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1 Introduction

Optimal control problems have become a very active and successful research area and it can
be used in many sciences and engineering. They have various application backgrounds in
the operation of physical, social, and economic processes. Concerning the analysis of optimal
control problems with PDEs constraints, we must mention the pioneer works in this field, such
as [6,8,16,19,23,31], for an overview of optimal control problems for more details.

The finite element method have been widely used in PDEs-constraints optimal control prob-
lems. There have been many works in literature on the finite element approximation of optimal
control problems [5,20,21,24], and so on.

The h — p version of the finite element which is the general version of finite element method
has been applied to many practical problems. We mention the pioneering works [3,4, 25]. It
seems suitable to apply the h — p version methods to approximate optimal control problems.
Here, we only mention the following works in [9-12]. Yanping Chen and Yijie Lin, in [10], pre-
sented a posteriori error analysis for the i — p finite element approximation of convex optimal
control problems. Before obtaining the i — p a posteriori error estimates for the coupled control
and state approximations, they derived a new quasi-interpolation operator of Clément type
and a new quasi-interpolation operator of the Scott-Zhang type that preserves homogeneous
boundary conditions.

A priori error estimate consists in increasing the discretization error in a given norm (or
semi-norm) by a quantity which depends on the exact solution (in general not known explici-
tly). It is generally used to prove the convergence of the method under certain assumptions of
regularity on the exact solution. But these assumptions in practice are not often verified.

'E-mail addresses : samuel.gbeya@imsp-uac.org (S. Gbeya), khouedanou@yahoo.fr (K. Houedanou),
Inyaga@jkuat.ac.ke ( L. Nyaga), bahounou@yahoo.fr (B. Ahounou).
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Moreover, the estimator is in term of the exact solution of the model, this shows that the a
priori estimates cannot be used for an algorithm of mesh adaptation (which is very important
in the finite element method because with this method, the discrete solution strongly depends
on the mesh used). Hence, the notion of a posteriori error analysis which now makes it possible
to set up (thanks to an algorithm) an adapted mesh. For optimal control problems, there are
many works on a priori error estimates (see, e.g., [?,1,17,18,27-29]) for the standard finite
element method.

That is why, after the a priori error analysis, we focused on the adaptability of the mesh, i.e.
to build a tool that allows, after a first resolution of the problem on a coarse decomposition, a
decomposition choice that is the best suited to the problem (the flexibility of the method with
joints that greatly facilitate the construction of the new decomposition), which is a posteriori
error estimator. A posteriori error estimates are computable quantities, expressed in terms of
the discrete solution and of the data that measure the actual discrete errors without the knowl-
edge of the exact solution. For optimal control problems, there many works on a posteriori
error estimates for h — p finite element method, [9-12,14,21,22]. They are essential to design
adaptive mesh refinement algorithms which equidistribute the computational effort and opti-
mize the approximation efficiency. Since the pioneering work of Babuska and Rheinboldt [],
adaptive finite element methods based on a posteriori error estimates have been extensively
investigated. What we propose to do here is to extend in the case of spectral elements a part
of the results obtained by Verfiirth [32], concerning indicators constructed from the residue of
the equation. The extension is not evident because an important step in the demonstration in
tinite elements are based on inverse inequalities [26], which are known to be bad in spectral
methods, so it is a matter of changing of the indicators appropriately.

However, as part of the h — p version, two choices of "refinement" are possible in the areas
where the indicator reveals poor convergence; either divide the domain to reduce the &, setting,
or increase the maximum p;, degree. The idea to determine the best strategy is to use a spectral
decomposition of the indicator in an appropriate base of the Polynomials. Examination of the
behaviour of the coefficients allow then to find the best refinement: it is indeed preferable
to increase the p, when all coefficients are of the same size and to decrease the h;, when the
high-order coefficients are small.

The Robin boundary condition is a general form of the isolation boundary condition for
convection-diffusion equations and can be viewed as the trade-off Dirichlet and Neumann
boundary conditions. They are applied to electromagnetic problems or boundary conditions
of convection, for example in heat transmission problems [15] and in modeling the convection
between the conducting bodies (see [7, 13]). So, in this paper, the elliptic Robin boundary
control problem is approximated by h—p version of finite element method. We mainly consider
the following optimal control problem:

. 1 2, € 2
Jnin J(u, y) = 2/Q(y Ya)” + 2/ému (1.1)
Subject to the state equation
—div(aVy)=f in Q (1.2)
With the boundary control conditions(Robin )
B
(aVy).n = E(u —y) on 0N (1.3)

In our paper, 2 will be an open bounded subset of R?, with Lipschitz continuous boundary
). We also assume that (2 is polygonal. The nonempty, closed and convex constraint U,; =
{u € L*(09) : |Jull§sq < ¢?}, n is outwards unit normal vector from ©, € and « are strictly



positive constants. 3 : 9Q — (0,00) is a positive function, 3 € L*(0Q) with [, 5*> > 0,
yq € L*(Q) is the observation, u is the control variable, y is the state variable and f € L?*().
a(-) = (ai;i(-) ., € (W“’O(Q))2><2 such that there is a constant § satisfying, for all vector = € R?,
ztax > 6||z||3,, where 2! denote the transpose of z. Also for simplicity, we suppose in this
paper that a is constant matrix.

