, 3.2 and 3.3. Combining this with (4.4), we derive
that if R0 < 1, the solution to problem (1.2) meets lim

t→∞
v(t, y) = 0 for y ∈ [0, l0], and if R0 > 1,

the solution yields

V +(t, y) ≤ lim inf
m→∞

v+(t+mT, y) ≤ lim sup
m→∞

v+(t+mT, y) ≤ V̄ +(t, y), t ≥ 0, y ∈ [0, l0],

where V +(t, y) and V̄ +(t, y) are maximum and minimum positive T-periodic solutions of prob-
lem (4.2), respectively, with the initial value condition replaced by the periodic condition. Sim-
ilarly, V̄ −(t, y) and V −(t, y) are defined as the maximum and minimum positive T−periodic
solutions to the corresponding T−periodic problem, which meets

V −(t, y) ≤ lim inf
m→∞

v−(t+mT, y) ≤ lim sup
m→∞

v−(t+mT, y) ≤ V̄ −(t, y), t ≥ 0, y ∈ [0, l0].

These two inequations, together with (4.4), yield

V −(t, y) ≤ lim inf
m→∞

v(t+mT, y) ≤ lim sup
m→∞

v(t+mT, y) ≤ V̄ +(t, y).

Based on the aforementioned analysis, the asymptotic behavior of solution to problem (1.2)
in the non-monotonic case of the impulsive function is given below.

Theorem 4.1 Assume that Hypotheses 1.1, 3.1, 3.2, 4.1 hold, the following assertions are true:
(i) If R0 < 1, the solution v(t, y) to problem (1.2) satisfies lim

t→∞
v(t, y) = 0 uniformly for

y ∈ [0, l0].
(ii) If R0 > 1, for nonnegative and nontrivial initial value 0 ≤ v0(y) ≤ β+, the solution v(t, y)
to problem (1.2) admits

V −(t, y) ≤ lim inf
m→∞

v(t+mT, y) ≤ lim sup
m→∞

v(t+mT, y) ≤ V̄ +(t, y)

for t ≥ 0, y ∈ [0, l0], where V̄ +(t, y) and V −(t, y) are the maximum and minimum positive
periodic solutions of the corresponding T−periodic solutions to problems (4.2) and (4.3), re-
spectively.
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5 Numerical simulation and biological explanation

In this section, for small initial value v0(y), Beverton-Holt function and Ricker function are
firstly chosen to research the impacts of evolving domain and impulses on dynamics of popu-
lation. For these two functions mentioned above, their solutions have upper bounds (g(u) ≤
m, g(u) ≤ er−1

b
), so that blowup is impossible in the usually case, while blowup occurs in

generalized logistic model without impulse when the initial value is big and R0 > 1. So we
further introduce impulsive function g(u) = cu(c > 0) and consider whether blowup occurs
with impulses.

We consider the interval [0, l(t)] = [0, ρ(t)l0], l0 = π, which subsequently implies that
λ1 = (π/l0)2 = 1. Some parameters such as d = 1, K = 2.5, r = 1.2 and V = −0.2 in
model (1.2) are chosen. The initial value is fixed as v0(y) = 0.5 sinx + 0.2 sin 3x. Assuming
that impulse occurs at each time T = 2, numerical simulations to Beverton-Holt function and
Ricker function are presented below.

5.1 The impact of evolving domain

Small evolution rate ρ1(t) = e−0.1(1−cosπt) and big evolution rate ρ2(t) = e0.1(1−cosπt) are chosen
here to research the impacts of regional evolution on species survival.

We take impulsive function g(u) which is non-monotonic into consideration, such as Ricker
function with r = 0.05 and b = 1.2.

(a) (b)

(c)

Figure 1: For a smaller evolution rate ρ1(t) = e−0.1(1−cosπt), we obtain R0 ≈ 0.993 < 1. Graphs (a)-(c) show that u(t, x)
gradually tends to zero with time t. It can be seen from Graph (c) that the impulse occurs at each time T = 2.
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(a) (b)

(c)

Figure 2: For bigger evolution rate ρ2(t) = e0.1(1−cosπt), R0 ≈ 1.496 > 1 is calculated. Graphs (a)-(c) characterize the
population density stabilizes to a equilibrium state in a periodic evolving domain.

When we choose monotonic impulsive function g(u), such as Beverton-Holt function, we can
also find the similar asymptotic behavior, that is, the species will extinct with small evolution
rate, and will persist with big evolution rate.

We finally draw a conclusion that no matter what impulsive harvesting function g(u) is,
the population in a periodically evolving domain has similar dynamic behavior, that is, the
population finally decays to zero under a smaller evolution rate while persists at a larger
evolution rate. In other words, when impulsive harvesting occurs, the larger the evolution rate
is, the more favorable for the persistence of species.

5.2 The impact of impulse

For the purpose of researching the biological effects produced by impulses in an evolving domain,
the occurrence and non-occurrence of impulses, as well as the monotone or non-monotone
impulsive functions when impulses take place, are considered. Here a table 1 is made to classify
the impacts of impulse.

Table 1. Classification of different situations caused by impulsive harvesting

Small evolution rate No impulse Figure 3
Monotone impulse Figure 4

Non-monotone impulse Figure 1
Big evolution rate No impulse Figure 5

Monotone impulse Figure 6
Non-monotone impulse Figure 7

First of all, under a small evolution rate, we consider the case where there is no impulse.
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(a) (b)

(c)

Figure 3: A numerical simulation to the graph of u(t, x) without impulses by choosing ρ1(t) = e−0.1(1−cosπt).
R0 ≈ 0.973 < 1, Graphs (a)-(c) depict that the species finally tends to vanish.

