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Abstract

In this paper, we investigate KP equation by the Hirota bilinear method and obtain its bilinear form successfully. On the basis

of above bilinear form, a number of explicit solutions including one-solitary wave solution, two-solitary wave solution and their

generalized form N-solitary wave solution are obtained successfully. Moreover, in view of the homoclinic breather limit method,

we also express breather wave solutions and rogue wave solutions of KP-equation. Finally, with mathematical software Maple,

we obtained overhead views, perspective views and wave propagation pattern of solutions in different parameter areas.
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1 Introduction

The existence of nonlinear physical phenomena leads to the derivation of
many nonlinear evolution equations, therefore, seeking for exact solutions of
these equations is always a significant and essential work. With longstand-
ing and unremitting efforts, a number of powerful methods are put forward
by researchers such as Hirota bilinear method [1-10], three-wave method
[11], homoclinic breather limit method [12], tanh function method and ex-
tend tanh function method [13,14], Darboux and Bäcklund transformation
method [15-20] and so on. As one kind of exact solutions, solitary wave solu-
tion is of great importance in solving nonlinear partial differential equation
due to the high stability and particle property of solitary wave. And these
solitary waves were discovered in fluid physics, solid state physics, plasma
physics, and optical fibre communication. Therefore, an increasing number
of scholars devote themselves to study the solitary wave theory. Besides,
rogue wave, also referred to as extreme waves, abnormal waves, monster

∗E-mail: nzj951001@163.com
†E-mail: wangzenggui@lcu.edu.cn, Corresponding author
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waves, freak waves, was firstly found in deep ocean and it turns out that it
also exists in biophysics, superfluids, Bose-Einstein condensates [21], finan-
cial market and other fields.

Kadomtsev-Petviashvili equation (KP-equation), firstly derived to sim-
ulate nonlinear fluctuations, attract many researchers to study and many
useful results are obtained. Cheng [22] found group invariant solutions by
Darboux transformation; Chen [23] found rogue wave solutions with employ-
ing homoclinic breather limit method; K.A.Gorshkov analyzed multisoliton
solutions by using exact and approximate methods [24]; M.K. Elboree [12]
studied an extended KP-equation by bilinear method, obtained its lump so-
lutions and rogue wave solutions.

In this article, we would like to consider the following KP-equation

(ut + uux + puxxx)x + αb2uyy = 0, (1)

where p, α and b are three real numbers. We would like to investigate the
KP-equation by Hirota bilinear method and obtain its N-solitary wave so-
lution, breather wave solution and rogue wave solution. These solutions are
useful to describe the evolution of long ion-acoustic waves of small amplitude
propagating and the movement of water surface and internal waves.

This paper is organized as follows: in Section 2, we change Eq.(1) into
bilinear form with a appropriate transformation and get its one-solitary
wave solution, two-solitary wave solution and N-solitary wave solution. In
Section 3, the breather wave solution and rogue wave solution are presented
with the application of homoclinic breather limit method. In the end, some
conclusions and discussions are given.

2 Bilinear form and solitary wave solution of E-
q.(1)

With the transformation u = [12p(lnF )]xx concluded from painlevè analy-
sis, we can get

12p(lnF )xxxt + 144p2[(lnF )xxx]
2 + 144p2(lnF )xx(lnF )xxxx

+ 12p2(lnF )xxxxxx + 12pαb2(lnF )xxyy = 0. (2)

Integrating Eq.(2) twice with respect to x, we have

(lnF )xt + 6p[(lnF )xx]
2 + p(lnF )xxxx + αb2(lnF )yy = 0, (3)
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which implies the following Hirota bilinear form of Eq. (1)

(DxDt + pD4
x + αb2D2

y)F · F = 0, (4)

where Dx, Dt, Dy are Hirota bilinear operators defined by

Dm
t Dn

x(f · g) = (∂t − ∂t′)
m(∂x − ∂x′)nf(t, x)g(t′, x′)|t′=t,x′=x. (5)

Suppose that F can be expanded as a series in term of ε,

F = 1 + εF (1) + ε2F (2) + ε3F (3) + ε4F (4) + · · · . (6)

Substituting expansion (6) into Eq.(4) and collecting the coefficients of
εn(n = 1, 2, 3 · · · ), we can get the following formulas