For Q@ C R? a polygonal convex domain, we set L?(Q) = H°(Q), H*(Q), H¥(Q), k > 0
integer, denote the usual Sobolev spaces. For u € H*(Q) we denote by ||ul|rq and | - |z ¢ the
usual norm and semi-norm respectively. If [ is an interval or a segment, then we define H*(I),
|| - ||x.r analogously.

Introduce the function spaces U = L?(99Q) D U,y > u as the control space, V = H'(Q) as the
state space. To avoid the excessive use of constants, generic constants in the estimations will
be denoted by C.

The outline of this paper is as follows: In section 2, h — p version of the finite element meth-
ods for the optimal control problem are constructed, then optimality conditions for both exact
and discrete system are given. A priori error estimates for the optimal control problems are
obtained in section 3. In section 4, a posteriori error estimates for the optimal control problems
are obtained.

2 Optimality of the optimal control problem and its finite ele-
ment approximation

In this section, we shall find out the optimality conditions of the optimal problem (1.2)-(1.3)
and describe its h — p finite element approximation.
2.1 Optimality of the problem

Let’s assume that y is enough regular, so for any regular test function v € C*(f2), integration by
parts yields as

/Q(aVy)Vv - /Bﬂ(au).v + /m(ay).v (2.1)

The weak formulation for the boundary control value problem (1.1)-(1.3) using Green’s formula
is of the form : find y € V such that

A(y,v) =1l(v), Vv eV. (2.2)

Where

._ . _PB
Aly,v) = /Q(aVy)Ver/mayv, l(v) .—/va+/8gozuv and o = -

The extension to v € V' is possible since for y € V' both sides are continuous with respect to
v € V and since C*(9) is dense in V.

It follows from the above assumptions on a that there exists constants ¢y, ¢2, ¢3 > 0 such that
VuyeV

A(v,v) Z allollia, Aly,v) < e [lylhellvlle and [1(v)] < e [[v]le

Therefore, following the work done in [30,31] one can prove the following optimality con-
ditions:



Theorem 2.1. The pair (u,y) € Uyq x V is the optimal solution of the control problem (1.1)-(1.2) if
only if there exists a unique pair (p, \) € V' x R such that (u,y, p, \) satisfies the following optimality
conditions :

i) A(y,v) = (au,v)opa + (fiv)oa YveV

i) A(q,p) = (Y —Ya, @)oo YVqeV 23)
ZZZ) (Oép +Eu, w — u)O,BQ >0 Ywe Uad, ’
w)p+(e+Nu=0

(OCP — OPT)

where \ satisfies

constant > 0, ||u]|2 5o = C*
A= ’ 24
{ 0 ||UH(2),aQ < ¢ 4)

Where X is a Lagrange multiplier and p is the adjoint state.

2.2 H — pfinite element method

In this subsection, we construct the hp finite element approximation of the optimal control
problems where we assume that (2 is polygonal. We divide the domain 2 into N, non-overlapping
sub-domains (elements) 7;,1 < i < N, :

N-
QZU?M Tim'szw, 7’#]7 1§Z7JSNT (25)
=1

Let 7 be a local quasi-uniform partitioning of (2 into non-overlapping regular elements 7, and
7 = (—1,1)? be the reference element.
Let 7;; the a partitioning of 052, such that

N-
00=J7; w(Nu=0 i#j 1<ij<N (2.6)
j=1

wherey; j =1,2,--- N, are the open sides of the boundary 0f2. We further require that P, € 02
where P,(i = 1,--- ,I) is the set associated with the triangulation 7.
We let ;1(7') denote all edges, and let 10(7") denote all edges which lie on the boundary 0.
Each element 7 can be the image of the reference element 7 under an affine map F, : 7 — 7.
We write h.(h,) := diam7(y), and assume that the triangulation is y-shape regular, i.e.,

he IELN| + heAI(ED)TH] < x (2.7)

For yx-shape regular meshes 7 on the domain (2, we associate with each element 7 € 7 a
polynomial degree p € Ny, these polynomial degrees p are collected into the polynomial degree
vector p = {p}.

For x-shape regular meshes v on the boundary 02, we associate with each element v € T,
a polynomial degree ¢ € Ny.

