
P
os
te
d
on

31
J
an

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
70
66
80
38
.8
93
07
00
4/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

An Stochastic Epidemic Model with Two Types of Infectious

Diseases and Vertical Transmission

Wang xunyang1, Qihong Shi1, Huang canyun1, and Hao yixin1

1Lanzhou University of Technology

April 05, 2024

Abstract

In this paper, a stochastic epidemic model with two different types of infectious diseases that spread through both horizontal and

vertical transmission is investigaed. By constructing suitable Lyapunov functions and applying Ito
′sformulaaswellasChebyshev′sinequality,thesufficientconditionsforstochasticultimateboundednessandpermanenceareestablished.Thereliabilityoftheoreticalresultsarefurtherillustratedbynumericalsimulations.

Hosted file

submission1.tex available at https://authorea.com/users/735047/articles/711651-an-stochastic-
epidemic-model-with-two-types-of-infectious-diseases-and-vertical-transmission

1

https://authorea.com/users/735047/articles/711651-an-stochastic-epidemic-model-with-two-types-of-infectious-diseases-and-vertical-transmission
https://authorea.com/users/735047/articles/711651-an-stochastic-epidemic-model-with-two-types-of-infectious-diseases-and-vertical-transmission


P
os
te
d
on

31
J
an

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
70
66
80
38
.8
93
07
00
4/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

2



P
os
te
d
on

31
J
an

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
70
66
80
38
.8
93
07
00
4/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

3



A Stochastic Epidemic Model with Two Types of

Infectious Diseases and Vertical Transmission∗

Xunyang Wang1,2†, Canyun Huang1, Yixin Hao1, Qi Hong Shi1

1.Department of Applied Mathematics, Lanzhou University of Technology,
Lanzhou, Gansu, China, 730050

2.Postdoctoral Research Station of State Grid Gansu Electric Power Research
Institute, No. 249, Wanxin North Road, Lanzhou, Gansu, China, 730000

E-mail: 12198114@163.com

Abstract

In this paper, a stochastic epidemic model with two different types of infectious
diseases that spread through both horizontal and vertical transmission is investigated.
To indicate our model is well-posed, the existence and uniqueness of positive solu-
tion is proved at the beginning. By constructing suitable Lyapunov functions and
applying Itô’s formula as well as Chebyshev’s inequality, the sufficient conditions for
stochastic ultimate boundedness is also established, furthermore, when some main pa-
rameters and all the stochastically perturbed intensity satisfy a certain relationship,
the stochastic permanence is finally proved. The reliability of theoretical results are
further illustrated by numerical simulations.

Key words: Vertical transmission; Itô’s formula; Stochastic ultimate bounded-
ness; Stochastic permanence

1 Introduction

In all periods of the development of human society, there are arduous struggles against
various infectious diseases[1]. To make matters worse, multiple infectious diseases often
exist on human individuals at the same time, and the coordinated and cross-infection
between infectious diseases makes the course of the disease more complicated and difficult
to deal with. We often refer to this situation as the parallel development of multiple
infectious diseases[2]. The probability of several infectious diseases in a patient at the
same time is related to the environment, susceptible population and human immunity. If
the sanitary environment is poor, and there are sewage, excreta, animal and plant residues,
mosquitoes and mice everywhere, the probability of N kinds of infectious diseases will be
very high. If people with bad living habits, sanitation workers, medical staff in the infection
department and other personnel are frequently exposed to a large number of pathogenic
microorganisms, the probability of suffering from N kinds of infection rate is also very

∗Supported by the Natural Science Foundation of Gansu Province,China(No.20JR5RA460)
†Corresponding author
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high. In addition, people with immune system defects or injuries have a high rate of N
infectious diseases[3]. For example, patients with advanced AIDS have a 100% chance of
contracting N infectious diseases[4,5].

Recently, the research on modelling two types of infectious diseases draw many applied
mathematicians’ attention[6-11]. In [6], the authors discussed an epidemic model with
double hypothesis combined two different transmission mechanisms. In [7], a stochastically
perturbed SIRS epidemic model with two viruses is formulated to investigate the effect
of intensities of white noise on each population, and further discussed the dynamics of
threshold around disease-free equilibrium as well as endemic equilibrium. In [8], they
proposed new mathematical models with nonlinear incidence rate and double epidemic
hypothesis. Among them, Ackleh and Allen, Naji and Hussien also studied the epidemic
model with multi-disease and vertical transmission[10,11].