ε : 2(F
(1)
xt + pF (1)

xxxx + αb2F (1)
yy ) = 0, (7a)

ε2 : 2(F
(2)
xt + pF (2)

xxxx + αb2F (2)
yy ) = −(DxDt + pD4

x + αb2D2
y)F

(1) · F (1),

(7b)

ε3 : 2(F
(3)
xt + pF (3)

xxxx + αb2F (3)
yy ) = −2(DxDt + pD4

x + αb2D2
y)F

(1) · F (2),

(7c)

ε4 : 2(F
(4)
xt + pF (4)

xxxx + αb2F (4)
yy ) = −(DxDt + pD4

x + αb2D2
y)(2F

(1) · F (3)

+ F (1) · F (2)). (7d)

2.1 One-solitary wave solution

By calculating Eq.(7a), we get the solution of F (1) with the form

F (1) = 1 + ek1x+µ1y+ω1t+ξ10 , (8)

where ω1 = −pk41+αb2µ2
1

k1
. Substituting F (1) into Eq.(7b), we obtain

2(F
(2)
xt + pF (2)

xxxx + αb2F (2)
yy ) = 0. (9)

If we choose F (2) = 0, Eq.(7c) gives

2(F
(3)
xt + pF (3)

xxxx + αb2F (3)
yy ) = 0. (10)
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Similarly, we can choose F (3) = 0, F (4) = 0, F (5) = 0, · · · , when ε = 1,
one-solitary wave solution can be expressed in the form

u = 12p[ln(F (1))]xx =
12pk21e

k1x+µ1y+ω1t+ξ10

(1 + ek1x+µ1y+ω1t+ξ10 )2
. (11)

Based on solution (11), we can plot one-solitary waves of Eq.(1) with suitable
parameters in Fig.1.

2.2 Two-solitary wave solution

Because Eq.(7a) is a linear equation, it has the solution in iterative form

F (1) = ek1x+µ1y+ω1t+ξ10 + ek2x+µ2y+ω2t+ξ20 , (12)

where ωi = −pk4i+αb2µ2
i

ki
, i = 1, 2. Substituting (12) into (7b), we have

F (2) = A12e
ξ1+ξ2 , (13)

where ξi = kix+µiy+ωit+ ξi0, i = 1, 2, A12 =
αb2(k1µ2−k2µ1)2−3pk21k

2
2(k1−k2)2

αb2(k1µ2−k2µ1)2−3pk21k
2
2(k1+k2)2

,

and the two-solitary wave solution is derived as follows

u = 12p[ln(1 + eξ1 + eξ2 +A12e
ξ1+ξ2)]xx. (14)

Similarly, the two-solitary wave solution (14) are plotted in Fig.(2) by choos-
ing suitable parameters.

2.3 N-solitary wave solution

Similarly, we can figure out N-solitary wave solution of Eq.(1) with following
form

u = 12p[ln(F )]xx, F =
∑
λ=0,1

e(
∑N

i=1 λiξi+
∑

1≤i<j≤N λiλjAij),

ξi = kix+ µiy + ωit+ ξi0, ωi = −pk4i + αb2µ2
i

ki
,

eAij =
α b2 (kiµj − kjµi)

2 − 3 pki
2kj

2 (ki − kj)
2

α b2 (kiµj − kjµi)
2 − 3 pki

2kj
2 (ki + kj)

2 ,

where ki, µi, ωi(i = 1, 2, ..., N) are arbitrary constants,
∑

λ=0,1 represents the
sum of all possible combinations of λi, λj = 0, 1(i, j = 1, 2, ..., N),

∑
1≤i<j≤N

is summation of all possible pairs taken from N elements with condition (1 ≤
i < j ≤ N). In reference [25], the author obtained one-solitary wave solution,
with the help of one-solitary wave solution, the author obtained two-solitary
wave solution. Three-solitary wave solution and four-solitary wave solution
are also obtained in that way. We just need to take N as the number we want
in subsection 2.3, then,N-solitary wave solution (N=1,2,3,...) is obtained. If
we choose appropriate parameters in subsection 2.3, we can get similarly
results to [25].
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3 Breather waves and Rogue waves