Then we can define the spaces of hp finite element approximation UP (7, 012), SP(7T,(2) as
follows:

UP(T7,00) = {u€ L*(0N) : tlecpo(r) © Fr € Qp}
SP(7,9) = {ve H'(Q): vleepr) o Fr € Qp}

where 9, denotes the spaces of polynomials in 7 of degree < p, ¢ in each variable, respectively.



As to polynomial degree distribution p, similarly to (2.7), we assume that the polynomial de-
grees of neighboring elements are comparable, i.e., there is a constant x > 0 such that

o) SpeFlS X+ D) YV R e, TN £0 28)

Convergence is obtained either by increasing the degree of the polynomials or increasing
the number of elements V..

Let Uy = Uaa (\UP (77, 092) be the space of approximation of the control, and let SP(7T, Q)
be the space of approximation of the state and co-state. Then the h — p spectral element approx-
imation of optimal control problem reads as follows:

: 1 €
(OCP)hp umén J(uhpa yhp) = 5/9(3#117 - Z/d)2 + 5/69uf2zp (2.9)
A(yhp7 vhp) (C(uh;m Uhp)() o0 + (fa Uhp)() Q) v Uhp S S (T Q)

The following theorem shows the existence and uniqueness of the solution of the above
system.

Theorem 2.2. Assume that the initial assumptions hold. There exists a unique solution (yny, us,) for
the minimization problem (OC P)" such that yy,, € SP(T,Q), u € Upy.

Proof. Let {( Ynps Unips )} be a minimization sequence for the system (OCP)"?, then it is clear
that {uj, }72, are bounded in Upy. Thus there is a subsequence of {uhp}nfl(stﬂl denoted by
{uﬁp};f’zl ) such that uj;, converges weakly to uy, in Uy, For the subsequence {uj,}72,, we have

A(y;zlgﬁ Uhp) = (auZ;m Uhp)O,@Q + (f7 Uhp)O,(h \ Uhp S Sp({r, Q) (210)
Let vy, = ypy, in (4.10) to give
A(yZpa y}Tle) = (auZpa yZp)O,@Q + (fa yZp)O,Qa v yZp € SP(T, Q) (211)

For each {y,};2,, we have y}., is a solution of (2.11) and ||y|l1.o < C(I[fllo.c + llu[lo,0). Thus
we have that {y;,}>°, is bounded set in SP(T,?). Thus

upy, — upp weakly in Uy, (2.12)
Yny — Ynp Weakly in SP(T,(2) '
So, we have
A(Z/hm Uhp) (Oéuhp, Uhp)o o0 + (f7 Uhp)O,Q> v Upp € Sp(77 Q) (2.13)

Since F is a convex functional on L?(2) and Q is a strictly convex functional on L?(952), we have
F(ynp) + Q(unp) < lim (F(yp,) + Q(uy,)). Then (yp,, upy) is the unique solution of (OC P)"
This complete the proof of the theorem. O

Furthermore, the following first order optimality conditions are satisfied.

Lemma 2.3. The pair (unp, Ynp) € Upyp X SP(T, 2) is the optimal solution of the control problem (2.9) if
only if there exists a pair (ppy, Anp) € (SP(T,Q), RY) such that (Unp, Ynp, Drps Anp) Satisfies the following
optimality conditions (OCP — OPT)"»

(2) (yhpyvhp) = (Oéuhp, Uhp)o,aa + (f7 Uhp)O,Qa v Upp € Sp(‘T7 Q)

(1) A(qhps Prp) = Wnp — Ya» Grp)o.s ¥ anp € SP(T,9) (2.14)
(199) (php + EUnp, Why — uhp)o,afz >0 Y wpy € Upp, ‘
(1v) prp + (€ + Anp)unp = 0.



where A\, satisfies

(2.15)

{COnsmnt >0, ||unpll§ a0 = ¢
Ay = |

0 ||Uhp||g,asz < (7

3 A priori error estimates

In this section, we study a priori error estimates of the hp finite element approximations. Here
we note that 2 is a convex open domain with Lipschitz boundary 052, and in the light of the
optimality conditions, we have y € V.

To derive a priori estimates, we need to prove some important results that will be used later.

Lemma 3.1. Let (upp, hp, pap, Anp) be the solution of the optimality conditions (OCP — OPT)" then
there exists a constant C' (independent of h and p) such that

maz{||unplo,o0, ||Ynpll1,0: [[Prpl 1.0, [Anpl} < C (3.1)

Proof. Introduce the solution (wpy,, Yny(why)) € Upp X SP(T, ) of the optimal control problem.
Since the pair (up,, ys,) is the optimal solution of the optimal control problem, we have

1 €
J(Unp, Ynp) = 2/(yhp Ya)® +§/89uip

= —Z/yhp ya)* Z/uhp

TET eclo
< _Z/yhpvhp —Ya)’ Z/Uhp<067yd)
TET eclo

Which implies that
€
S llunpl2000 < Cle, 7. ya)

and can be rewritten 5
o0 < =Cles 7. p0)

finally we have
|[tnpllopoe < C and ||yny — yalloo < C

It is well known that

forally € Viu € Unas [lyll1a < C(/[flloq + [lullo,00)