As we all know, when modelling, the incidence is the key factor in epidemiological
model, and it is defined as the rate at which susceptible becomes infectious. It is usually
assumed to be constant or deterministic function in the previous deterministic models.
In fact, it is inevitably affected by environmental white noise, which has attracted the
attention of scholars. In recent years, a number of scholars have established a series of
stochastic epidemic models and achieved great results by introducing random perturbation
into deterministic model[12-15]. The reference[11] have discussed the dynamic behavior
of the solution of the system under some different parameters and initial values, on this
basis, we study a stochastic epidemic model with two types of infectious diseases and
vertical transmission. By constructing suitable Lyapunov function and using Itô’s formula
and Chebyshev’s inequality, the dynamic behaviors of the model are analyzed. Finally,
numerical simulations are used to confirm our obtained theoretical results.

2 Model formulation

The reference [11] researched the following differential equations:
dS
dt = Λ− ( β1I11+I1

+ β2I2)S + (γ − p2)I2 − µS − p1I1 + ηR,
dI1
dt = β1SI1

1+I1
− (µ+ α1 + δ − p1)I1,

dI2
dt = β2SI2 − (µ+ α2 + γ − p2)I2,
dR
dt = δI1 − (η + µ)R,

(2.1)

where S(t) represents the number of susceptible individuals at time t; I1(t) and I2(t)
that represents the number of infected individuals at time t and R(t) that represents the
number of recovered individuals at time t, the initial condition S(0) > 0, I1(0) > 0, I2(0) >
0, R(0) > 0, the total population N(t) = S(t) + I1(t) + I2(t) + R(t). There is a constant
number of populations entering to the deterministic system with recruitment rate Λ > 0.
There is a vertical transmission of both of the diseases; that is, the infectious individual
gives birth to a new infected individual of rates 0 ≤ p1 ≤ 1 and 0 ≤ p2 ≤ 1 for the
disease I1 and I2, respectively. Consequently, p1I1 and p2I2 individuals enter into infected
compartments I1 and I2, respectively, and the same quantities are disappearing from
recruitment in the susceptible compartment. The diseases are transmitted by contact,
between the individuals in the S compartment and those in Ii(i = 1, 2) compartments
with nonlinear incidence rate for I1 that is give by β1SI1

1+I1
, in which β1 > 0 represents the
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infection force rate, and linear incidence rate for I2 that is given by β2SI2, where β2 > 0
represents the infection rate. The individuals in the I1 compartment are facing death
due to the disease with infection death rate α1 ≥ 0. They recover from disease and get
immunity with a recover rate δ > 0. The individuals in the I2 compartment are facing
death due to the disease with infection death rate α2 ≥ 0. They also recover from the
disease but return back to be susceptible with recovery rate γ > 0. The individuals in
the R compartment are losing immunity rate 0 ≤ η < 1. There is a natural death rate
µ > 0 for the individuals in the population. Finally, it is assumed that both the diseases
cannot be transmitted to the same individual simultaneously. Moreover, to insure that the
recruitment Λ in the susceptible compartment is always positive, the following hypotheses
are assumed to be hold always:

δ ≥ p1, γ ≥ p2.

In this paper, taking into account the effect of randomly fluctuating environment, we
assume that fluctuations in the environment will manifest themselves mainly as fluctua-
tions in the parameter β1, β2,

β1 → β1 + σ1
˙B1(t), β2 → β2 + σ2

˙B2(t). (2.2)

where Bi(t)(i = 1, 2) is standard Brownian motions with B(0) = 0, and with intensity of
white noise σ2

i > 0(i = 1, 2). The stochastic version corresponding to the deterministic
system (2.1) takes the following form:

dS = [Λ− ( β1I11+I1
+ β2I2)S + (γ − p2)I2 − µS − p1I1 + ηR]dt

−σ1SI1
1+I1

dB1(t)− σ2SI2dB2(t),

dI1 = [β1SI11+I1
− (µ+ α1 + δ − p1)I1]dt+ σ1SI1

1+I1
dB1(t),

dI2 = [β2SI2 − (µ+ α2 + γ − p2)I2]dt+ σ2SI2dB2(t),
dR = [δI1 − (η + µ)R]dt,

(2.3)

Next, we give some basic theory in stochastic differential equation (see[16]).
Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the

usual conditions(i.e. it is right continuous and F0 contains all P− null sets). B(t) be an
n-dimensional standard Brownian motion defined on the space.

