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Abstract

In this paper, we study the existence and concentration of positive solutions for the following fractional Schr\”odinger log-

arithmic equation: \begin{equation*} \left\{ \begin{aligned} & \varepsilonˆ{2s} (-\Delta)ˆ{s} u+V(x)u =u\log uˆ2,\ x\in
\mathbb{R}ˆN,\\ &u\in Hˆs(\mathbb{R}ˆN), \end{aligned} \right. \end{equation*} where $\varepsilon > 0$ is a small

parameter, $N>2s,$ $s \in ( 0 ,1), (-\Delta)ˆ{s}$ is the fractional Laplacian, the potential $V$ is a continuous function having

a global minimum. Using variational method to modify the nonlinearity with the sum of a $Cˆ1 $ functional and a convex

lower semicontinuous functional, we prove the existence of positive solutions and concentration around of a minimum point of

$V$ when $\varepsilon$ tends to zero.
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Abstract

In this paper, we study the existence and concentration of positive solutions for the

following fractional Schrödinger logarithmic equation:{
ε2s(−∆)su + V (x)u = u log u2, x ∈ RN ,
u ∈ Hs(RN ),

where ε > 0 is a small parameter, N > 2s, s ∈ (0, 1), (−∆)s is the fractional Laplacian,

the potential V is a continuous function having a global minimum. Using variational

method to modify the nonlinearity with the sum of a C1 functional and a convex lower

semicontinuous functional, we prove the existence of positive solutions and concentra-

tion around of a minimum point of V when ε tends to zero.
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1 Introduction and main results

In this paper, we investigate the existence and concentration of a positive solution for the

following fractional Schrödinger logarithmic equation:{
ε2s(−∆)su+ V (x)u = u log u2, x ∈ RN ,

u ∈ Hs(RN),
(1.1)

where ε > 0 is a small parameter, N > 2s, s ∈ (0, 1), (−∆)s is the fractional Laplacian

which may be defined for any u : RN → R smooth enough by setting

(−∆)su(x) = 2 lim
ε→0+

∫
RN\Bε(x)

u(x)− u(y)

|x− y|N+2s
dy, x ∈ RN (1.2)
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†Corresponding author. wangli.423@163.com (L. Wang), m18342834223@163.com (S, Feng),

chengkun0010@126.com (K. Cheng),
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along functions u ∈ C∞0 (RN), Bε(x) denotes the ball of RN centered at x ∈ RN and radius

ε > 0. The fractional Laplace operator can be viewed as the infinitesimal generators of a

Lévy stable diffusion processes (see [7]). This operator arises in the description of various

phenomena in the applied sciences, such as phase transitions, materials science, conservation

laws, minimal surfaces, water waves, optimization, plasma physics and so on. Please see

[7, 14, 20] and the references therein for a more detailed introduction.

The fractional logarithmic Schrödinger equation (1.1) is a generalization of the classical

nonlinear Schrödinger equation with logarithmic nonlinearity [12]. When s = 1, (1.1) stems

from the classical logarithmic Schrödinger equation

iut + ∆u+ u log |u|2 = 0. (1.3)

The classical logarithmic Schrödinger equation has been ruled out as a fundamental quantum

wave equation by very accurate experiments on neutron diffraction, it has been extensively

studied in the mathematical and physical literature (see [9], [12], [13], [18] and the references

therein). Thus, it is natural for us to consider the logarithmic Schrödinger equation with

fractional Laplacian.

Recently, by means of nonsmooth critical point theory, d’Avenia et al. [15] studied

the existence of multiple standing waves solutions to the following fractional logarithmic

Schrödinger equations of the type{
(−∆)su+ ωu = u log u2, x ∈ RN ,

u ∈ Hs(RN)
(1.4)

for s ∈ (0, 1) and N > 2s. They also investigated the Hölder regularity of the weak solu-

tions. Zhang and Hu in [29] used the fractional logarithmic Sobolev inequality and Galerkin

method constructing and estimating the norm of the approximate solutions, they gave some

properties of the family of potential wells and obtained existence of global solution for a ini-

tial boundary value problem for a class of fractional logarithmic Schrödinger equation. The

analysis of concentration phenomenon of solutions for the nonlinear fractional Schrödinger

equation {
ε2s(−∆)su+ V (x)u = f(u), x ∈ RN ,

u ∈ Hs(RN)
(1.5)

has attracted the attention from many researchers. Dávila et al. in [16] proved that (1.5)

has multi-peak solutions via Liapunov-Schmidt reduction method when f(u) = up with

p ∈ (1, 2∗s − 1) and the potential V verifies the following conditions:

V ∈ C1,α(RN) ∩ L∞(RN) and inf
x∈RN

V (x) > 0.

By means of the Lyusternik-Shnirelmann and Morse theories, Figueiredo and Siciliano in [17]

proved a multiplicity result for (1.5) with f ∈ C1 and satisfying some additional hypotheses.

He and Zou ([19]) investigated the existence and the concentration of positive solutions for

a class of fractional Schrödinger equations involving the critical Sobolev exponent. Shen
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et al. in [23] investigated the existence of ground state solutions for a fractional Choquard

equation involving a general nonlinearity. With the penalization method and the Ljusternik-

Schnirelmann theory, Ambrosio in [6] got the multiplicity of positive solutions of (1.5) under

the some assumptions f and the potential V is a positive continuous potential with local

minimum. In [5] the author used penalization technique and Ljusternik-Schnirelmann theory

to study the multiplicity and concentration of positive solutions to (1.5) when the potential

V has a local minimum. It is quite natural to ask: what’s going to happen with logarithmic

nonlinear terms in (1.5) ?

When s = 1, (1.1) reduces to be{
− ε2∆u+ V (x)u = u log u2, x ∈ RN ,

u ∈ Hs(RN),
(1.6)

Alves and deMorais Filho in [1] established the existence and concentration of positive solu-

tions to problem (1.6) when V (x) is a continuous function verifying the following condition

(V1) V∞ := lim inf |x|→+∞ V (x) > infx∈RN V (x) = V0.

Later, Alves and Ji in [3] considered the multiple positive solutions to problem (1.6) under

the same assumption (V1). In rapid sequence, they in [2] got the existence and concentration

of positive solutions for (1.6) via penalization method when V (x) satisfies a local assumption:

(V2) V ∈ C(RN ,R) and infx∈RN V (x) = V0 > −1;

(V3) There exists an open and bounded set Λ ⊂ RN satisfying

−1 < V0 = inf
x∈Λ

V (x) < min
x∈∂Λ

V (x).

Motivated by studies found in the above mentioned papers, in the present paper we

intend to study the existence and concentration of positive solution for the problem (1.1),

where the potential V : RN → R is a continuous function verifying the condition (V1).

Here, we will consider only the case V∞ < ∞, since the case V∞ = ∞ is simpler, due to

compact embeddings in the Lebesgue spaces Lp(RN) for p ∈ [2, 2∗s). Moreover, using the

same reasoning of [27], we can assume without loss of generality that V0 > −1. To the best

of our knowledge, this is a new attempt to study concentration of positive solutions for a

fractional Schrödinger equation involving logarithmic nonlinearity.

By a change of variable, (1.1) is equivalent to the easier handle equation{
(−∆)su+ V (εx)u = u log u2, x ∈ RN ,

u ∈ Hs(RN).
(1.7)

The weak solutions to (1.7) can be found as critical points of the Euler-Lagrange functional

Iε defined by

Iε(u) =
1

2

∫
RN
|(−∆)

s
2u|2dx+

1

2

∫
RN

(V (εx) + 1)|u|2dx− 1

2

∫
RN
u2 log u2dx.
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Unfortunately, due to the singularity of the logarithm at the origin, the functional fails to

be finite as well of class C1 on Hs(RN). Due to this loss of smoothness, it is convenient to

work in a suitable Banach space endowed with a Luxemburg type norm in order to make

functional Iε well defined and C1 smooth. This space allows to control the singularity of the

logarithmic nonlinearity at infinity and at the origin. Aiming this approach, we consider the

reflexive the Banach space

Hs
ε (RN) =

{
u ∈ Hs(RN);

∫
RN
V (εx)|u|2dx < +∞

}
with the norm

‖u‖ε =
(∫

RN
(|(−∆)

s
2u|2 + (V (εx) + 1)|u|2)dx

) 1
2
,

then the energy functional Iε is well-defined and of class C1 on Hs
ε .

We say that u ∈ Hs
ε is a (weak) solution of problem (1.7) if u2 log u2 ∈ L1(RN) (i.e.,

Iε(u) <∞) and for any v ∈ Hs
ε ,∫

RN
((−∆)

s
2u(−∆)

s
2v + V (εx)uv)dx =

∫
RN
uv log u2dx. (1.8)

Now we state the main result of this paper:

Theorem 1.1. Suppose that the potential V satisfies (V1). Then there is an ε0 > 0 such

that problem (1.1) has a positive solution uε ∈ Hs
ε for all ε ∈ (0, ε0). Moreover, if uε denotes

one of these solutions and xε is a global maximum point of uε, then we have V (xε)→ V0 as

ε→ 0.