Since Uy, C Uyg and SP(7,Q) C V, we have ||yn|l1.0 < C(|fllo.a + ||wnpllo.s0)
Therefore
Ynpll1.0 < C

According to (2.14) (ii) and (iv), we obtain
prollro < cllynp = valloo <€ and | Ay < C
O

We introduce the auxiliary system to obtain a priori error estimates for hp finite element



method : finding (yp,(u), pry(w)) € SP(T,Q) x SP(T, Q) such that

{ (1) Alynp(u), vp) = (Qu, vpplosa + (fs vnplog, ¥ vny € SP(T, Q)
(1) A(qnp, Prp(1)) = (Y = Ya, Gnp)o.s ¥ anp € SP(T,9Q)

This auxiliary system will allow me to derive a priori error estimates for the optimal control
problem.

The following error bounded for the interpolation operator I;, can be derived by using a
result for the standard interpolation operator based on the reference domain and the technique
employed in the h — p finite element method. See [4] lemma 4.5.

Lemma 3.2. Let h = maz{h,,, 1 < i < N}, the forall v € H*(Q2), s < 1 it holds

o~ Inpollea < C

hit
el ¥ v eV aH(Q) (3.2)

Where i = min{p + 1, s} and t = 0, 1.
We define the projection operator 7! as follows : V v € V, find 7'v € SP(T, Q) such that
A(mhv —v,0h,) =0, V vy, € SP(T, Q)

where A is a V-elliptic, continuous bilinear form.
Lemma 3.3. Let 7' : V. H*(Q) — SP(7,Q) such that for any 0 < t < s

pn—t

lu — 7hullo < C llullso ¥V we VN H*(Q), where p = min{p+ 1, s} (3.3)

psft

Lemma 3.4. Let (u,y,p, \) be the optimal solution of optimality conditions (OCP — OPT),
(ynp(w), prp(w)) be the solution of the auxiliary system, there holds

pn—1

1y = ymp(W)llr0 + [P = prp(W)ll10 < C—= ([lyllm.a + [[Pllm.c) (3:4)

m—1

Where . = min{p + 1, m}
Proof. In the light of the auxiliary system and optimality conditions (OC P — OPT'), we obtain

A(y - yhp(u)7 Uhp) =0 (35)

A(thap - php(u)) =0 (36)
Using (3.5) with Poincaré inequality and Céa lemma, VYV wp, € SP(T,2)

Aly —umpW)llia < Ay — ynp(w),y — ynp(u))
S A(y - yhp(u)a Yy — whp) + A(y - yhp(u)7 Whp — yhp)
< A(y - yhp(u)a y— whp)
< Mlly = ynp(Wll10lly — wrpll1.0
< Mlly— inf —
< Mly=uy@lha, ity gl
Thus we have,
1y = ynp(u)|10 < C_ inf : 1y — whpll10

Ywpp €SP (T,

7



From (3.4), we have

VAN

1y =vw(lhe < € inf Clly=wwlle

Yy €SP (7,0
< Clly —mpylha

=
< OFHy”m,Q

Similarly, using (3.6) with Poincaré inequality and Céa lemma, we have V ¢, € SP(7,2)

clp = prp)l|T 0 < Al — pp(),p — prp(w))
A(p — anps p — Prp()) + Aldnp — Phps P — Prp(u))
A(p = Ghp » — Pip(u))

Mlp — prp(W)[|1.0]lp — gnpll1,0

Mllp - inf -
Ip=pp@la, inf o= gl

VAN VAN VAN VAR VAN

Thus we have,

- <C  inf -
P =pw(@)lho=C i = dwlle

From (3.3), we have

A\

_ C inf _
Ip=py@lia < € inf o= aylhe

IA

Cllp — 7lpll10

h#—1
CFHpHm,Q

IN

]

Lemma 3.5. Let (Upp, Ynp, Phps Anp) be the optimal solution of the optimality conditions (OC P—OPT)"?,
(Ynp, Prp(u)) be the solution of the auxiliary system, there holds the following estimates

1Prp = Pro(W)| [0 + [y = yrp(W)ll10 < Clllu = unplloon + 11y = ym(W)lloo}  (B7)
Proof. Combining the auxiliary and the discrete systems, we obtain
AYnp — Ynp(), vnp) = ((unp — 1), Unp)oo0 (3.8)

Alahps Prp = Prp(w)) = (Yrp =Y dhp)o (3.9)
Letting vs, = Ynp — Ynp(u), (3.8) becomes