In general, consider the n-dimensional stochastic differential equation of Itô type

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t), t ≥ t0, (2.4)

with initial value x(t0) = x0 ∈ Rn+ = {x ∈ Rn+ : xi > 0, 1 ≤ i ≤ n}. Define the differential
operator L associated with system (2.4) by

L =
∂

∂t
+

n∑
i=1

fi(x, t)
∂

∂xi
+

1

2

n∑
i,j=1

[gτ (x, t)g(x, t)]i,j
∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(Rn × R+;R+), then

LV (x, t) = Vt(x, t) + Vx(x, t)f(x, t) +
1

2
trace[gτ (x, t)Vxx(x, t)g(x, t)],

where Vt = ∂V
∂t , Vx = ( ∂V∂x1 , · · · ,

∂V
∂xn

), Vxx = ( ∂2V
∂xi∂xj

)n×n.
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Lemma 1 (It0̂′s formula)([16]) Let x(t) be an Itô process on t ≥ 0 of system (2.4),
V ∈ C2,1(Rn × R+;R+), then the function V (x(t), t) is again an Itô process with the
stochastic differential given by

dV (x(t), t) = LV (x(t), t)dt+ Vx(x(t), t)g(x(t), t)dB(t).

Lemma 2 (Chebyshev′s inequality)([16])

E(|X| ≥ c) ≤ c−pE|X|p, p > 1.

3 Existence and uniqueness of positive solution

In this section, in order to show our model is well-posed, we prove that there is a
unique global positive solution of system (2.3) by using the Lpapunov analysis method
and Itô′s formula.
Theorem 3.1 There is a unique solution (S(t), I1(t), I2(t), R(t)) of system (2.3) on t ≥ 0
for any initial value (S(0), I1(0), I2(0), R(0)) ∈ R4

+, and the solution will remain in R4
+

with probability 1, namely, (S(t), I1(t), I2(t), R(t)) ∈ R4
+ for all t ≥ 0 almost surely.

proof. Since the coefficients of the equation are locally Lipschitz continuous for
any given initial value (S(0), I1(0), I2(0), R(0)) ∈ R4

+, there is a unique local solution
(S(t), I1(t), I2(t), R(t)) on t ∈ [0, τe), where τe is the explosion time[15]. To show this so-
lution is global, we need to show that τe = ∞ a.s.. Let k0 ≥ 0 be sufficiently large so
that S(0), I1(0), I2(0) and R(0) all lie within the interval [ 1

k0
, k0]. For each integer k ≥ k0,

define the stopping time

τk = inf{t ∈ [0, τe) : S(t) /∈ (
1

k
, k) or I1(t) /∈ (

1

k
, k) or I2(t) /∈ (

1

k
, k) or R(t) /∈ (

1

k
, k)},

where we set inf ∅ = ∞(as usual ∅ denotes the empty set). Obviously, τk is increasing as
k →∞. Set τ∞ = lim

k→∞
τk, hence τ∞ ≤ τe a.s.. To complete the proof, all we need to show

that τ∞ =∞ a.s.. If this statement is false, then there exist a pair of constants T > 0 and
ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

Hence there is an integer k1 ≥ k0 such that for all k ≥ k1

P{τk ≤ T} ≥ ε. (3.1)

Define a C2-function V: R4
+ → R+ by

V (S, I1, I2, R) = (S − 1− lnS) + (I1 − 1− ln I1) + (I2 − 1− ln I2) + (R− 1− lnR).