Remark 1.1. When the potential V satisfies (V2)− (V3), how about the existence and con-

centration of positive solutions for problem (1.1)? That is something we are going to consider

later.

Let us point out some comments on the approach we chose to prove Theorem 1.1

and the difficulties we faced. The existence of the logarithmic nonlinearity leads the en-

ergy functional associated is not continuous. There are functions u ∈ Hs(RN) such that∫
RN u log u2dx = +∞, then the energy functional Iε fails to be finite and C1 smooth on

Hs
ε (RN), some estimates for this problem are very delicate and different from those used in

the Schrödinger equation (1.5) . In the present paper, we shall modify the nonlinearity in

a special way and then to work with a modified problem. In order to prove that the solu-

tions obtained for the modified problem are solutions of the original problem we shall make

some estimates when ε > 0 is sufficient small. For our study of the logarithmic Schrödinger

equations, the equality of the type Iε(u)− 1
2
〈I ′ε(u), u〉 = 1

2

∫
RN u

2dx is very important.

The outline of the present paper is as follows. In Section 2, we give some notations and

recall some useful lemmas for the fractional Sobolev spaces. In Section 3, some preliminaries

of problem (1.1) are given. In section 4, we study the autonomous problem of (1.1). Section

5 is devoted to prove the existence of solution for (1.7) when ε is small enough. In the last

section, we provide a existence result for (1.1).
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2 Variational framework for problem (1.1)

In this section, we outline the variational framework for problem (1.1) and give some pre-

liminary Lemmas. Now we give some notations about Hs(RN) first.

For s ∈ (0, 1), we define the homogeneous fractional Sobolev space Ds,2(RN ,R) by

Ds,2(RN) =
{
u ∈ L2∗s(RN) : |ξ|sû(ξ) ∈ L2(RN)

}
,

which is the completion of C∞0 (RN) under the seminorm

[u]s =
(∫

RN
|(−∆)

s
2u|2dx

) 1
2

=
(∫

RN
|ξ|2s|û(ξ)|2dξ

) 1
2
.

It is well known that Hs(RN) is continuously embedded into Lp(RN) for 2 ≤ p ≤ 2∗s, and for

any s ∈ (0, 1), there exists a best constant Ss > 0 such that

Ss = inf
u∈Ds,2(RN )\{0}

∫
RN |(−∆)

s
2u|2dx( ∫

RN |u|2
∗
sdx
)2/2∗s

. (2.1)

The fractional Sobolev space Hs(RN) can be described by means of the Fouier transform as

follows

Hs(RN) =
{
u ∈ L2(RN) :

∫
RN

(|ξ|2s + 1)|û|2dξ <∞
}
,

which is endowed with the standard scalar product and norm

(u, v) =

∫
RN

(|ξ|2s + 1)û¯̂vdξ, ‖u‖2
Hs =

∫
RN

(|ξ|2s + 1)|û|2dξ.

In view of Plancherel’s theorem, we have

(u, v) =

∫
RN

((−∆)
s
2u(−∆)

s
2v + uv)dx, ‖u‖2

Hs =

∫
RN

(|(−∆)
s
2u|2 + |u|2)dx.

In order to overcome the lack of smoothness of Iε, we decompose it into a sum of a C1

functional plus a convex lower semicontinuous functional by following the approach explored

in [21] and [25]. For δ > 0, let us define the following functions:

F1(τ) =


0, τ = 0,

− 1

2
τ 2 log τ 2, 0 < |τ | < δ,

− 1

2
τ 2(log δ2 + 3) + 2δ|τ | − 1

2
δ2, |τ | ≥ δ,

and

F2(τ) =


0, 0 ≤ |τ | < δ,

1

2
τ 2
(

log
τ 2

δ2
− 3
)

+ 2δ|τ | − 1

2
δ2, |τ | ≥ δ.
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Therefore,

F2(τ)− F1(τ) =
1

2
τ 2 log τ 2, ∀τ ∈ R, (2.2)

and the functional Iε can be rewritten as

Iε(u) = Φε(u) + Ψ(u), u ∈ Hs
ε , (2.3)

where

Φε(u) =
1

2

∫
RN

[|(−∆)
s
2u|2 + (V (εx) + 1)|u|2]dx−

∫
RN
F2(u)dx, (2.4)

and

Ψ(u) =

∫
RN
F1(u)dx. (2.5)

Remark 2.1. From [21] and [25], we get

F1, F2 ∈ C1(R,R). (2.6)

If δ > 0 is small enough,

F1 is convex, F1 is even and F ′1(τ)τ ≥ 0, τ ∈ R, (2.7)

and

the function F1(τ) ≥ 0 and then Ψ(τ) ≥ 0, ∀τ ∈ Hs
ε . (2.8)

Remark 2.2. By a simple observation, it is easy to see that

F ′2(τ)

τ
is nondecreasing for τ > 0,

F ′2(τ)

τ
is strictly increasing for τ > δ,

lim
τ→+∞

F ′2(τ)

τ
= +∞,

(2.9)

and

F ′2(τ) ≥ 0 for τ > 0 and F ′2(τ) > 0 for τ > δ.

Hereafter, δ > 0 is fixed in such a way that the above properties hold. For each fixed p ∈
(2, 2∗s), there is C > 0 such that

|F ′2(τ)| ≤ C|τ |p−1, ∀ τ ∈ R. (2.10)

Using above Remarks, it follows that Φε ∈ C1(Hs
ε ,R), and Ψ is convex and lower semi-

continuous, but Ψ is not a C1 functional since we are working on RN . Due to this fact, we

recall a kind of critical point theorem (Theorem 2.4). Now we need some definitions that

may be firstly appeared in [26].

Definition 2.1. Suppose that E be a Banach space, E ′ be the dual space of E and 〈·, ·〉 be

the duality paring between E ′ and E. Let J(u) = Φ(u) + Ψ(u),∀u ∈ E, where Φ ∈ C1(E,R)

and Ψ is convex and lower semicontinuous.

6



(i) The sub-differential ∂J(u) of the functional J at a point u ∈ E is the following set

{w ∈ E ′ : 〈Φ′(u), v − u〉+ Ψ(v)−Ψ(u) ≥ 〈w, v − u〉, ∀v ∈ E}. (2.11)

(ii) A critical point of J is a point u ∈ E such that J(u) < +∞ and 0 ∈ ∂J(u), i.e.,

〈Φ′(u), v − u〉+ Ψ(v)−Ψ(u) ≥ 0, ∀v ∈ E. (2.12)

(iii) A Palais-Smale sequence at level c for J is a sequence {un} ⊂ E such that J(un)→ c

and there is a numerical sequence τn → 0+ with

〈Φ′(un), v − un〉+ Ψ(v)−Ψ(un) ≥ −τn‖v − un‖, ∀v ∈ E. (2.13)

(iv) The functional J satisfies the Palais-Smale condition at level c ((PS)c condition for

short) if all Palais-Smale sequences at level c has a convergent subsequence.

(v) The effective domain of J is the set D(J) = {u ∈ E : J(u) < +∞}.

In the sequel, we list some properties on Iε which canbe found in [21, 25, 27].

Lemma 2.1. Let Iε satisfy (2.3), then:

(i) If u ∈ D(Iε) is a critical point of Iε, then

〈I ′ε(u), v − u〉 = 〈Φ′ε(u), v − u〉+ Ψ(v)−Ψ(u) ≥ 0, ∀v ∈ Hs
ε , (2.14)

that is∫
RN

[(−∆)
s
2u(−∆)

s
2 (v − u) + (V (εx) + 1)u(v − u)]dx−

∫
RN
F1(v)dx−

∫
RN
F1(u)dx

≥
∫
RN
F ′2(u)(v − u)dx, ∀ v ∈ Hs

ε .

(ii) ([25, 27]) For each u ∈ D(Iε) such that ‖Iε(u)‖ < +∞, we have ∂Iε(u) 6= ∅, that is,

there is w ∈ (Hs
ε )
′, which is denoted by w = I ′ε(u), such that

〈Φ′ε(u), v − u〉+

∫
RN
F1(v)dx−

∫
RN
F1(u)dx ≥ 〈w, v − u〉,∀ v ∈ Hs

ε .

(iii) ([21] Lemma 2.4 (i)) If a function u ∈ D(Iε) is a critical point of Iε, then u is a solution

of (1.7).

(iv) ([21] Lemma 2.4 (ii)) If (un) ⊂ Hs
ε is a Palais-Smale sequence, then

〈I ′ε(un), z〉 = on(1)‖z‖ε, ∀ z ∈ Hs
ε (RN). (2.15)

(v) ([25] Lemma 2.2 ) If Ω is a bounded domain with regular boundary then Ψ (and hence

Iε) is of class C1 in Hs(Ω).
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We are going to give a very useful conclusion which will be used later. Let φ ∈ C∞0 (RN)

be such that 0 ≤ φ(x) ≤ 1, x ∈ RN ;

φ(x) =

{
1, for |x| ≤ 1,

0, for |x| ≥ 2.

For a given R > 0 and u ∈ D(Iε), let us define φR(x) = φ( x
R

) and uR(x) = φR(x)u(x). Then

we have the following preliminary result.