Aynp = Ynp(w), Ynp — Ynp(1)) = (@(tnp — ), ynp — ynp(u))o.00
by ccercivity, we have :

CHyhp - yhp(“)”iﬁ < A(yhp - yhp(u)a Yhp — hp(“))
= (a(unp — u), Ynp — Ynp())o,00

|[tnp — ullosel|ynp — Ynp(w)||o.00

IN



which implies
Yrp — ynp(W)l 1,0 < Clluny — ullo,00 (3.10)
Letting g1, = prp — Php(u), (4.25) becomes

A(php - php<u)7php - php(u)) = (yhp —Y,Php — php(u))o,ﬂ

by coercivity, we obtain

A\

c||prp — php(“)”%,ﬂ < A(prp — Prp(t), Prp — Prp(ut))
= (Ynp — Y Prp — Prp(10) 0,0
< Nlynp — ylloallpry — prp(u)llo.0

Then,
1Prp = Pro(W)l[0 < Cllyny = ylloo
< Clllyw = ymp(Wllog + 11y = yap(w)llo.0)
< Cllym = yr(W)l10 + 1y = yrp(u)llog)
< Clllunp — ullooo + 1y = yr(w)llo0)
This completes the proof. O

Lemma 3.6. Let (u,y, p, ) and (Wnp, Ynp, Php, Anp) the optimal solution of optimality conditions (OC P—
OPT) and (OC P — OPT)"? respectively. There holds

et
[ — unp|lo.00 < C——([yllm.a + [|pllm.a) (3.11)
Proof.
(D — Prps Giplooa = (—(A+e)u~+ (Anp + €)Unp, Gnp)o.00
= (—(A+e)ut+ A+ e)un — (A +&)unp + (Anp + €)Unp, Ghp)o.o0
= (Anp — A)(Unp, Grp)o.0a + (A =+ ) (Unp — U, Gip)o,o0 (3.12)
Let

Gnp = Cau — upy) — Rupy = Calu — upp) — (o — unp), tnp)o,00-Unp
such that (upp, gnp) =0
(uhpv th)OﬁQ = (uhpv CQO‘(U - uhp) — (a(u — uhp)> uhp)uhp)o,aﬂ
= Cz(uhpa Oé(U - Uhp))o,aQ - (Uhp, (Oé(U - uhp)7 Uhp)uhp)o,aQ

= CQ(uhpa a(u - Uhp))o,asz - (uhpa Uhp)(a(u - uhp)a Uhp)o,asz
=0

Where ||Uhp||3,aﬂ = ¢



—1

R = (o(u—upp), unp)oon = (a(w = unp), =(Anp + €)tnp)o.on
>\hp +ée
-1 _
- P (a(u — upp), Prp)o.oq, using (3.8)
1
= e [(aV (Yrp — Ynp(w)); VDrploa + (a(Yrp — Ynp(w)), Prp)o.oal
D
1
R = [(aV (Ynp — unp(u)), Vorp)oa + (@(Ynp — Ynp(w)), Pap)o,o0l
Anp + €
1
< M + & H(av(yhp - uhp(“))v Vphp>0,§2’ + ’(a(yhp - yhp(u))aphp)o,aﬂu
7Y
< Cllynp — ynp(uw)lfo.0
(U = unp)s nplosa = Anp((u — upp), Calu — upy) — (et — upp), Unp)o.o0-Unp)o.00

= MG ((u = unp), ot — unp))o.00 — Mnp((1 — unp), (1 — upy),

Unp)0,692-Uhp)0,09

Then, using (4.25), we have :

NG (= wnp), = wip) oo = Ml = unp), dupo.on + Anpl((w = unp) (@t = upy),
Uhp)o,afz-uhp)o,a(z
A
= A\ _T_p&_ (php - D th)(),@(l + )\hp((u - Uhp), Ruhp)oﬁg

Assuming that there exists ¢ such that a(z) > ¢ a.e on 0. Thus

((u — unp), a(u — upyp))o.oa > d|ju — uhp”2

Then

Ahp
At+e

ArpC0llu — unpl[f 00 < |(Prp — P> Ghp)o,00 + Anp((U — Unp), Runp)o,60]

which can be rewritten as

[lu = unplloon < c()([lp = Prplloq + [RI) + tlfu = unp|lo.po

therefore,

||U - Uhp||0,89 < C(||P - php||0,ﬂ + Hyhp - yhp(U)Ho,Q)

Finally, we can arrive at

n—1

|[u — unpllopn < C——

Theorem 3.7 (Convergence). Let (u,y, p) and (upy, Ynp, Pryp) be the solutions of (OCP — OPT) and
(OCP — OPT)", respectively. Assuming that (y,p) € H™(Q) x H™(Q)(m > 1), h and p lager

10

(yllm.2 + [lpllmg) (3.13)



enough, we obtain the following a priori error estimates

p!