The nonnegativity of this function can be seen from u− 1− lnu ≥ 0, u > 0.
Let k ≥ k0 and T > 0 be arbitrary. Applying the Itô′s formula, we obtain

dV (S, I1, I2, R) = LV dt+
σ1

1 + I1
(I1 − S)dB1(t) + σ2(I2 − S)dB2(t), (3.2)

where

LV = [Λ− µ(S + I1 + I2 +R)− α1I1 − α2I2]− Λ + (γ − p2)I2 − p1I1 + ηR

S
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−β1(S − I1)

1 + I1
− β2(S − I2)− δI1

R
+ (4µ+ α1 + α2 + δ + γ + η − p1 − p2)

+
σ2

1(S2 + I2
1 )

2(1 + I1)2
+

1

2
σ2

2(S2 + I2
2 )

≤ Λ + 4µ+ α1 + α2 + δ + γ + η +
σ2

1(S2 + I2
1 )

2(1 + I1)2
+

1

2
σ2

2(S2 + I2
2 ) , H,

where H is a positive constant. Hence,

dV (S, I1, I2, R) ≤ Hdt+
σ1(I2 − S)

1 + I1
dB1(t) + σ2(I2 − S)dB2(t).

Integrating both sides of the above inequality from 0 to τk ∧ T , we get∫ τk∧T

0
dV (S(s), I1(s), I2(s), R(s)) ≤

∫ τk∧T

0
Hds

+

∫ τk∧T

0
[
σ1(I1(s)− S(s))

1 + I1(s)
dB1(s) + σ2(I2(s)− S(s))dB2(s)],

where τk ∧ T = min{τk, T}. Then taking the expectations leads to

EV (S(τk ∧ T ), I1(τk ∧ T ), I2(τk ∧ T ), R(τk ∧ T )) ≤ V (S(0), I1(0), I2(0), R(0)) +HT.

Set Ωk = {τk ≤ T} for k ≥ k1 and from (3.1), we have P(Ωk) ≥ ε. For every ν ∈ Ωk,
S(τk, ν), I1(τk, ν), I2(τk, ν), R(τk, ν) equals either k or 1

k ; hence V (S(τk, ν),I1(τk, ν),I2(τk, ν),
R(τk, ν)) is no less than min{k − 1− ln k, 1

k − 1− ln 1
k}.

Then we obtain

V (S(0), I1(0), I2(0), R(0)) +HT ≥ E[1Ωk(ν)V (S(τk), I1(τk), I2(τk), R(τk))]

≥ εmin{k − 1− ln k,
1

k
− 1− ln

1

k
},

where 1Ωk(ν) is the indicator function of Ωk.

Letting n→∞ leads to the contradiction ∞ = V (S(0), I1(0), I2(0), R(0)) +HT <∞.

This completes the proof.

4 Stochastic ultimate boundedness

Definition 4.1 The solution X(t) = (S(t), I1(t), I2(t), R(t)) of system (2.3) are said to
be stochastically ultimately bounded, if for any ε ∈ (0, 1), there is a positive constant
χ = χ(ε), such that for any initial value (S(0), I1(0), I2(0), R(0)) ∈ R4

+, the solution X(t)
has the property that

lim sup
t→∞

P{|X(t)| > χ} < ε.

Theorem 4.1 The solution of system (2.3) are stochastically ultimately bounded for any
initial value (S(0), I1(0), I2(0), R(0)) ∈ R4

+.
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proof. From Theorem 3.1, the solution will remain in R4
+ for any t ≥ 0 almost surely.

Define a function
V (S, I1, I2, R) = Sθ + Iθ1 + Iθ2 +Rθ,

for (S, I1, I2, R) ∈ R4
+ and θ ∈ (0, 1). By Itô’s formula, we obtain

dV (S, I1, I2, R) = [θSθ−1(Λ + (γ − p2)I2 + ηR) + θ(
β1SI

θ
1

1 + I1
+ β2SI

θ
2 + δRθ−1I1)]dt

−θ[β1S
θI1

1 + I1
+β2S

θI2+µSθ+p1S
θ−1I1+Iθ1 (µ+α1+δ−p1)+Iθ2 (µ+α2+γ−p2)+Rθ(η+µ)]dt

+
1

2
θ(θ − 1)[

σ2
1

(1 + I1)2
(SθI2

1 + S2Iθ1 ) + σ2
2(SθI2

2 + S2Iθ2 )]dt

+
σ1θ

1 + I1
(SIθ1 − SθI1)dB1(t) + σ2θ(SI

θ
2 − SθI2)dB2(t)