Lemma 2.2. For any ε > 0, uR → u in Hs
ε as R→ +∞.

Proof. It is readily seen that

[uR − u]2s =

∫∫
RN×RN

[(u(x)− u(y))(φR(x)− 1) + u(y)(φR(x)− φR(y))]2

|x− y|N+2s
dxdy

≤ 2

∫∫
RN×RN

|u(x)− u(y)|2(φR(x)− 1)2

|x− y|N+2s
dxdy

+ 2

∫∫
RN×RN

|u(y)|2(φR(x)− φR(y))2

|x− y|N+2s
dxdy.

(2.16)

Note that u ∈ Hs
ε , |φR(y)− 1| ≤ 2 and φR(y)− 1→ 0 a.e. as R→∞. Then, the Dominated

Convergence Theorem yields∫∫
RN×RN

|u(x)− u(y)|2(φR(x)− 1)2

|x− y|N+2s
dxdy → 0. (2.17)

In the following, we will prove that∫∫
RN×RN

|u(y)|2(φR(x)− φR(y))2

|x− y|N+2s
dxdy → 0. (2.18)

We present the proof process here for completeness even if the proof is similar to Lemma 2.1

in [4].

Note that

R2N = ((RN −B2R)× (RN −B2R)) ∪ (RN ×B2R) ∪ (B2R × (RN −B2R))

=: X1
R ∪X2

R ∪X3
R.

Then ∫∫
RN×RN

|u(y)|2 |φR(x)− φR(y)|2

|x− y|N+2s
dxdy

=

∫∫
X1
R

|u(y)|2 |φR(x)− φR(y)|2

|x− y|N+2s
dxdy +

∫∫
X2
R

|u(y)|2 |φR(x)− φR(y)|2

|x− y|N+2s
dxdy

+

∫∫
X3
R

|u(y)|2 |φR(x)− φR(y)|2

|x− y|N+2s
dxdy.

(2.19)

In what follows, we estimate each integral in (2.19).
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(i) For (x, y) ∈ X1
R := (RN −B2R)× (RN −B2R). Since φR(x) = φR(y) = 0 in RN \B2R,

we have ∫∫
X1
R

|u(y)|2 |φR(x)− φR(y)|2

|x− y|N+2s
dxdy = 0. (2.20)

(ii) For (x, y) ∈ X2
R := RN ×B2R,∫∫
X2
R

|u(y)|2 |φR(x)− φR(y)|2

|x− y|N+2s
dxdy

=

∫
B2R

|u(y)|2dy
∫
{x∈RN :|x−y|≤2R}

|φR(x)− φR(y)|2

|x− y|N+2s
dx

+

∫
B2R

|u(y)|2dy
∫
{x∈RN :|x−y|≥2R}

|φR(x)− φR(y)|2

|x− y|N+2s
dx

:= A2R + Ac2R.

By the definition of φ, using 0 ≤ φ ≤ 1, there is ξ = y
R

+ τ x−y
R
, τ ∈ (0, 1) such that

A2R =

∫
B2R

|u(y)|2dy
∫
{x∈RN :|x−y|≤2R}

|φR(x)− φR(y)|2

|x− y|N+2s
dx

=

∫
B2R

|u(y)|2dy
∫
{x∈RN :|x−y|≤2R}

|∇φ(ξ)|2|x−y
R
|2

|x− y|N+2s
dx

= R−2|∇φ|2L∞(RN )

∫
B2R

|u(y)|2dy

∫
{x∈RN :|x−y|≤2R}

1

|x− y|N+2s−2
dx

≤ CR−2

∫
B2R

|u(y)|2dy

∫ 2R

0

1

rN+2s−2
rN−1dr

≤ CR−2s

∫
B2R

|u(y)|2dy.

(2.21)

Since 0 ≤ φ(x) ≤ 1, we get |φR(x)− φR(y)|2 < 4, then

Ac2R =

∫
B2R

|u(y)|2dy
∫
{x∈RN :|x−y|≥2R}

|φR(x)− φR(y)|2

|x− y|N+2s
dx

≤ 4

∫
B2R

|u(y)|2dy

∫
{x∈RN :|x−y|>2R}

1

|x− y|N+2s
dx

≤ C

∫
B2R

|u(y)|2dy

∫ +∞

2R

1

rN+2s
rN−1dr

≤ CR−2s

∫
B2R

|u(y)|2dy.

From above two inequalities, we have∫∫
X2
R

|u(y)|2|φR(x)− φR(y)|2

|x− y|N+2s
dxdy ≤ CR−2s

∫
B2R

u2(y)dy ≤ CR−2s (2.22)

since u is bounded in Hs
ε .
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(iii) For (x, y) ∈ B2R × (RN −B2R),∫∫
X3
R

|u(y)|2 |φR(x)− φR(y)|2

|x− y|N+2s
dxdy

=

∫
RN\B2R

|u(y)|2dy

∫
{x∈B2R:|x−y|≤R}

|φR(x)− φR(y)|2

|x− y|N+2s
dx

+

∫
RN\B2R

|u(y)|2dy

∫
{x∈B2R:|x−y|>R}

|φR(x)− φR(y)|2

|x− y|N+2s
dx

=: AR,ε +BR,ε.

(2.23)

If |x− y| ≤ R, then |y| ≤ |x− y|+ |x| ≤ 3R. Hence, similar with (2.21), we get

AR,ε =

∫
RN\B2R

|u(y)|2dy

∫
{x∈B2R:|x−y|≤R}

|φR(x)− φR(y)|2

|x− y|N+2s
dx

≤ C

∫
B3R

|u(y)|2dy

∫
{x∈RN :|x−y|≤R}

1

|x− y|N+2s−2
dx

≤ CR−2

∫
B3R

|u(y)|2dy

∫ R

0

1

rN+2s−2
rN−1dr

≤ CR−2s

∫
B3R

|u(y)|2dy.

(2.24)

On the other hand, if |x−y| ≥ R, we know that for any K > 4, it gets B2R×(RN−B2R) ⊂
(B2R ×BKR) ∪ (B2R × (RN −BKR), thus we get

BR,ε =

∫
BKR

|un(y)|2dy

∫
{x∈B2R:|x−y|≥R}

|φR(x)− φR(y)|2

|x− y|N+2s
dx

+

∫
RN−BKR

|un(y)|2dy

∫
{x∈B2R:|x−y|≥R}

|φR(x)− φR(y)|2

|x− y|N+2s
dx

=: B1
R,ε +B2

R,ε.

(2.25)

It follows from |φR(x)− φR(y)|2 < 4 that

B1
R,ε =

∫
BKR

|un(y)|2dy

∫
{x∈B2R:|x−y|≥R}

|φR(x)− φR(y)|2

|x− y|N+2s
dx

≤ 4

∫
BKR

|u(y)|2dy

∫
{x∈B2R:|x−y|≥R}

1

|x− y|N+2s
dx

≤ C

∫
BKR

|u(y)|2dy

∫ +∞

R

1

rN+2s
rN−1dr

≤ CR−2s

∫
BKR

|u(y)|2dy.

(2.26)

For (x, y) ∈ B2R×(RN−BKR), we have |x−y| > |y|−|x| = |y|
2

+ |y|
2
−|x| ≥ |y|

2
+KR

2
−2R >

10



|y|
2

since K > 4. Then

B2
R,ε =

∫
RN−BKR

dy

∫
{x∈B2R:|x−y|≥R}

|u(y)|2 |φR(x)− φR(y)|2

|x− y|N+2s
dx

≤ C

∫
RN−BKR

|u(y)|2dy

∫
{x∈B2R:|x−y|≥R}

1

|x− y|N+2s
dx

≤ CRN

∫
RN−BKR

|u(y)|2

|y|N+2s
dy

≤ CRN
(∫

RN−BKR
u2∗s(y)dy

) 2
2∗s
(∫

RN−BKR
|y|−(N+2s)

2∗s
2∗s−2 dy

) 2
2∗s

≤ CRN
(∫

RN−BKR
u2∗s(y)dy

) 2
2∗s
(∫ +∞

KR

|r|−(N+2s)
2∗s

2∗s−2 rN−1dr
) 2

2∗s

≤ CK−N
(∫

RN−BKR
u2∗s(y)dy

) 2
2∗s .

(2.27)

Hence from (2.23) to (2.27), it follows that∫∫
X3
R

|u(y)|2 |φR(x)− φR(y)|2

|x− y|N+2s
dxdy ≤ CR−2s + CK−N (2.28)

since u is bounded in Hs
ε . By combining (2.20), (2.22) and (2.28), we get∫∫

RN×RN
|u(y)|2 |φR(x)− φR(y)|2

|x− y|N+2s
dxdy ≤ CR−2s +K−N (2.29)

for some C > 0 independent of R and ε. Then, we can infer that

lim sup
R→∞

∫∫
RN×RN

|un(y)|2 |φR(x)− φR(y)|2

|x− y|N+2s
dxdy

= lim sup
K→∞

lim sup
R→∞

∫∫
RN×RN

|un(y)|2 |φR(x)− φR(y)|2

|x− y|N+2s
dxdy = 0.

Hence, (2.18) is proved.