m—1

[lu = unpllooe + 11y = ynpllre + 1P = Prollie < C——=([[Yllma + [[pllng) (3.14)

where p = min{p + 1,m}

Proof.
Ny =ympllie < [ly = ymp(W)ll + ynp(w) = ynpllr0
1P = pplla < P = prp(W)ll10 + [prp(u) = Prpll10
Then using (3.4) and (3.7), we have
ht—1

1y = gello +llp = Prllve < Comm (yllme + lplime) + Coflle = wipllose + lly = yrp(llo.o}

which can be rewritten using (3.13) as

p—1 p—1
([w = wnpllose + [l = ywllo +1lp = Prllie < G llplime + o [lyllme
hr!
+ G ([[yllmo + [pllma)
!
< C— = (llyllma +pllmo)

4 A posteriori error estimates

In this section, a posteriori error estimates for the hp finite element approximation for the op-
timal control problems. we introduce two lemmas which generalize the well-known Clément-
type interpolation operators and also two Lemmas which generalize the polynomial inverse
inequalities.

Lemma 4.1 ( [25]). Let T be a x-shape reqular triangulation of a domain Q € R, and let p be a
polynomial degree distribution which is comparable. Then there exists a bounded linear operator 1" :
L*(Q) — SP(7,Q) and there exists a constant C' > 0, which depends only on x, such that for every
uw € H'(Q) and all elements T € T and all edges e € (T)

h. h
[|lu—I"ullo; + p—HV(U — I"u)o, < Cp—HVuHo,wT, (4.1)

he

||U — ]hpu||L2(e) S C (p ) ||VU’||O,we (42)

e

where h, is the length of the edge e and p. = max{p,, p.}, where T, 7" are element sharing the edge e,
and w, , w, are patches covering T and e with a few layers, respectively.
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Scott-Zhang-type approximation

Let a set B C £(7) of boundary edges of the triangulation 7 be given, i.e,
BCe(T) and b€, VbeDB (4.3)
Next, we define for ¢ € (1, c0) the space
Wyt = {u e W"(Q) : ul,o F, € B, forall b € Band (1.1) holds} (4.4)
where the continuity condition (1.1) is

forallab,b' and V € A(b) N A(Y) thereholds lim wu(z) = lim wu(x). (4.5)

r—Vzeb rz— Ve

Lemma 4.2 (Scott-Zhang-type quasi interpolation [25]). . Let T be a y-shape regular triangulation
of a domain Q@ C R? and let p be a polynomial degree distribution which is comparable. Then there exists
a linear operator ©"? : H'(Q) — SP(T, Q) such that

(7"Pu) b=wulb V beB

Furthermore, there exists a constant C' > 0 depending only on ~y and q such that for all elements T € T
and all edges e € (T)

h, h,

|lu = 7"ullo - + p—HV(u — 7"u)|lor < OVl lo.us, (4.6)
h hr

|lu — 7"ulfoe < C b Vo, (4.7)

Analysis of the error indicators requires polynomial inverse estimates in weighted Sobolev
spaces in multi-dimensions. Under this consideration, the weight functions: ®;(z) := dist(z, 07)
on the reference element 7 should be introduced (see [26] for more details). For an arbitrary
element 7 € 7, set ., = ¢, P; o F-!, where is ¢, a scaling factor which is chosen such that
[ ®.dzdy = meas(1). ).

We have following lemmas reads as follows:

Lemma 4.3. Let 7 be the reference square as defined previously , let the weight function ®: be defined
above. Let vy, B € R, satisfying —1 <~ < fand § € [0, 1]. Then for all polynomial 1), € Q,

[@%|V¢pl2dxdy < C’1p2/|1/)p|2dxdy, 4.8)
[@orgasdy < o (@) vidsay ®9)
[@ vy < Ca?® [ (@) anay, (4.10)

where C;,i = 1,2, 3, are constants, C5 is dependent on 3 and ~y, and C's is dependent on 0

Lemma 4.4. Let 7 be the reference square defined as previously , 0 € (1/2,1]. Set é = (0,1) x {0}.
Then there exists a constant Cy > 0, which is dependent on 60, such that the followings hold. For every
univariate polynomial ¢ € Q, and every € € (0, 1] there exists an extension v, € H*(7) such that

(i) Ué|é - wq)g ﬂnd ’Ué|87:_é = 0,'

12



.. 0/2
(i) |Jvel[2+ < Coel[0.®27||2, ;

(iii) ||Vvel2» < Colep®@? + 7 1)[[00.02 |2 .

where ®; is the weight function defined above, and 7 is the reference element such that é C O7.

4.1 A posteriori upper error estimates

In this subsection, we will derive upper a posteriori error estimates of residual type.

