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Abstract

In this paper, we investigate the characterization for darboux curves in a strictWalker 3-manifold and a classication for ruled

surface, which is generated by darboux curve in Walker 3-manifold is obtained. An example was given at the end.
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abstract: In this paper, we investigate the characterization for darboux curves in a strict Walker 3-manifold
and a classification for ruled surface, which is generated by darboux curve in Walker 3-manifold is obtained.
An example was given at the end.
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1. Introduction

The study of submanifolds of a given ambiant space is a naturel interesting problem which enriches
our knowledge and understanding of the geometry of the space itself. Here the ambiant space we will
consider is a Lorentzian three-manifold admitting a parallel null vector field called strict Walker mani-
fold. It is known that Walker metrics have served as a powerful tool of constructing interesting indefinite
metrics which exhibit various aspects of geometric properties not given by any positive definite metrics.
For details see [1,2].
Darboux curves in the Euclidean space were studied by Saban [9] and were generalised by Ergin [4].
For a curve α on a surface in the Euclidean 3-space the function D = 〈α′′′, U〉 = κ′n − κgτg is called
Darboux function of α where U is normal vector field of surface, κn, κg and τg are normal curvature,
geodesic curvature and geodesic torsion. Darboux function is equal to zero for Darboux curves. For more
informations about Darboux curves see [6,8].
In Minkowski 3-space timelike Darboux curves on a timelike surface were studied by Ergin [5]. In [7],
Suroǧlu et al. study and classify modifieded translation surfaces in Heis3 and investigate conditions of
being minimal surface. Also, they obtain the characterizations of points on this surface.
The study of ruled surfaces of a given ambiant space is a naturel and interesting problem. A surface S
in a manifold M is said to be ruled if every point of S is on (a open geodesic segment) in M that lies in
S (see [3]). Locally a ruled surface is made by a one parameter family of geodesic segments.
In this paper we study the darboux curves in a three dimensional Walker manifold. We give the charac-
terization for darboux curves in a strict Walker 3-manifold and a classification for ruled surface, which is
generated by darboux curve in Walker 3-manifold is obtained.
The paper is organised as follow: in section 2 we give some preliminaries results about Walker 3-manifold
and basic notions about curves lyung on a surfaces. In section 3 we give the main results of this paper
with an example for illustrate the obtained results.

2. Preliminaries

A Walker n-manifold is a pseudo-Riemannian manifold, which admits a field of null parallel r-planes,
with r ≤ n

2 . The canonical forms of the metrics were investigated by A. G. Walker ( [1]). Walker has
derived adapted coordinates to a parallel plan field. Hence, the metric of a three-dimensional Walker
manifold (M, gεf ) with coordinates (x, y, z) is expressed as

gεf = dx ◦ dz + εdy2 + f(x, y, z)dz2 (2.1)
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and its matrix form as

gεf =

 0 0 1
0 ε 0
1 0 f

 with inverse (gεf )−1 =

 −f 0 1
0 ε 0
1 0 0


for some function f(x, y, z), where ε = ±1 and thus D = Span∂x as the parallel degenerate line field.
Notice that when ε = 1 and ε = −1 the Walker manifold has signature (2, 1) and (1, 2) respectively, and
therefore is Lorentzian in both cases.

It follows after a straightforward calculation that the Levi-Civita connection of any metric (2.1) is
given by:

∇∂x∂z =
1

2
fx∂x, ∇∂y∂z =

1

2
fy∂x,

∇∂z∂z =
1

2
(ffx + fz)∂x +

1

2
fy∂y −

1

2
fx∂z (2.2)

where ∂x, ∂y and ∂z are the coordinate vector fields ∂
∂x

, ∂
∂y

and ∂
∂z

, respectively. Hence, if (M, gεf ) is a

strict Walker manifolds i.e., f(x, y, z) = f(y, z), then the associated Levi-Civita connection satisfies

∇∂y∂z =
1

2
fy∂x, ∇∂z∂z =

1

2
fz∂x −

ε

2
fy∂y. (2.3)

Note that the existence of a null parallel vector field (i.e f = f(y, z)) simplifies the non-zero components
of the Christoffel symbols and the curvature tensor of the metric gεf as follows:

Γ1
23 = Γ1

32 =
1

2
fy, Γ1

33 =
1

2
fz, Γ2

33 = − ε
2
fy (2.4)

Starting from local coordinates (x, y, z) for which (2.1) holds, it is easy to check that

e1 = ∂y, e2 =
2− f
2
√

2
∂x +

1√
2
∂z, e3 =

2 + f

2
√

2
∂x −

1√
2
∂z

are local pseudo-orthonormal frame fields on (M, gεf ), with gεf (e1, e1) = 1, gεf (e2, e2) = ε and gεf (e3, e3) = 1.
Thus the signature of the metric gεf is (1, ε,−1).