Note that, it follows from the Dominated Convergence Theorem that∫
RN
V (εx+ 1)|uR(x)− u(x)|2dx =

∫
RN
V (εx+ 1)(φR(x)− 1)2u2(x)dx→ 0 as R→∞.

Thus ‖uR − u‖ε → 0 as R→∞. Thus the proof of the theorem is completed.

As a consequence of the above properties, we have the following result:

Lemma 2.3. If u ∈ D(I) and ‖I ′(u)‖ < +∞, then F ′1(u)u ∈ L1(RN).

Proof. Let ξ ∈ C∞0 (RN) be such that 0 ≤ ξ(x) ≤ 1, x ∈ RN ; ξ(x) = 1 for |x| ≤ 1, and

ξ(x) = 0 for |x| ≥ 2. For a given R > 0 and u ∈ D(I), let us define ξR(x) = ξ( x
R

) and

uR(x) = ξR(x)u(x).

11



By (ii) in Lemma 2.1 ,

〈Φ′ε(u), uR〉+

∫
RN
F ′1(u)uRdx = 〈w, uR〉 (2.30)

for some w ∈ Hs
ε . Hence, since uR → u in Hs

ε as R → +∞ from Lemma 2.2, by (2.30) and

Lemma 2.1 (v), we get that
∫
RN F

′
1(u)uRdx ≤ C for R > 0 large enough.

Combing the convergence uR(x) → u(x) a.e. in RN as R → +∞ and (2.7), it follows

from Fatou’s Lemma that

0 ≤
∫
RN
F ′1(u)udx ≤ lim inf

R→+∞

∫
RN
F ′1(u)uRdx ≤ C.

This inequality implies that F ′1(u)u ∈ L1(RN).

An immediate consequence of the Lemma 2.3 is the following

Corollary 2.1. For each u ∈ D(Iε) \ {0} with ‖Iε(u)‖ < +∞, we have

〈I ′ε(u), u〉 =

∫
RN

(|(−∆)
s
2u|2 + V (εx)|u|2)dx−

∫
RN
u2 log u2dx,

and

Iε(u)− 1

2
〈I ′ε(u), u〉 =

1

2

∫
RN
u2dx. (2.31)

Remark 2.3. (2.31) is very important for our study, we will use fractional logarithmic

Sobolev inequality to verify the boundedness of (PS) sequence(see Lemma 4.2).

Corollary 2.2. If {un} ⊂ Hs
ε is a (PS) sequence for Iε, then 〈I ′ε(un), un〉 = on(1)‖un‖ε. If

{un} is bounded, we have

Iε(un) = Iε(un)− 1

2
〈I ′ε(un), un〉+ on(1)‖un‖ε =

1

2

∫
RN
u2
ndx+ on(1)‖un‖ε.

Corollary 2.3. If u ∈ Hs
ε is a critical point of Iε and v ∈ Hs

ε verifies F ′1(u)v ∈ L1(RN),

then 〈I ′ε(u), v〉 = 0.

The following lemma is a variant of the Brézis-Lieb lemma from [10], the proof follows

along the same lines as Lemma 3.1 in [24]. We omit the details here.

Lemma 2.4. Let {un} be a bounded sequence in Hs(RN) such that un → u a.e. in RN .

Then u ∈ Hs(RN) and

lim
n→∞

∫
RN

(
|un|2 log |un|2 − |un − u|2 log |un − u|2

)
dx =

∫
RN
|u|2 log |u|2dx.

In order to get the boundedness of (PS) sequence, we recall the fractional logarithmic

Sobolev inequality. For a proof we refer to [11].

12



Lemma 2.5. Let f be any function in Hs(RN) and α > 0. Then∫
RN
|f(x)|2 log

( |f(x)|2

‖f‖2
L2

)
dx+

(
N +

N

s
logα + log

sΓ(N
2

)

Γ(N
2s

)

)
‖f‖2

L2 ≤
α2

πs
‖(−∆)

s
2f‖2

L2 . (2.32)

At last of this section, we give a mountain pass theorem without (PS) condition which

is a consequence of the Mountain Pass Theorem with (PS) condition due to Szulkin [26].

Theorem 2.4. (Mountain Pass Theorem without (PS) condition) Let E be a real Banach

space and J : E → (−∞,+∞] be a functional such that:

(i) J(u) = Ψ0(u)+Ψ1(u), u ∈ E, with Ψ0 ∈ C1(E,R) and Ψ1 : E → (−∞,+∞] is convex,

Ψ1 6≡ +∞ and is lower semicontinuous;

(ii) there exist constant ρ, α > 0 such that J(0) = 0 and J |∂Bρ ≥ α;

(iii) there exists some e ∈ Bρ(0) such that J(e) ≤ 0.

If

c := inf
γ∈Γ

sup
t∈[0,1]

J(γ(t)), Γ = {γ ∈ C([0, 1], E); γ(0) = 0, J(γ(1)) < 0}, (2.33)

then, for a given ε > 0 there is uε ∈ E such that, for ∀v ∈ E,

〈Ψ′0(uε), v − uε〉+ Ψ1(v)−Ψ1(uε) ≥ −3ε|‖v − uε‖, (2.34)

and

J(uε) ∈ [c− ε, c+ ε]. (2.35)

From Theorem 2.4, let ε = 1/n, we can get following corollary.

Corollary 2.5. Under the conditions of Theorem 2.4 , there is a (PS)c sequence {un} ⊂ E

for J , that is, J(un)→ c and

〈Ψ′0(un), v − un〉+ Ψ1(v)−Ψ1(un) ≥ −τn‖v − un‖, ∀ v ∈ E

with τn → 0+.

3 The limiting problem

In this section, we consider the limiting problem associated with problem (1.7). Here, without

loss of generality, we assume that infx∈RN V (x) = V0 > −1.

Consider the problem {
(−∆)su+ V0u = u log u2, in RN ,

u ∈ Hs(RN).
(3.1)
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The corresponding energy functional associated to (3.1) is denoted by I0 : E0 := E0(RN)→
(−∞,+∞] and defined as

I0(u) =
1

2

∫
RN
|(−∆)

s
2u|2dx+

1

2

∫
RN

(V0 + 1)|u|2dx− 1

2

∫
RN
u2 log u2dx,

where the Banach space

E0 =
{
u ∈ Hs(RN) :

∫
RN
V0|u|2dx < +∞

}
,

with the norm

‖u‖0 =
(∫

RN
(|(−∆)

s
2u|2 + (V0 + 1)|u|2)dx

) 1
2
,

In the sequel, we are going to find a solution for (3.1). The point is to find a solution

which is the limit of a (PS) sequence. Let us start with the following lemmas about Mountain

Pass theorem .

Lemma 3.1. The functional I0, defined with Φ0 and Ψ in (2.4) and (2.5) respectively,

satisfies the following Mountain Pass geometry:

(i) there exist α, ρ > 0 such that I0(u) ≥ α for any u ∈ Hs
0(RN) with ‖u‖0 = ρ;

(ii) there exists e ∈ Hs
0(RN) with ‖e‖0 > ρ such that I0(e) < 0.

Proof. (i): Since F1 ≥ 0, one has

I0(u) =
1

2

∫
RN

(|(−∆)
s
2u|2 + (V0 + 1)|u|2)dx+

∫
RN
F1(u)dx−

∫
RN
F2(u)dx,

≥ 1

2
‖u‖2

0 −
∫
RN
F2(u)dx.

By (2.10), for some α > 0 and ‖u‖0 = ρ > 0 small enough, we get

I0(u) ≥ 1

2
‖u‖2

0 − C‖u‖
p
0 ≥ α > 0 since p ∈ (2, 2∗s).

(ii): Let us fix u ∈ D(I0) \ {0} and t > 0. Using (2.2), we get

I0(tu) =
t2

2
‖u‖2

0 −
1

2

∫
RN
t2u2 log(|tu|2)dx

= t2
(1

2
‖u‖2

0 −
1

2

∫
RN

[u2 log(t2) + u2 log(u2)]dx
)

= t2
[
I0(u)− log t

∫
RN
u2dx

]
→ −∞

as t→ +∞. So let tu = e, we can get the conclusion.
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From Lemma 3.1, we can define following minimax level:

c̄0 = inf
γ0∈Γ0

sup
t∈[0,1]

I0(γ0(t)), where Γ0 = {γ0 ∈ C([0, 1], E0) : γ0(0) = 0, I0(γ0(1)) < 0}.

Using Theorem 2.4, there exists a Palais-Smale sequence {un} at the level cε, that is,

Iε(un)→ cε and∫
RN

((−∆)
s
2un(−∆)

s
2 (v − un) + (V (εx) + 1) un(v − un))dx−

∫
RN
F ′2(un)(v − un)

+

∫
RN
F1(v)dx−

∫
RN
F1(un)dx ≥ −τn‖v − un‖ε, ∀v ∈ Hs

ε .

Next lemma we will show the boundedness of (PS) sequence of I0 in which we will used

the fractional logarithmic Sobolev inequality (See Lemma 2.5).

Lemma 3.2. All (PS)c̄0-sequences are bounded in Hs
0 .