3.1 Breather waves

Considering that u0 is a equilibrium solution of Eq.(1) which is an arbitrary
constant, we use the transformation

u = u0 + 12p[ln(f)]xx, (15)

We can convert Eq.(1) into the following bilinear form by substituting (15)
into Eq.(1)

(DxDt + u0D
2
x + pD4

x + αb2D2
y)F · F = 0. (16)

For finding out breather wave solution of Eq.(1), we suppose that f has the
form

f = e−p1(x+b1y−at) + δ1 cos (p2 (x+ b2y + βt)) + δ2e
p1(x+b1y−at), (17)

where p1, p2, b1, b2, δ1, δ2, a, β are real constants to be determined. Taking
(17) into (16), we can get a algebraic equation about ep1(x−b1y+at), collecting
all coefficients of e±p1(x−b1y+at) cos(p2(x+b2y+βt)), e±p1(x−b1y+at) sin(p2(x+
b2y + βt)) and equating them to zero, then we get a series of algebraic
equations about p1, p2, b1, b2, δ1, δ2, a, β

− 2 ap1
2δ1δ2 − 2 p2

2β δ1δ2 + u0
(
2 p1

2δ1δ2 − 2 p2
2δ1δ2

)
+ p(2 p1

4δ1δ2

− 12 p1
2p2

2δ1δ2 + 2 p2
4δ1δ2) + α b2

(
2 b1

2p1
2δ1δ2 − 2 b2

2p2
2δ1δ2

)
= 0,

− 2ap1
2δ1 − 27p2

2βδ1 + u0(2p1
2δ1 − 2 p2

2δ1) + p(2p1
4δ1 − 12p1

2p2
2δ1

+ 2p2
4δ1) + αb2(2b1

2p1
2δ1 − 2b2

2p2
2δ1) = 0,

− 2ap1p2δ1δ2 + 2p1p2β δ1δ2 + 4u0p1p2δ1δ2 + p(8p1
3p2δ1δ2 − 8p1p2

3δ1δ2)

+ 4αb2b1b2p1p2δ1δ2 = 0,

2ap1p2δ1 − 2p1p2βδ1 − 4u0p1p2δ1 + p(−8p1
3p2δ1 + 8p1p2

3δ1)

− 4αb2b1b2p1p2δ1 = 0,

8pp2
4δ1

2 − 2p2
2u0δ1

2 − 2αb2b2
2p2

2δ1
2 + 32pp1

4δ2 + 8 p1
2u0δ2

− 2p2
2β δ1

2 − 8ap1
2δ2 + 8αb2b1

2p1
2δ2 = 0.

Solving the above equation system, we get the following result

a =
b2b1

2p1
2α+ 2 b2b1b2p2

2α− b2b2
2p2

2α+ pp1
4 − 2 pp1

2p2
2 − 3 pp2

4 + p1
2u0 + p2

2u0
p12 + p22

,

β =
b2b1

2p1
2α− 2 b2b1b2p1

2α− b2b2
2p2

2α− 3 pp1
4 − 2 pp1

2p2
2 + pp2

4 − p1
2u0 − p2

2u0
p12 + p22

,

δ2 =
1

4

p2
2δ1

2
(
b2b1

2p1
2α− 2 b2b1b2p1

2α+ b2b2
2p1

2α− 3 pp1
4 − 6 pp1

2p2
2 − 3 pp2

4
)

p12
(
b2b1

2p22α− 2 b2b1b2p22α+ b2b2
2p22α+ 3 pp14 + 6 pp12p22 + 3 pp24

) ,
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where b1, b2, p1, p2, δ1 are real constants. Substituting the above results into
Eq.(15), solution of Eq.(16) can be expressed as trigonometric form

u =u0 + 12p
ffxx − f2

x

f2
, (18)

where f is given by (17), and fx and fxx are as follows

fx = −p1e
−p1(x+b1y−at) − p2δ1 sin(p2(x+ b2y + βt)) + p21δ2e

p1(x+b1y−at),

fxx = p21e
−p1(x+b1y−at) − p22δ1 cos(p2(x+ b2y + βt)) + p1δ2e

p1(x+b1y−at),

By choosing suitable parameters, we can plot solution (18) in Fig. 3 and
Fig. 4.