Let now u and v be two vectors in M . Denoted by (~i,~j,~k) the canonical frame in R3.
The vector product of u and v in (M, gεf ) with respect to the metric gεf is the vector denoted by u× v in
M defined by

gεf (u× v, w) = det(u, v, w) (2.5)

for all vector w in M , where det(u, v, w) is the determinant function associated to the canonical basis of
R3. If u = (u1, u2, u3) and v = (v1, v2, v3) then by using (2.5), we have:

u× v =

(∣∣∣∣u1 v1
u2 v2

∣∣∣∣− f ∣∣∣∣u2 v2
u3 v3

∣∣∣∣)~i− ε ∣∣∣∣u1 v1
u3 v3

∣∣∣∣~j +

∣∣∣∣u2 v2
u3 v3

∣∣∣∣~k (2.6)

Let α : I ⊂ R −→ (M, gεf ) be a curve parametrized by its arc-length s.
The Frenet frame of α is the vectors T , N and B along α where T is the tangent, N the principal normal
and B the binormal vector. They satisfied the Frenet formulas ∇TT = ε2κN

∇TN = −ε1κT − ε3τB
∇TB = ε2τN

(2.7)

where κ and τ are respectively the curvature and the torsion of the curve α, with ε1 = gf (T ;T ); ε2 =
gf (N ;N) and ε3 = gf (B,B).
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Now let α : I ⊂ R −→ (M, gεf ) be a curve lying in a surface S (spacelike or timelike) in M . Let U be the
unit normal of S, the Darboux frame is given by {T, Y, U}, where T is the tangent vector of the curve
α(s) and Y = U × T .
The usual transformations between the Walker Frenet frame and the Darboux takes the form

Y = cos θN − sin θB (2.8)

U = sin θN + cos θB, (2.9)

where θ is an angle between the surface normal vector N and the binormal vector B of α.
Derivating Y along the curve alpha we get

∇TY = cos θ∇TN − θ′ sin θN − sin θ∇TB − θ′ cos θB.

Using the Frenet equation in (2.7) we have

∇TY = cos θ(−ε1κT − ε3τB)− θ′ sin θN − sin θ(ε2τN)− θ′ cos θB.

Now we suppose that the principal normal and the binormal have the same sign. then we get

∇TY = −ε1κ cos θT − (θ + ε2τ)U (2.10)

The same calculus gives

∇TU = −ε1κ sin θT + (θ + ε2τ)Y. (2.11)

Then the Walker Darboux equation is expressed as ∇TT = −ε2κgY − ε2κnU
∇TY = −ε1κgT − τgU
∇TU = −ε1κnT + τgY,

(2.12)

where κg, κg and τg are the geodesic curvature, normal curvature and geodesic torsion of α(s) on S,
respectively. Also, (2.12) implies

κg = −κ cos θ, κn = −κ sin θ

κ2 = κ2g + κ2n, and τ = τg −
κgκ

′
n − κnκ′g
κ2

. (2.13)

3. Main results

Let S be a spacelike regular surface and α : I ⊂ R −→Mf be an unit speed curve lying on the surface
S.

Theorem 3.1 Let α : I ⊂ R −→ Mf be an unit speed curve in a Walker 3-manifold. If α is a Darboux
curve on the surface S, then

−ε1ε2κ2κn + 2κ′gτg + τ2gκn + κgτ
′
g − κ′′n = 0. (3.1)

Proof: The function D of a Darboux curve on the surface S is given by

D = gε(∇3
TT,U), (3.2)

where gεf is the Walker metric of Mf .

Now let us compute ∇3
TT .

Using the equation in (2.12), we get

∇T (∇TT ) = ε1ε2κ
2T − ε2(κ′g + τgκn)Y + ε2(τgκg − κ′n)U. (3.3)
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Differentiating (3.3) with respect to s and using (2.12), we get

∇3
TT = ε1ε2(κκ′ + κ′gκg + κ′nκn)T

+(−ε1κ2κg − ε2κ′′g − ε2τ ′gκn − 2τgκ
′
n + ε2κgτ

2
g )Y

+(−ε1κ2κn + 2ε2κ
′
gτg + ε2τ

2
gκn + ε2κgτ

′
g − ε2κ′′n)U. (3.4)

Finally combine the equations (3.2) and (3.4) and we get

D = −ε1κ2κn + 2ε2κ
′
gτg + ε2τ

2
gκn + ε2κgτ

′
g − ε2κ′′n

and that end the proof. 2

Proposition 3.1 Let α be an unit speed curve and S be a ruled surface in (Mf , g
ε
f ) which is parametrized

as

S(s, u) = α(s) + uT (s). (3.5)

If α is a darboux curve, then

ε1ε2κ
2κg + κ′′g + τ ′gκn + 2ε2τgκ

′
n − κgτ2g = 0 (3.6)

Proof: We recall that the normal unit Y of the surface S is given by the formula

U =
Ss × Su
‖Ss × Su‖

, (3.7)

where × is the vector product defined in (2.6).
From equation (3.5) we have

Ss(s, u) = T (s) + u∇TT
= (1− ε2κgu)T − ε2κnU

and

Su(s, u) = T (s).

By the vector product defined in (2.6), we have

Ss × Su = −εε2κnY (3.8)

and

‖Ss × Su‖ = εκn. (3.9)

From equations (3.8)-(3.9) and the formula (3.7), the unit normal vector field of the surface S is

U = −ε2Y. (3.10)

If α is a darboux curve, from (3.2)-(3.3) and (3.10), we have (3.6). 2

Example 3.1 We will consider that the function f = f(s, u) wich defines the geometry of the strict
Walker manifold is given by

f(s) = −2ae−2s, a ∈ R, 0 < a < 1. (3.11)

We consider the curve α given by

α(s) = (−ae−s, s, es), s ∈ R. (3.12)
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So we have

T (s) = (ae−s, 1, es), s ∈ R. (3.13)

An easy computation show that gεf (α′(s), α′(s)) = ε = ε1.
From (3.12) and (3.13), the ruled surface which is parametrized in (3.5) is

S(s, u) =
(
ae−s(u− 1), s+ u, es(u+ 1)

)
. (3.14)

The unit normal vector field of the surface S is

U = εεu

(
−3

2
e−s, ε,− 1

2a
es
)
. (3.15)
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FASTEF,
Senegal.
E-mail address: ameth1.ndiaye@ucad.edu.sn