Proof. Let {un} ⊂ Hs
0 be a (PS)c̄0 sequence. By Corollary 2.2,∫

RN
|un|2dx = 2I0(un)− 〈I ′0(un), un〉 = 2c̄0 + on(1) + on(1)‖un‖0 ≤ C + on(1)‖un‖0

for some C > 0. Consequently

‖un‖2
2 ≤ C + on(1)‖un‖0. (3.2)

Using Lemma 2.5, we have that

‖un‖2
0 = 2I0(un) +

∫
RN
u2
n log(u2

n)dx

≤ C + ‖un‖2
2 log ‖un‖2

2−
(
N +

N

s
logα + log

sΓ(N
2

)

Γ(N
2s

)

)
‖un‖2

2 +
α2

πs
‖(−∆)

s
2un‖2

L2 .

(3.3)

Thus, for α > 0 and δ > 0 small and by (3.2), we have

‖un‖2
0 ≤ C + on(1)‖un‖1+δ

0 + on(1)‖un‖0,

and so {un} is bounded in Hs
0 .

The following lemma is important for the proof of Lemma 3.5.

Lemma 3.3. Assume that hypothesis (V1) is satisfied. For each u ∈ E0, let gu : R+ → R
be given by gu(t) := I0(tu). Then there exists a unique tu > 0 such that g′u(t) > 0 in (0, tu)

and g′u(t) < 0 in (tu,∞), i.e. the function gu(t) achieves a positive maximum at the unique

critical point tu > 0, characterized as

I0(u) =
2 log tu + 1

2

∫
RN
|u|2dx.
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Proof. Since

gu(t) : = I0(tu) =
t2

2
‖u‖2

0 +

∫
RN
F1(tu)dx−

∫
RN
F2(tu)dx

=
t2

2
‖u‖2

0 −
1

2

∫
RN
t2u2 log(|tu|2)dx

= t2
[
I0(u)− log t

∫
RN
u2dx

]
,

we have gu(0) = 0, gu(t) > 0 for t > 0 small and gu(t) < 0 for t > 0 large. Therefore,

maxt≥0 gu(t) is achieved at a global maximum point t = tu > 0 verifying g′u(tu) = 0 and

tuu ∈ N0.

Now we claim that tu > 0 is unique. Indeed, suppose that there exist t2 > t1 > 0 such

that g′u(t1) = g′u(t2) = 0. Then, for i = 1, 2,

ti

∫
RN
|(−∆)

s
2u|2dx+ ti

∫
RN

(V0 + 1)|u|2dxdx−
∫
RN
F ′2(tiu)udx+

∫
RN
F ′1(tiu)udx = 0.

Hence,∫
RN
|(−∆)

s
2u|2dx+

∫
RN

(V0 + 1)|u|2dx−
∫
RN

F ′2(tiu)u

ti
dx+

∫
RN

F ′1(tiu)u

ti
dx = 0,

which implies that∫
RN

(F ′2(t2u)u

t2
− F ′2(t1u)u

t1

)
dx =

∫
RN

(F ′1(t2u)u

t2
− F ′1(t1u)u

t1

)
dx.

From (2.9), we get the left side of above equality is positive. For the right side of above

equality, we have ∫
RN

(F ′1(t2u)u

t2
− F ′1(t1u)u

t1

)
dx

=

∫
{x:|u|< δ

t2
}

(F ′1(t2u)u

t2
− F ′1(t1u)u

t1

)
dx

+

∫
{x: δ

t2
<|u|< δ

t1
}

(F ′1(t2u)u

t2
− F ′1(t1u)u

t1

)
dx

+

∫
{x:|u|> δ

t1
}

(F ′1(t2u)u

t2
− F ′1(t1u)u

t1

)
dx

=

∫
{x:|u|< δ

t2
}
u2 log(

t1
t2

)2dx+

∫
{x:|u|> δ

t1
}

( 1

t2
− 1

t1

)
2δudx

+

∫
{x: δ

t2
<|u|< δ

t1
}

(
u2 log

(t1u)2

δ2
+ 2u(

δ

t2
− u)

)
dx.

A direct computation shows that the right side of the last last equality is negative, which is

a contradiction. Hence tu > 0 is unique.
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Remark 3.1. From above Lemma, any u ∈ D(I0) \ {0} and every ray {tu; t > 0} intersects

the set

N0 =
{
u ∈ D(I0) \ {0}; I0(u) =

1

2

∫
RN
|u|2dx

}
at exactly the unique point t̃u. So in this way, we get t̃ = 1 if and only if u ∈ N0.

The following vanishing Lemma is a version of the concentration-compactness principle

proved by P. L. Lions ([28]).

Lemma 3.4. Let {un} be a bounded sequence in E0 \ {0} and satisfies

lim
n→∞

sup
y∈RN

∫
BR(y)

|un(x)|2dx = 0,

where R > 0. Then un → 0 in Lt(RN) for every 2 < t < 2∗s.

Define

c0 := inf
u∈N0

I0(u). (3.4)

Replacing V0 by V∞, we can define the energy level c∞ = infN∞ I∞ corresponding to problem

(3.1). Using the definition of c0 and c∞, it follows that c0 < c∞.

The next lemma shows that the mountain pass level c̄0 in (4.1) is the ground state energy

for the functional I0, it also establishes an important relation between c̄0 and c0.

Lemma 3.5. (a) c̄0 > 0;

(b) c̄0 = c0 := infu∈N0 I0(u).

Proof. (a): Similar to the proof in Lemma 4.1 (i).

(b): Let u ∈ N0 and let us consider I0(t∗u) < 0 for some t∗ > 0. If γ0 : [0, 1]→ E0 is the

continuous path γ0(t) = t · t∗u, then

c̄0 = inf
γ0∈Γ0

sup
t∈[0,1]

I0(γ0(t)) ≤ sup
t∈[0,1]

I0(γ0(t)) ≤ sup
t≥0

I0(tu) = I0(u) (3.5)

and consequently c̄0 ≤ infu∈N0 I0(u).

To prove the reverse inequality, by Lemma 3.1, there exists a (PS)c0 sequence {un} ⊂ E0

for I0. By Lemma 3.2, the sequence {un} is bounded in E0. Next we will prove that∫
RN
|un|2dx 6→ 0. (3.6)

Indeed, on the contrary, by Lemma 3.4, we would have that un → 0 in Lp(RN),∀p ∈ (2, 2∗s).

Then, by (2.10) we would get ∫
RN
F ′2(un)undx→ 0. (3.7)
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On the other hand, by the second part of (2.7) and (3.7) we obtain

‖un‖2
0 +

∫
RN
F ′1(un)undx =〈I ′0(un), un〉+

∫
RN
F ′2(un)undx

=on(1)‖un‖0 +

∫
RN
F ′2(un)undx = on(1),

(3.8)

then it follows from
∫
RN F

′
1(un)undx ≥ 0 that un → 0 in E0 and F ′1(un)un → 0 in L1(RN).

Since F1 is convex, even and F1(t) ≥ F1(0) = 0 for all t ∈ R, we derive that 0 ≤ F1(t) ≤ F ′1(t)t

for all t ∈ R. Hence, F1(un)→ 0 in L1(RN) and so I0(un)→ 0, but this contradicts the fact

that c̄0 > 0 (part (a) above) and (3.6) is proved.

Hence there are constants a and b such that

0 < a ≤
∫
RN
u2
ndx ≤ b, ∀n ∈ N. (3.9)

For each un, let tn > 0 be such that tnun ∈ N0. Recalling that

I0(tnun) =
1

2

∫
RN
|tnun|2dx, (3.10)

or equivalently∫
RN
|(−∆)

s
2un|2dx+

∫
RN

(V0 + 1)|un|2dx−
∫
RN
u2
n log |tnun|2dx =

∫
RN
|un|2dx,

and

〈I ′0(un), un〉 =

∫
RN
|(−∆)

s
2un|2dx+

∫
RN
V0|un|2dx−

∫
RN
u2
n log |un|2dx = on(1),

we have that

on(1) = 2 log tn

∫
RN
u2
ndx.

This equality combines with (3.9) to result tn → 1. On the other hand, by (3.10) and

Corollary 2.2,

inf
u∈N0

I0(u) ≤ I0(tnun) =
t2n
2

∫
RN
|un|2dx = t2n(I0(un) + on(1)‖un‖0) = t2nI0(un) + on(1).

Passing to the limit in this inequality, the reverse inequality infu∈N0 I0(u) ≤ c̄0 holds.

The next result and Remark imply that the weak limit of a (PS)c0 sequence is non-trivial.

Lemma 3.6. Let {un} ⊂ E0 be a (PS)c0-sequence for I0. Then, only one of the alternatives

below holds:

(i) un → 0 in E0;

(ii) there exists a sequence {yn} ⊂ RN and constants R, β > 0 such that

lim inf
n→∞

∫
BR(yn)

|un|2dx ≥ β > 0.
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Proof. Assume that (ii) does not occur, it means that for all R > 0,

lim sup
n→∞

∫
BR(yn)

|un|2dx = 0.