Definition 4.5. We first define the following notations:

6
=)0 0k (4.11)

T€T 1=1

h2 .
M = S+ div@Vy)lii (4.12)
he
e = > o @V ndlf, (4.13)
Pr
e€p(r)—po(r)
hy
Mo = 2 g llatu = ) = [@Vm)nlf, (4.14)
e€po(r)
> h? 2
Nir = p—§||?/hp—yd+div(a*VPhp)||o,T (4.15)
he (oo s
o= >, o @ Vom)ndlf, (4.16)
Pr
e€p(T)—po(7)
hr )
Mo = e;)@!!aphﬁ[(a Vo) -nelllg (4.17)
ecuo(T

where we denote the jump of v across the edges by [v], and n. is the unit outer normal on e.

To derive a posteriori upper error estimates for the optimal control problem, we need to
introduce the auxiliary system : find (y(upy), p(upnp))) such that :

A(y(unp),v) = (@unp, v)ooo + (f;v)o0, Yo eV
{ Alq, p(unp)) = (y(unp) = Ya, Q)oa, Vg EV (4.18)

Using the above auxiliary system, we now prove the following lemmas to obtain a posteri-
ori error estimates of the optimal control problem.

Lemma 4.6. Let (y,u,p, \) and (Ynp, Unp, Php, Anp) be the solution of optimality conditions (OC'P —
OPT) and (OCP — OPT)", respectively. Let (y(unp), p(uny)) be the solution of auxiliary system.
Then we have q

[y (unp) = ylluo < Clluny = ulloo0 (4.19)

and
1P = p(unp)ll1.0 < Cllyny — y(unp)||1.0 (4.20)

13



Proof. It follows from the continuous optimality conditions and the auxiliary system that

Aly(unp) = y,v) = (a(uny = u)),v)o00 (4.21)

Alg, p(unp) = y) = (Y(unp) — ¥, @)o,0 (4.22)
Letting v = y(up,) — y in (4.21), we have

Ay (unp) =y, y(unp) = y) = (@unp = w)), y(unp) = y)o,on

The above expression implies that

IN

A(y(uhp) - Y, y(“hp) )

= (a(unp — u)),y(unp) — y)o,00

0| [unp — ullo,p0l|y(unp) — yllo,00
0| [unp — ullo,p0lly(unp) — ylloo

clly(unp) = ylli o

IA A

which implies
[y (unp) = yllra < Clluny — ulfoon (4.23)
Letting ¢ = p(up,) — p in (4.22), we have
A(p(unp) = p, p(unp) — p) = (Y(unp) =y, p(unp) — Ploo
The above expression implies that:
cllp(uny) = pllia < A(p(unp) = pp(uny) = p)

(y(unp) — ¥, p(unp) — P)oo
< Clly(unp) — yllo.allp(un) — pllog

Which implies that :
[Ip(unp) = Plhe < Clly(un) = yllie (4.24)

]

Lemma 4.7. Let (u,y,p, \) and (Wnp, Ynp, Php, Anp) be the solution of optimality conditions (OC'P —
OPT) and (OCP — OPT)" respectively. Let (y(unp), p(uny)) be the solution of auxiliary system.
Then we have :

llu — Uhp||0,asz < C||?/(Uhp) - yhp||0,ﬂ

Proof.
(P —Php, o0 = (—(A+e)u+ (Anp + €)tnp, 9)o.00
= (—(A+e)u+ Anp +e)u— (A +)u+ (Anp + €)Unp, ¢)o.00
= (Anp — N (U, @Q)ooa + (Anp +€)(unp — u, ¢)o.00 (4.25)
Let

q=Calu— Upp) — Cu = Ca(u — Unp) — (a(u — upp), u)o s0-u

14



such that (u,q) =0

(u7 Q)O,aﬂ = (ua gga(u - uhp) - (a(u - uhp)? U)U)[),ag
= Clu, a(u — unp))o00 — (u, (@t — upp), u)u)o o0

= Clu, au — upp))oo0 — (U, u) (@t — upp), u)oo0

0
Where [[u][3 50 = ¢
C = (alu— ), wosn = 1= (au — ), —(A+<)uloon
= )\__i_lg(a(u — Upp), D)oo, using (4.21)
= 1 @V () ~ 1), Vhos + (alyle) — ). Plose]
€l = s [@Viy(uny) — ), Voloo + (@(ylu) = 1), Ploaol
< 1 l@Viya) 1), ool +(@u(uny) — 1)), Plosnl]
< Clly(unp) = ylloo
Mip((w = unp), Doon = Anpl((u = upp), Cau — upy) — (@ — unp), w)o,00-w)o00

= Ahp&((“ — Unp), (U — unp) o0 — Anp((U — unp), (a(u — upp),

U)o,aﬂ-u)man

Then, using (4.25), we have :