≤ θSθ−1(Λ + (γ − p2)I2 + ηR)dt+
1

2
θ(θ− 1)[

σ2
1

(1 + I1)2
(SθI2

1 + S2Iθ1 ) + σ2
2(SθI2

2 + S2Iθ2 )]dt

+[θ(
β1SI

θ
1

1 + I1
+ β2SI

θ
2 + δRθ−1I1) + (Sθ + Iθ1 + Iθ2 +Rθ)− V (S, I1, I2, R)]dt

+
σ1θ

1 + I1
(SIθ1 − SθI1)dB1(t) + σ2θ(SI

θ
2 − SθI2)dB2(t)

≤ [C − V (S, I1, I2, R)]dt+
σ1θ

1 + I1
(SIθ1 − SθI1)dB1(t) + σ2θ(SI

θ
2 − SθI2)dB2(t),

where C > 0 is a suitable constant.
Based on Theorem 3.1 and the above inequality, we have

d(etV (S, I1, I2, R)) = etV (S, I1, I2, R)dt+ etdV (S, I1, I2, R)

≤ Cetdt+
σ1θ

1 + I1
(SIθ1 − SθI1)dB1(t) + σ2θ(SI

θ
2 − SθI2)dB2(t).

Integrating both sides of the above inequality from 0 to t, we get

etV (S(t), I1(t), I2(t), R(t)) ≤ V (S(0), I1(0), I2(0), R(0)) + C(et − 1)

+

∫ t

0
[

σ1θ

1 + I1(s)
(S(s)Iθ1 (s)− Sθ(s)I1(s))dB1(s) + σ2θ(S(s)Iθ2 (s)− Sθ(s)I2(s))dB2(s)].

Then taking the expectations leads to

etEV (S(t), I1(t), I2(t), R(t)) ≤ V (S(0), I1(0), I2(0), R(0)) + C(et − 1)

⇒ EV (S(t), I1(t), I2(t), R(t)) ≤ e−tV (S(0), I1(0), I2(0), R(0)) + C(1− e−t)

⇒ lim sup
t→∞

EV (S(t), I1(t), I2(t), R(t)) ≤ C.

Note that
|X(t)|θ = (S2(t) + I2

1 (t) + I2
2 (t) +R2(t))

θ
2
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≤ 4
θ
2 max{Sθ(t), Iθ1 (t), Iθ2 (t), Rθ(t)} ≤ 4

θ
2V (S, I1, I2, R),

then we get

lim sup
t→∞

E|X(t)|θ ≤ 4
θ
2 lim sup

t→∞
EV (S, I1, I2, R) ≤ 4

θ
2C <∞.

Therefore, there exists a positive constant δ1 such that

lim sup
t→∞

E|
√
X(t)| ≤ δ1.

For any ε > 0, set χ =
δ21
ε2

, then by Chebyshev’s inequality

P{|X(t)| > χ} ≤
E|

√
X(t)|
√
χ

.

Thus, we obtain

lim sup
t→∞

P{|X(t)| > χ} ≤ δ1√
χ

= ε,

which yields the required assertion.
Theorem 3.1 together with Theorem 4.1 indicates that the solution to our model is

non-explosive in condition that all the parameters and intensities remain positive.

5 Stochastic permanence

Definition 5.1 The solution X(t) = (S(t), I1(t), I2(t), R(t)) of system (2.3) are said to
be stochastically permanent, if for any ε ∈ (0, 1), there exists a pair of positive constants
λ = λ(ε) and χ = χ(ε) such that for any initial value (S(0), I1(0), I2(0), R(0)) ∈ R4

+, the
solution X(t) has the properties

lim inf
t→∞

P{|X(t)| ≤ χ} ≥ 1− ε, lim inf
t→∞

P{|X(t)| ≥ λ} ≥ 1− ε.