Since {un} ⊂ E0 be a (PS)c0-sequence for I0, arguing as the same in the proof of Lemma

4.2 we can see that {un} is bounded in E0. Then we can use Lemma 3.4 to get that

un → 0 in Lt(RN), ∀ 2 < t < 2∗s. (3.11)

It follows from 〈I ′0(un), un〉 = on(1) that

on(1) = 〈I ′0(un), un〉 =

∫
RN
|(−∆)

s
2un|2dx+

∫
RN
V0|un|2dx−

∫
RN
u2
n log u2

ndx

≥
∫
RN
|(−∆)

s
2un|2dx+

∫
RN
V0|un|2dx− C

∫
{u2n≥ 1

e
}
upndx,

then from (3.11), we get un → 0 in E0.

Remark 3.2. By the above Lemma, if u is the weak limit of a (PS)c0-sequence {un} of the

functional I0, then we may assume that u 6= 0. Otherwise we have that un ⇀ 0 and un 6→ 0,

then by Lemma 3.4, there exists {yn} ⊂ RN such that

lim inf
n→∞

∫
BR(yn)

|un(x)|2dx ≥ β > 0.

Set vn(x) := un(x + yn), obviously, {vn} is also a (PS)c0-sequence of I0, and there exists

v ∈ E0 such that vn ⇀ v in Hs
0 with v 6→ 0.

Now, we prove the following result for the autonomous problem (3.1).

Theorem 3.1. Problem (3.1) has a positive ground state solution.

Proof. Similar to the proof of Lemma 4.1 and Lemma 4.2, we can get that I0 possesses a

bounded (PS)c0-sequence {un} ⊂ E0 such that, as n→∞,

I0(un)→ c0 and I ′0(un)→ 0,

then we may assume that un ⇀ u in E0.

Moreover, since 〈I ′0(un)ϕ〉 = on(1), for all ϕ ∈ C∞0 (RN ,R), by Foutou’s lemma we obtain

that
0 = lim

n→∞
〈I ′0(un), ϕ〉

= lim
n→∞

[ ∫
RN

(−∆)
s
2un(−∆)

s
2ϕ+ V0unϕdx−

∫
RN
unϕ log u2

ndx
]

≥
∫
RN

(−∆)
s
2u(−∆)

s
2ϕ+ V0uϕdx−

∫
RN
uϕ log u2dx

=〈I ′0(u), ϕ〉.

(3.12)
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In particular, if 〈I ′0(u), u〉 < 0, for t ≥ 0, let

ξ(t) := 〈I ′0(tu), tu〉.

Then ξ(1) = 〈I ′0(u), u〉 < 0. Since∫
RN
u2
n log u2

ndx ≤ C

∫
{u2n≥ 1

e
}
upndx, p > 2,

we have
ξ(t) = 〈I ′0(tu), tu〉

= t2
∫
RN
|(−∆)

s
2u|2 + V0|u|2dx

)
−
∫
RN

(tu)2 log(tu)2dx

≥ t2
∫
RN
|(−∆)

s
2u|2 + V0|u|2dx

)
− Ctp

∫
RN
updx

> 0

for t > 0 small. Since ξ(t) is continuous, there exists a t0 ∈ (0, 1) such that ξ(t0) =

〈I ′0(t0u), t0u〉 = 0, that is t0u ∈ N0, and then

c0 ≤ I0(t0u) = I0(t0u)− 1

2
〈I ′0(t0u), t0u〉

=
1

2

∫
RN

(t0u)2dx

<
1

2

∫
RN
u2dx

≤ lim inf
n→∞

∫
RN
u2
ndx

= lim inf
n→∞

[I0(un)− 1

2
〈I ′0(un), un〉]

= c0,

(3.13)

which is a contradiction, i.e., 〈I ′0(u), u〉 = 0 holds true. Thus, u ∈ N0. Using the fact that

〈I ′0(u), u−〉 = 0 we can see that u ≥ 0 in RN . Moreover u > 0 by the maximum principle.

Next we will prove that I0(u) = c0. In fact, by u ∈ N0 and Fatou’s Lemma we have

c0 ≤ I0(u) = I0(u)− 1

2
〈I ′0(u), u〉

=
1

2

∫
RN
u2dx

≤ 1

2
lim inf
n→∞

∫
RN
u2
ndx

= lim inf
n→∞

[I0(un)− 1

2
〈I ′0(un), un〉]

= c0,

(3.14)

Combing with Lemma 3.5, we get that problem (3.1) has a positive ground state solution.
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4 Existence of a solution for (1.7)

The main goal of this section is proving the existence of solution for (1.7) when ε is small

enough. Similar to Lemma 3.1 and Lemma 3.2, we get following lemmas:

Lemma 4.1. For all ε > 0, the functional Iε, defined with Φε and Ψ in (2.4) and (2.5),

respectively, satisfies the following Mountain Pass geometry.

(i) there exist α, ρ > 0 such that Iε(u) ≥ α for any u ∈ Hs
ε (RN) with ‖u‖ε = ρ;

(ii) there exists e ∈ Hs
ε (RN) with ‖e‖ε > ρ such that Iε(e) < 0.

Then we can define the minimax level

cε := inf
γ∈Γε

sup
t∈[0,1]

Iε(γ(t)), Γε = {γ ∈ C([0, 1], Hs
ε ); γ(0) = 0, Iε(γ(1)) < 0}. (4.1)

Using Theorem 2.4, there exists a Palais-Smale sequence {un} at the level cε, that is,

Iε(un)→ cε and∫
RN

((−∆)
s
2un(−∆)

s
2 (v − un) + (V (εx) + 1) un(v − un))dx−

∫
RN
F ′2(un)(v − un)

+

∫
RN
F1(v)dx−

∫
RN
F1(un)dx ≥ −τn‖v − un‖ε, ∀v ∈ Hs

ε .

Lemma 4.2. All (PS)cε-sequences are bounded in Hs
ε .

Lemma 4.1 and Lemma 4.2 guarantee the existence of a (PS)cε-sequence {un} for the

functional Iε. So we are going to prove that this sequence converges to a weak solution which

is a critical point of Iε and therefore is a solution of (1.7). In this paper our approach gives

additional informations on the convergences of (PS)-sequences, which are used in order to

get concentration as ε→ 0.

Proposition 4.1. For a fixed ε > 0, let {un} ⊂ Hs
ε be a (PS)cε-sequences for the functional

Iε. Then, for sufficiently small ε > 0, there exists uε ∈ Hs
ε such that un ⇀ uε in Hs

ε and also

un → uε in Lp(RN), ∀p ∈ [2, 2∗s). (4.2)

Proof. Let ε > 0 be fixed for a while. From the proof of Lemma 4.1 and Lemma 4.2, we

can get that Iε possesses a bounded (PS)cε-sequence {un} ⊂ Hs
ε such that, as n→∞,

Iε(un)→ cε and I ′ε(un)→ 0,

then there exists uε ∈ Hs
ε such that

un ⇀ uε weakly in Hs
ε , (4.3)

un → uε strongly in Ltloc(RN), (4.4)

un → uε a.e. in RN . (4.5)

We may assume that un ⇀ uε for some uε ∈ Hs
ε . We are to prove (4.2).

21



Firstly, let us prove the following claim which will be useful soon.

Claim 5.1. F ′1(uε)uε ∈ L1(RN) and 〈I ′ε(uε), uε〉 ≤ 0.

Let φ ∈ C∞0 (RN), 0 ≤ φ ≤ 1, φ ≡ 1 in B1(0) and φ ≡ 0 in Bc
2(0), then define φR(·) :=

φ(·/R), it results by (2.15) with z = φRun that∫
RN

((−∆)
s
2un(−∆)

s
2 (φRun) + (V (εx) + 1)φR|un|2)dx+

∫
RN
F ′1(un)unφRdx

=

∫
RN
F ′2(un)unφRdx+ on(1).

Fixing R and passing to the limit n→∞ in the above equality, then we get∫
RN

((−∆)
s
2uε(−∆)

s
2 (φRuε) + (V (εx) + 1)φR|uε|2)dx+

∫
RN
F ′1(uε)uεφRdx

=

∫
RN
F ′2(uε)uεφRdx+ on(1).

(4.6)

Observe that ∫
RN

(−∆)
s
2uε(−∆)

s
2 (φRuε)dx

=
c(ε, s)

2

∫∫
RN×RN

(uε(x)− uε(y))(uεφR(x)− uεφR(y))

|x− y|N+2s
dxdy

=
c(ε, s)

2

∫∫
RN×RN

φR(x)|uε(x)− uε(y)|2

|x− y|N+2s
dxdy

+
c(ε, s)

2

∫∫
RN×RN

uε(y)(uε(x)− uε(y))(φR(x)− φR(y))

|x− y|N+2s
dxdy.

(4.7)

From the Hölder inequality and the boundedness of {uε} in Hs
ε , it follows that∫∫

RN×RN

uε(y)(uε(x)− uε(y))(φR(x)− φR(y))

|x− y|N+2s
dxdy

≤
(∫∫

RN×RN

|uε(x)− uε(y)|2

|x− y|N+2s
dxdy

) 1
2
(∫∫

RN×RN
|uε(y)|2 |φR(x)− φR(y)|2

|x− y|N+2s
dxdy

) 1
2

≤ C
(∫∫

RN×RN
|uε(y)|2 |φR(x)− φR(y)|2

|x− y|N+2s
dxdy

) 1
2
.