3.2 Rogue waves

In this part, for getting rogue wave solution of Eq.(1), let p1 = p2 = s and
we have

a =
αb2(b21 + 2b1b2 − b22) + 2u0 − 4ps2

2
,

β =
αb2(b21 − 2b1b2 − b22)− 2u0 − 4ps2

2
,

δ2 =
1

4
δ21

αb2(b1 − b2)
2 − 12ps2

αb2(b1 − b2)2 + 12ps2
,

and take δ1 = 1, (17) can be rewritten as following form

f = e−s(x+b1y−at)+cos(s(x+b2y+βt))+
1

4
(1− 24ps2

αb2(b1 − b1)2 + 12ps2
)es(x+b1y−at),

where p
α < 0. Substituting the above formula into (18), we get

u = u0 +
4s2δ2 − s2 − 4s2

√
δ2 sinh (sX1) sin (sX2)

[2
√
δ1 cosh(sX1)− 2 cos(sX2)]2

,

where X1 = (x + b1y − at + 1
2 ln δ2), X2 = (x + b2y + βt). With using of

Taylor expansion at s = 0, solution (18) can be rewritten as

u = u0 + 12p
4δ2−1
s2

− 4
√
δ2X1X2

(
√
δ2X2

1 − 1
2X

2
2 + 2

√
δ2+1
s2

)2
, (19)

thus, the rogue wave of Eq.(1) is obtained with above expression. And we
can plot its perspective view, overhead view and propagation pattern. And
we can plot its perspective view, overhead view and propagation pattern in
Fig. 5 and Fig. 6 with suitable parameters.
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4 Conclusion

In this paper, we first found a transformation from Pninlevé, then we substi-
tuted the transformation into Eq.(1) and obtained its bilinear form. Solving
the bilinear equation, one-solitary wave solution, two-solitary wave solution
and N-solitary wave solution heve been presented, meanwhile, their views
were plotted. Next, we apply homoclinic breather limit method to solve
Eq.(16) and calculate breather wave solutions of Eq.(1) with suitable pa-
rameters. And further, the rogue wave solutions were also found out.
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Figures of Solitary wave solution, breather wave solution and
rogue wave solution for a KP-equation

(a) (b) (c)

Figure 1: One-soliton solution (11) of Eq.(1) with parameters k1 = 1, µ1 =
1, α = 1, b = 1, p = 1, y = 1. (a) Perspective view of (11). (b) Overhead view
of (11). (c) The mode of wave propagation along the x axis.

(a) (b) (c)

Figure 2: Two-soliton solution (14) of Eq.(1) with parameters k1 = 1, µ1 =
1, α = 1, b = 1, p = 1, k2 = −2, µ1 = 2, y = 1. (a) Perspective view of (14).
(b) Overhead view of (14). (c) The mode of wave propagation along the x
axis.
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(a) (b) (c)

Figure 3: Breather wave solution (18) of Eq.(1) with parameters p1 = 1, p2 =
1, b1 = 1, b2 = 2, p = 1, α = −108

7
, b = 1, δ1 = 1, u0 = 61

7
, y = 1. (a)

Perspective view of (18). (b) Overhead view of (18). (c) The mode of wave
propagation along the x axis.

(a) (b) (c)

Figure 4: Breather wave solution (18) of Eq.(1) with parameters p1 =
3
5
, p2 =

4
5
, b1 = 3, b2 = 1, p = − 7

25
, α = 3

8
, b = 2, δ1 = 1, u0 = −1, y = 2. (a)

Perspective view of (18). (b) Overhead view of (18). (c) The mode of wave
propagation along the x axis.
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(a) (b) (c)

Figure 5: Rogue wave solution (19) of Eq.(1) with parameters s = −1, b1 =
1, b2 = 2, p = −1, α = 20, b = 1, δ1 = 1, u0 = 15, y = 0. (a) Perspective view
of (19). (b) Overhead view of (19). (c) The mode of wave propagation along
the x axis.

(a) (b) (c)

Figure 6: Rogue wave solution (19) of Eq.(1) with parameters s = 1, b1 =
1, b2 = 2, p = 1, α = −20, b = 1, δ1 = 1, u0 = 0, y = 0. (a) Perspective view
of (19). (b) Overhead view of (19). (c) The mode of wave propagation along
the x axis.
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