Theorem 5.1 For any initial value (S(0), I1(0), I2(0), R(0)) ∈ R4
+, the solution X(t) =

(S(t), I1(t), I2(t), R(t)) satisfies

lim sup
t→∞

E(|X(t)|−ϑ) ≤ Q, (5.1)

where ϑ is an arbitrary positive constant satisfying

ϑ+ 1

2
(µ+ max{1, α1, α2}+ 2 max{σ2

1, σ
2
2}) < Λ, (5.2)

Q =
4ϑ(4kϑΛ + C2)

4kϑΛ
max{1, (2ϑΛ + C +

√
4kϑΛ + C2

2ϑΛ
)ϑ−1}, (5.3)

in which
0 < k < ϑ[2Λ− (µ+ max{1, α1, α2}+ 2 max{σ2

1, σ
2
2})], (5.4)

C = k + ϑ(µ+ max{1, α1, α2}+ 2 max{σ2
1, σ

2
2}). (5.5)
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proof. Define a function V (S, I1, I2, R) = 1
S+I1+I2+R , (S(t), I1(t), I2(t), R(t)) ∈ R4

+; using
Itô′s formula, we get

dV (S, I1, I2, R) = [µV + V 2(α1I1 + α2I2 − Λ) + 2V 3(
σ2

1S
2I2

1

(1 + I1)2
+ σ2

2S
2I2

2 )]dt.

Choosing a positive constant ϑ that satisfies (5.2) and applying Itô′s formula, we
obtain

L(1+V )ϑ = ϑ(1+V )ϑ−1[µV+V 2(α1I1+α2I2−Λ)+2V 3(
σ2

1S
2I2

1

(1 + I1)2
+σ2

2S
2I2

2 )] = ϑ(1+V )ϑ−1G,

where G = µV + V 2(α1I1 + α2I2 − Λ) + 2V 3(
σ2
1S

2I21
(1+I1)2

+ σ2
2S

2I2
2 ).

Since
V 2(α1I1 + α2I2) < V 2(S + α1I1 + α2I2 +R)

< V 2 max{1, α1, α2}(S + I1 + I2 +R) = V max{1, α1, α2},

2V 3(
σ2

1S
2I2

1

(1 + I1)2
+ σ2

2S
2I2

2 ) < 2V 3 max{σ2
1, σ

2
2}(S2 + S2I2

2 ) < 2V max{σ2
1, σ

2
2},

Therefore,
G < (µ+ max{1, α1, α2}+ 2 max{σ2

1, σ
2
2})V − ΛV 2.

Let k > 0 be sufficiently small such that it satisfies (5.4), by Itô’s formula

L(ekt(1 + V )ϑ) = kekt(1 + V )ϑ + ektL(1 + V )ϑ

< ekt(1 + V )ϑ−1[k(1 + V ) + ϑ(µ+ max{1, α1, α2}+ 2 max{σ2
1, σ

2
2})V − ϑΛV 2]

= ekt(1 + V )ϑ−1[k + CV − ϑΛV 2] ≤ ektW,

where

W =
4kϑΛ + C2

4kϑΛ
max{1, (2ϑΛ + C +

√
4kϑΛ + C2

2ϑΛ
)ϑ−1},

and C have been defined in the statement of the theorem.
Thus,

d(ekt(1 + V )ϑ) ≤Wektdt.

Integrating both sides of the above inequality from 0 to t, we get

ekt(1 + V )ϑ ≤ (1 + V (0))ϑ +
W

k
(ekt − 1) ≤ (1 + V (0))ϑ +

W

k
ekt.

⇒ (1 + V )ϑ ≤ W

k
+ (1 + V (0))ϑe−kt

⇒ E(1 + V )ϑ ≤ W

k
+ (1 + V (0))ϑe−kt.

Therefore, we obtain

lim sup
t→∞

E(V (t))ϑ ≤ lim sup
t→∞

E(1 + V )ϑ ≤ W

k
.
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For (S, I1, I2, R) ∈ R4
+, we know that

(S + I1 + I2 +R)ϑ ≤ 4ϑ(S2 + I2
1 + I2

2 +R2)
ϑ
2 ≤ 4ϑ|X(t)|ϑ;

consequently,

lim sup
t→∞

E(
1

|X(t)|ϑ
) ≤ 4ϑ lim sup

t→∞
E(V (t))ϑ ≤ 4ϑW

k
= Q,

which completes the proof.
Theorem 5.2 Assume max{σ2

1, σ
2
2} < Λ − µ+max{1,α1,α2}

2 , then the solutions of system
(2.3) are stochastically permanent.

proof. From Theorem 4.1, we have P{|X(t)| > χ} < ε which implies P{|X(t)| ≤
χ} ≤ 1− ε. This follows that lim inf

t→∞
P{|X(t)| ≤ χ} ≥ 1− ε.