(4.8)

From (2.18) in Lemma 2.2, we see that

lim
R→∞

∫∫
RN×RN

|uε(y)|2 |φR(x)− φR(y)|2

|x− y|N+2s
dxdy = 0. (4.9)

Then, putting inequlities (4.6)-(4.9) together, using that F ′1(t)t ≥ 0 for all t ∈ R and

applying Fatou’s lemma in (4.6), as R→∞, we can get 〈I ′ε(uε), uε〉 ≤ 0.

To proceed further, we need to use the Concentration Compactness Principle, due to

Lions [22], employed to the following sequence

ρn(x) :=
|un(x)|2

|un|22
, ∀ x ∈ RN .
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This principle assures that only one of the following statements holds for a subsequence of

ρn, still denoted by ρn :

(Vanishing)

lim
n→∞

sup
y∈RN

∫
BR(y)

ρndx = 0, ∀ R > 0. (4.10)

(Compactness) There exists a sequence of points {yn} ⊂ RN such that for all η > 0 there

exists R > 0 such that ∫
BR(yn)

ρndx ≥ 1− η, ∀ n ∈ N. (4.11)

(Dichotomy) There exist {yn} ⊂ RN , α ∈ (0, 1), R1 > 0, Rn → ∞ such that the functions

ρ1,n(x) := χBR1
(yn)(x)ρn(x) and ρ2,n(x) := χBcRn (yn)(x)ρn(x) satisfy∫

RN
ρ1,ndx→ α and

∫
RN
ρ2,ndx→ 1− α. (4.12)

In order to get that {ρn} verifies the Compactness condition, we must exclude the others

two possibilities.

Firstly, the vanishing case (4.10) cannot occur, otherwise we conclude that |un|p → 0,

and so F ′2(un)un → 0 in L1(RN). Then argue as lemma 3.5, we can get that un → 0 in Hs
ε ,

which is a contradiction with (3.6).

Now we show that Dichotomy also does not hold. Suppose that Dichotomy is the case.

Under this assumption, as far as the sequence {yn} is concerned, there are two possible

situations to be considered.

• {yn} is bounded:

In this case, for some τ > 0 and for sufficiently large n, it follows from the first conver-

gence in (4.12) and assertion (3.9) that∫
BR1

(yn)

|un|22dx = |un|22
∫
RN
ρ1,ndx ≥ τ.

Then for all n sufficiently large, choosing R0 > 0 such that BR(yn) ⊂ BR0(0), it follows that∫
BR0

(0)

|un|2dx ≥ τ.

Since un ⇀ u in Hs
ε , it follows from the Compact Sobolev imbedding that∫

BR0
(0)

|uε|2dx ≥ τ > 0 and then uε 6≡ 0.

By Claim 5.1, 〈I ′ε(uε), uε〉 ≤ 0. Then by the Remark ??, there is a unique tε ∈ (0, 1] such

that tεuε ∈ Nε.
Using Corollary 2.2,

Iε(un) =
1

2

∫
RN
|un|2dx+ on(1),
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and then

cε = lim
n→∞

1

2

∫
RN
|un|2dx. (4.13)

Since tεuε ∈ Nε, by Fatou’s Lemma and similar to Lemma 3.5 part (b), we have

cε = Iε(tεuε) =
t2ε
2

∫
RN
|uε|2dx ≤ 1

2

∫
RN
|uε|2dx

≤ lim inf
n→∞

1

2

∫
RN
|un|2dx = cε.

(4.14)

Thus the convergence |un|2 → |uε|2 holds. This together with the weak convergence implies

that un → uε in L2(RN).

As un → uε in L2(RN) and {yn} is bounded, the convergence∫
BcRn (yn)

|un|2dx→ 0 (4.15)

holds.

On the other hand, by (3.9) and by the second convergence in (4.12) there are τ1 > 0

and n0 > 0 such that ∫
BcRn (yn)

|un|2dx ≥ τ1 > 0, ∀ n > n0. (4.16)

But this fact contradicts (4.15).

• {yn} is unbounded:

In this case, we proceed analogously as in the bounded case. Aiming this, we define the

sequence

vn(x) := un(x+ yn), x ∈ RN . (4.17)

Hence {vn} ⊂ Hs
ε (RN) is bounded, then, up to subsequence, we may assume that vn ⇀ vε

and by the first part of (4.12) we have vε 6≡ 0.

Analogously to the previous case we need the following claim

Claim 5.2. F ′1(vε)vε ∈ L1(RN) and 〈I ′∞(vε), vε〉 ≤ 0.

In the proof of this claim, we use the equality

〈I ′ε(un), φR(· − yn)un〉 = on(1). (4.18)

After a change of variables, this equality is transformed into∫
RN

((−∆)
s
2vn(−∆)

s
2 (φRvn) + (V (ε(x+ yn)) + 1)φR|vn|2)dx+

∫
RN
F ′1(vn)vnφRdx

=

∫
RN
F ′2(vn)vnφRdx+ on(1).

(4.19)

Therefore, similarly to the proof of Claim 5.1, by (V1) and the fact that |yn| → ∞, as n→∞,
Claim 5.2 holds.
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By Theorem 3.1, there exists the infimum in (3.4) such that c0 = I0(u0) for some positive

function u0 ∈ N0. Note that, if ϕ ∈ C∞0 (RN), 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in B1(0) and ϕ ≡ 0 in Bc
2(0),

defining ϕR(·) := ϕ(·/R) and uR(x) = ϕR(x)u0(x), we have that

uR → u0 in Hs
ε as R→ +∞.

Fixing R > 0 and arguing as in the proof of (3.5), for a fixed ε > 0 we find

cε ≤ max
t∈[0,+∞)

Iε(tuR) = Iε(tεuR),

and ∫
RN

(|(−∆)
s
2uR|2 + (V (ε(x)) + 1)|uR|2)dx+

∫
RN

F ′1(tεuR)uR
tε

dx

=

∫
RN

F ′2(tεuR)uR
tε

dx.

(4.20)

Since V (εx) → V0 as ε → 0, by the Lebesgue Dominated Convergence theorem, we have

from the left side of the above equality that

lim
ε→0

∫
RN

(|(−∆)
s
2uR|2 + (V (εx) + 1)|uR|2)dx =

∫
RN

(|(−∆)
s
2uR|2 + (V0 + 1)|uR|2)dx.

Assuming tε → +∞ as ε → 0, it is easy to verify that the right side of the equality (4.24)

goes to +∞ as ε → 0, which is a contradiction. Thus, {tε} is bounded in R for ε small

enough. Moreover, since

Iε(tεuR) = I0(tεuR) +
t2ε
2

∫
RN

(V (εx)− V0)|uR|2)dx

≤ I0(tRuR) +
t2ε
2

∫
RN

(V (εx)− V0)|uR|2)dx,

where tR > 0 satisfies

I0(tRuR) = max
t∈[0,+∞)

I0(tuR).

Using supx∈BR(0) |V (εx)− V0| → 0 as ε→ 0, we get

lim sup
ε→0

cε ≤ lim sup
ε→0

Iε(tεuR) ≤ I0(tRuR). (4.21)

Now, we use the fact that {tR} is also bounded for R large enough, uR ≤ u0 and F1 is

increasing for t ≥ 0 to deduce that

F1(tRnuRn)→ F1(ku0) in L1(RN)

for some k > 0. Since u0 ∈ N0, we can ensure that F1(ku0) ∈ L1(RN) for all k ≥ 0. Thus, if

Rn → +∞ and tRn → t∗, the Lebesgue Dominated Convergence theorem yields

F1(tRnuRn)→ F1(t∗u0) in L1(RN),
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and

F ′1(tRnuRn)tRnuRn → F ′1(t∗u0)t∗u0 in L1(RN).

As an immediate consequence, tR → 1 as R→ +∞ and

I0(tRuR)→ I0(u0) as R→ +∞.

This combined with (4.21) gives

lim sup
ε→0

cε ≤ I0(u0) = c0.

Because for ∀ε > 0, u ∈ D(Iε), it has that Iε(u) ≥ I0(u), and then by part (b) in Lemma 3.5

with ε = 0, the reverse inequality holds:

lim inf
ε→0

cε ≥ c0.

Therefore,

lim
ε→0

cε = c0. (4.22)

As before, replacing tε by t∞, we conclude that

c∞ ≤ I∞(t∞vε) =
t2∞
2

∫
RN
|vε|2dx ≤ 1

2

∫
RN
|vε|2dx

≤ lim inf
n→∞

1

2

∫
RN
|vn|2dx ≤ lim

n→∞

1

2

∫
RN
|vn|2dx

= lim
n→∞

Iε(un) = cε.

(4.23)

But using the definition of c0 and c∞, it follows that c0 < c∞, from (4.22) that is

lim
ε→0

cε = c0 < c∞. (4.24)

So for small ε, (4.23) is in contradiction with assertion (4.24). Thus Dichotomy does not

occur in any case, and then Compactness must hold.