(a) (b)

(c)

Figure 4: For the smaller evolution rate, Beverton-Holt impulse with m = 8, a = 10, we acquire R0 ≈ 0.892 < 1. Graphs
(a)-(c) describe that the population density decays to zero. It can be seen from Graph (c) that the impulse arises at each time

T = 2.

Comparing Fig 3 with Figs 4 and 1, it is clear that regardless of monotone or non-monotone
functions g(u) are selected, Beverton-Holt and Ricker impulses all accelerate species extinction
at a small evolution rate.

Secondly, on the basis of big evolution rate, we consider the situation where there is no
impulse.
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(a) (b)

(c)

Figure 5: Without impulses, a numerical approximation to the graph of u(t, x). By choosing ρ2(t) = e0.1(1−cosπt),
R0 ≈ 1.451 > 1. Graphs (a)-(c) show that the population gradually tends to a steady state.

(a) (b)

(c)

Figure 6: ρ2(t) = e0.1(1−cosπt) and Beverton-Holt function with m = 4, a = 10 are given, such that R0 ≈ 0.934 < 1. Graphs
(a)-(c) portray that population density u(t, x) decays ultimately to zero.
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(a) (b)

(c)

Figure 7: ρ2(t) = e0.1(1−cosπt), Ricker function with parameter values r = 0.05 and b = 8 are given such that R0 ≈ 1.496 > 1.
Graphs (a)-(c) characterize that the population stabilizes to a smaller positive steady state.

In comparison with Figs 5 for no impulse and 6 for monotonic impulse, we conclude that
population is still alive under the large evolution rate, and finally turns into extinction when
impulse occurs in the form of Beverton-Holt function.

In contrast to Figs 5 for no impulse and 7 for non-monotonic impulse, we observe that
population continues to persistently exist under the large evolution rate. When impulse takes
place in the form of Ricker function, the population gradually goes down, and finally struggles
to survive.

To sum up, the influence of Beverton-Holt and Ricker impulses on survival of species are
showed below: under a small evolution rate, the rate of population extinction will be accelerate
with impulse, and at large evolution rate, the addition of impulses make population struggle to
survive, or even totally extinct. In other words, Beverton-Holt and Ricker impulses both have
adverse effects on population dynamics.

5.3 The case of blowup

Compared with classical logistic model, the solution of generalized logistic model may blow
up. Therefore, we choose linear impulse function g(u) = cu(c > 0) to research the impacts of
impulses on population dynamics. When 0 < c < 1, impulsive harvesting will take place, while
c > 1, birth pulse may occurs.

We make a table 2 to summarize the sorts the following numerical simulation may cause
and focus on the situation of blowup.

Table 2. Situations caused by evolution rate, initial value, and impulse

With impulse(c>0,6=1)
Big evolution rate Big initial value Figure 8

Small initial value Figure 9
Small evolution rate Samll initial value Figure 10
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Now we use numerical approximation to show specific graphs and choose a period T =
0.02. Under a big evolution rate ρ2(t) = e0.1(1−cosπt), numerical simulations about population
dynamics for big initial value v0(y) = 14 sinx+ 10 sin 3x are firstly given in Figure 8.

(a) (b)

(c) (d)

Figure 8: ρ2(t) = e0.1(1−cosπt) and big initial value v0(y) = 14 sinx+ 10 sin 3x. Graphs (a) and (b) with c = 0.4(< 1)
characterizes the solution tends to zero, while c = 1.5(> 1) in Graphs (c) and (d) means u(t, x) still blow up.

Secondly, under a big evolution rate ρ2(t) = e0.1(1−cosπt), a numerical simulation about
population dynamics for small initial value v0(y) = 0.5 sinx + 0.2 sin 3x is presented in Figure
9.

(a) (b)

(c) (d)

Figure 9: Graphs (a) and (b) means the population will be extinct with c = 0.47(< 1) ,while Graphs (c)-(d) indicate the
solution will blow up with c = 1.4(> 1).
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Finally, under a small evolution rate ρ1(t) = e−0.1(1−cosπt), we choose small initial value
v0(y) = 12 sinx+ 3 sin 3x to research the impacts of impulses on population dynamics.

(a) (b)

(c)

Figure 10: Graph (a) means u(t, x) decays to zero with c = 0.5(c < 1), Graph (b) characterizes the population stabilizes to a
steady state with c = 1.07(> 1), and Graph (c) indicates that the solution will blow up when c = 1.4(> 1).

In combination with Figures 8-10, we eventually show the impacts of impulse on blowup
and population dynamics in Remark 5.1 below.

Remark 5.1 For linear impulse function g(u) = cu(c > 0, 6= 1), impulsive harvesting with
0 < c < 1 plays a negative effect on population dynamics, while birth pulse with c > 1 takes a
positive effect on species. Moreover, u(t, x) either blows up, or it skips over the point of blowup
and goes to zero.

Most previous works on population dynamics have been set up on a fixed domain, here we
draw a conclusion that both regional evolution and impulses have influence on species. Espe-
cially, persistence, extinction and blowup all are possible when impulse and regional evolution
are introduced in generalized logistic model.
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