By Theorem 5.1, we get lim sup
t→∞

E( 1
|X(t)|ϑ ) ≤ Q.

For any ε > 0, let λ = ε
1
ϑ

Q
1
ϑ

; then by Chebyshev’s inequality,

P{|X(t)| < λ} = P{ 1

|X(t)|
>

1

λ
} ≤ λϑE(|X(t)|−ϑ).

Hence,

lim sup
t→∞

P{|X(t)| < λ} ≤ ε

Q
·Q = ε,

which follows that
lim inf
t→∞

P{|X(t)| ≥ λ} ≥ 1− ε.

The proof is completed.
Compared with the existence, uniqueness and boundedness of positive solutions, the

stochastic persistence condition of the model solution is much more stringent. Specifically,
some main parameters, i.e., the recrument rate Λ, disease-related mortality α1, α2, natural
mortality µ and all the perturbed intensities σ1, σ2 should satisfy max{σ2

1, σ
2
2} < Λ −

µ+max{1,α1,α2}
2 .

6 Numerical simulations and Conclusions

In this section, for the system (2.3), we will use the Milstein method mentioned in
Higham [17] to illustrate our main results.

Consider the following discretization equations:

Sk+1 = Sk + [Λ− ( β1I1k1+I1k
+ β2I2k)Sk + (γ − p2)I2k − µSk − p1I1k + ηRk]∆t

−σ1SkI1k
1+I1k

√
∆tξk − σ2SkI2k

√
∆tξk +

σ2
1
2 ( SkI1k1+I1k

)2(ξ2
k − 1)∆t+

σ2
2
2 S

2
kI

2
2k(ξ

2
k − 1)∆t,

I1k+1 = I1k + [β1SkI1k1+I1k
− (µ+ α1 + δ − p1)I1k]∆t+ σ1SkI1k

1+I1k

√
∆tξk

+
σ2
1
2 ( SkI1k1+I1k

)2(ξ2
k − 1)∆t,

I2k+1 = I2k + [β2SkI2k − (µ+ α2 + γ − p2)I2k]∆t+ σ2SkI2k

√
∆tξk

+
σ2
2
2 S

2I2
2k(ξ

2
k − 1)∆t,

Rk+1 = Rk + [δI1k − (η + µ)Rk]∆t,
(6.1)
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where ξk(k = 1, · · · , n) is the Guassian random variables which follow N(0, 1).

We choose the parameters by Λ = 2, β1 = 0.75, β2 = 0.3, γ = 0.75, p1 = 0.01, p2 =
0.05, µ = 0.3, η = 0.5, δ = 0.7, α1 = 0.1, α2 = 0.6, and initial value (S(0), I1(0), I2(0), R(0))
=(5, 4, 2, 3). Then the corresponding pathwise estimation of the solutions of system
(2.3) are shown in Fig.1. Let σ1 = 0.04, σ2 = 0.06, the solutions of system (2.3) are
stochastically permanent(Fig.1(a)). Let σ1 = 0.2, σ2 = 0.1 and the condition of Theorem
(5.2) is satisfied, we can see that the larger intensity of the white noise will weaken the
stability of the system(Fig.1(b)).

(a) (b)

Figure 1: Solutions of system (2.3) with different noise. Other parameters and initial
condition are given in text. (a): σ1 = 0.04, σ2 = 0.06; (b): σ1 = 0.2, σ2 = 0.1.

When σ1 = σ2 = 0.0, system (2.3) will be deterministic and its time-series plots shown
by Fig.2(a). We choose σ1 = 1.0, σ2 = 1.3 which does not satisfy the condition of Theorem
(5.2), then the noise can force the population to become largely fluctuating. In this case,
the solutions of system (2.3) are not stochastically permanent(Fig.2(b)).

(a) (b)

Figure 2: Solutions of system (2.3) with different noise. Other parameters and initial
condition are given in text. (a): σ1 = 0.0, σ2 = 0.0; (b): σ1 = 1.0, σ2 = 1.3.
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