To reach our goal, let us state the last claim:

Claim 5.3 The sequence of points {yn} ⊂ RN in (4.11) is bounded.

We argue by contradiction. If the sequence of points {yn} is unbounded, that is, up to

subsequence, |yn| → +∞, then similar to the case of Dichotomy, where {yn} were unbounded,

we can get that cε ≥ c∞, which is a contradiction for small ε.

In view of Claim 5.3, for a given η > 0, there exists R > 0 such that, by (4.11),∫
BcR(0)

ρndx < η, ∀ n ∈ N,

it is equivalent to ∫
BcR(0)

|un|2dx ≤ η|un|22 < bη, ∀ n ∈ N, (4.25)
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where b = supn∈N |un|22. Since uε ∈ L2(RN), there exists R0 > 0 such that∫
BcR0

(0)

|uε|2dx ≤ η. (4.26)

Then, for R1 ≥ max{R,R0} due to the convergence un → uε in L2(BR1(0)), there exists

n0 ∈ N such that ∫
BR1

(0)

|un − uε|2dx < η, ∀ n ≥ n0. (4.27)

Then, by (4.25), (4.26) and (4.27), it follows that if n ≥ n0,∫
RN
|un − uε|2dx ≤ η +

∫
BcR1

(0)

|un − uε|2dx ≤ η +

∫
BcR1

(0)

|un|2dx+

∫
BcR1

(0)

|uε|2dx ≤ Cη

for some C that does not depend on η. As η is arbitrary, we can conclude that un → uε in

L2(RN).

Since {un} is bounded in L2∗(RN) by interpolation on the Lebesgue spaces, it follows

that

un → uε in Lp(RN), ∀ 2 ≤ p < 2∗.

Corollary 4.1. For the sequence {un} ⊂ Hs
ε in Proposition 4.1 and for small ε > 0, we

have the convergence∫
RN
F ′2(un)undx→

∫
RN
F ′2(uε)uεdx, as n→∞. (4.28)

Proof. It follows from (2.10) and Proposition 4.1.

Proof of the existence of positive solution of (1.7) for small ε. Let {un} ⊂ Hs
ε be

the (PS)cε-sequence for Iε, v ∈ C∞0 (RN) and ε > 0 be sufficiently small. From (2.13 ), we

have ∫
RN

((−∆)
s
2un(−∆)

s
2 (v − un) + (V (εx) + 1)un(v − un))dx+

∫
RN
F ′2(un)(v − un)dx

+

∫
RN
F1(v)dx−

∫
RN
F1(un)dx ≥ −τn‖v − un‖Hs

ε
, τn → 0+,

then, passing to the limit as n→∞ , using that F1 is lower semicontinuous, Proposition 4.1

and Corollary 4.1, we obtain∫
RN

((−∆)
s
2uε(−∆)

s
2 (v − uε) + (V (εx) + 1)un(v − uε))dx+

∫
RN
F ′2(uε)(v − uε)dx

+

∫
RN
F1(v)dx−

∫
RN
F1(uε)dx ≥ 0,

that is

〈Φ′ε(uε), v − uε〉+ Ψ(v)−Ψ(uε) ≥ 0, ∀v ∈ Hs
ε ,
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i.e., uε is a critical point of Iε for small ε > 0. By (iii) in Lemma 2.1, uε is a solution of

(1.7). Since Iε(uε) = cε, we can use the same arguments explored in [15] to conclude that

uε ∈ C2(RN) with

uε(x) > 0, ∀ x ∈ RN or uε(x) < 0, ∀ x ∈ RN .

Since

f(t) =

{
t log t2, if t 6= 0,

0, if t = 0

is an odd function, without loss of generality we can assume that uε is a positive function.

Before concluding this section, we would like to point out that the function

vε(x) = uε(x/ε), ∀ x ∈ RN

is a positive solution of (1.1), that is,{
ε2s(−∆)svε + V (x)vε = vε log v2

ε , in RN ,

vε ∈ Hs
ε (RN).

5 The concentration of solutions

Lemma 5.1. Let εn → 0 and set : un = uεn . Then, for some subsequence of {un}, there

exist a sequence {yn} ⊂ RN and constants R, β > 0 such that∫
BR(yn)

|un|2dx ≥ β > 0, ∀ n ∈ N. (5.1)

Proof. This proof follows the similarity to that in Lemma 3.6, if
∫
BR(yn)

|un|2dx→ 0, then

we get un → 0 in Hs
ε . On the other hand, by Lemma 3.1 there is ρ > 0 such that

0 < ρ ≤ cεn = Iεn(un) = Iεn(un)− 1

2
〈I ′εn(un), un〉 =

1

2

∫
RN
|un|2dx,

which is a contradiction.

Lemma 5.2. Let εn → 0, we have that εnyn → y0 for some y0 ∈ R with

V (y0) = V0 = inf
x∈RN

V (x). (5.2)

Let un ∈ Nεn be such that Iεn(un) → c0. Then there exists a sequence {yn} ⊂ RN such that

un(·+ yn) has a convergent subsequence in Hs
ε .

Proof. Since un ∈ Nεn and lim
n→∞

Iεn(un) = c0, it is easy to get that {un} is bounded in

Hs
ε and ‖un‖εn 9 0. Let ũn(x) = un(x + yn), so {ũn} is bounded in Hs

ε , then up to a
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subsequence, we have ũn ⇀ ũ 6= 0 in Hs
ε and ũn(x)→ ũ(x) a.e. in RN . Fix tn > 0 such that

tnũn ∈ N0 and set ỹn = εnyn, then we can see that

c0 6 IV0(tnũn) 6 Iεn(tnun) 6 Iεn(un) = c0 + on(1),

which gives that lim
n→∞

I0(tnũn) = c0 > 0. In particular, vn 6→ 0 in E0. Set vn := tnũn,

combining I0(vn) → c0 and vn ∈ N0, we know that {vn} is a bounded sequence. Applying

Lemma 5.1,

β0 = lim inf
n→∞

∫
B(yn,r)

|un|2dx = lim inf
n→∞

∫
B(0,r)

|ũn|2dx 6 C lim inf
n→∞

‖ũn‖2
0.

For large n, we have 0 < β0
2C

< ‖ũn‖2
0, then

0 6
β0

2C
t2n < ‖tnũn‖2

0 = ‖vn‖2
0 6 C.

Hence {tn} is bounded.

Now, we may assume that tn → t∗ > 0. If t∗ = 0, by using the boundedness of {ũn} we

have tnũn =: vn → 0 in E0. This is lim
n→∞

I0(tnũn) = 0, which contradicts c0 > 0. Thus, up to

a subsequence, we may assume that

vn → v0 = t∗ũ 6≡ 0 in E0, ũn →
1

t∗
v0 = ũ in E0.

In order to complete the proof of the lemma, we show that {ỹn} is bounded in RN . We

argue by contradiction, up to a subsequence, we assume that there is a sequence such that

|ỹn| → ∞ as n→∞, and since a similar equality to (4.18) holds, i.e.,

〈I ′εn(un), (ϕR(· − yn)un)〉 = 0,

a similar inequality to (4.21) also holds. Thus, passing to the limit as R → +∞ we obtain

that 〈I ′∞(u), u〉 ≤ 0. Because u = 0, there is t ∈ (0, 1] such that tw ∈ N∞.
Therefore, by (4.24),

c∞ ≤ I∞(tũ) =
t2

2

∫
RN
|ũ(x)|2dx ≤ lim inf

n→∞

1

2

∫
RN
|ũn|2dx ≤ lim inf

n→∞

1

2

∫
RN
|un|2dx

≤ lim sup
n→∞

(
Iεn(un)− 1

2
〈I ′εn(un)un〉

)
= lim sup

n→∞
〈I ′εn(un), un〉 = lim sup

n→∞
cεn = c0 < c∞,

(5.3)

which is a contradiction. Hence, we may assume that εnyn → y0 for some y0 ∈ RN . Arguing

as (5.3), we may achieve that

c0 = lim
n→∞

cεn ≥ cV (y0)

and consequently assertion (5.2) holds, because V (y0) > V0 yields c0 < cV (y0).

To assure the second part of the theorem, with the same notations of (4.18), replacing ϕR
by a function ϕ with compact support, we have that 〈I ′0(ũ), ϕ〉 = 0 and then 〈I ′0(ũ), ũ〉 = 0.
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Applying the same ideas employed in Proposition 4.1, we conclude that ũn → ũ in Lp(RN)

for all p ∈ [2, 2∗s), and therefore
∫
RN F

′
2(ũn)ũndx→

∫
RN F

′
2(ũ)ũdx.

Finally, using the equalities 〈I ′0(ũ), ũ〉 = 0 and∫
RN

(|(−∆)
s
2 ũn|2 + V (εnyn + εnx)|ũn|2)dx+

∫
RN
F ′1(ũn)ũnφRdx

=

∫
RN
F ′2(ũn)ũnφRdx+ on(1),

we get ∫
RN
|(−∆)

s
2 ũn|2dx→

∫
RN
|(−∆)

s
2 ũ|2dx.

and the proof finishes.
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