)\hpCQ((u — unp), (U —upp)osn = Anp((U — unp), @)opa + Anp((w — unp), ((u — upyp),
1) 0,60-U)0,00
An
= )‘hp _Ti c (php - D, Q)O,BQ + Ahp((u - Uhp), CU)O’QQ

Assuming that there exists ¢ such that a(z) > § a.e on 0. Thus
((u = unp), a(u — unp) o0 > 0] |u — upp||*
Then

Ahp
>\hp +ée

AnpCP0)|u — unpl|f 9o < |(Php — s @)0,00 + Anp((w — upy), Cut)o 0

which can be rewritten as

[lu = unpllon < c()([lp = prplloq +[C]) + tlfu = wnp|lo.o0

15



Finally, applying the above expressions, we can get

l[u — unpllo,00 < Clly(unp) — Ynplloo
]

Lemma 4.8. Let (Upnp, Ynp, Dhps Anp) and (y(uny), p(un,) be the solution of the optimality conditions
(OCP — OPT)" and the auxiliary system. Then,

1y(unp) = vl @ + p(unp) — prplli0 < O (4.26)

Proof. Tt follows from the discrete optimality conditions (OCP — OPT)" and the auxiliary
system, we have :

A(y(unp) — Ynp, vnp) = 0 Yup, € SP(T,9Q) (4.27)

A(thvp(uhp) - php) = (?/(Uhp) — Yhp, th) Vth € Sp('T, Q)
(4.28)

Let e’ = p(up,) — prp and let € = 7Pe?, where 77 is the Scott-Zhang type interpolator defined
in lemma(4.9). Applying the standard residual techniques (see, e.g., [32]). Then it follows from
the projection equation, Green’s formula, and Holder’s inequality that

cllplunp) — ppllia < Ale?,€?)
= A(p(unp),€’) — A(php, €")
= Ap(unp),€”) — Apnp, € — €}) — APnp, €7)

Y\Unhp) — Yd, €p)o,n - A(phm el — 61})) - (yhp — Yd, €§)o,ﬂ

(y(unp)
= (y(unp) — Ynp» €”)o.0 — A(Pnps €7 — €4) + (Ynp — Ya, €¥ — €})o 0
(Y (unp) — Ynp, € )o.0 + (Ynp — Ya, ¥ — €7)o0 — L(@*Vphp)-v(ep —ef)

- / apiple” — )
- { [ divta )@ =€) = [ (@ Tm)nsfer - ef;>} - [ ampter =)

e}

T
+ (Y(unp) = Ynp, €)o. + (Unp — Ya, € — €)on
= S { [t divta T @ ) - [ @Vimnter - ]
TET or
- Z /aphp —e) + (Y(unp) — Ynp: € )o,0
e€uo(T
= Z/ Ynp — Ya + div(a*Vpp,) (el — ) — Z / a*Vppp).nel(e? — €f)
rer U7 eep(r)—po(7)
= 5 [Cem ) = )+ () = s
e€po(r) "€
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where we used (4.38) and (4.28), we have :

cllp(unp) = prollin < D 1 (ynp = ya + div(a*Vpwy)llos|(€” = €b)l o

TET

+ > @ Vom)adlloell(e” = epllo.

e€p(T)—po(T)

+ > ll(apn + [@ Vi llocll(e” — e)llo.

e€po(T)
+ [y (unp) = Ynpllo.alle’]lo.0

And using the Theorem(4.9), we have :

h, N
cllp(un) = pmllia < CY M — ya + div(aVpuy)|lo.-|[Ve?|o,us

TET

he i
+ C Y @ Vpr)nelloel [VePllows

e€p(T)—po(T) i

+ C Y || app + [a"Vpnpnelllo.e[[Verlo,ws

ecpo(T)

+ CHy(uhp)—yhpllo,szl\epllo,sz

C(o) {Z (E) || (Yrp — ya + div(a” Vi) |[5 -

TET Pr

IN

he o
+ > @ Ve)nll.

eep(r)—po(r) ©7

hy .
+ Z —|[|(apnp + [a Vphp'nemg,e
e€po(m) 7

T+ lyCuny) — yhpua,g} ollerliZ

. & .
Setting o = 5/ wecan obtain :

1p(unp) = prplli < CZ Ithp ya + div(a*Vpu)|[5 -

TGT
h~ .
r oy, 2 g llemndl.
TET ecp(T)—po(T) a

+ Oy > —|Iaphp [(a"Vpip) mel[5.c

TET e€po(T)

+ Clly(uny) — ?/hp||(2),§2

Thus, we have :

Ip(urp) = Prpllie < CY (0 + 03+ 15.0) + Clly(uny) — ymllie

TET

17
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Similarly, let €Y = y(up,) —ynp, and let €Y = 7Pe¥, where 77 is the Scott-Zhang type interpolator
defined in lemma(4.9). Applying the standard residual techniques (see, e.g. [32]). Then it
follows from the projection equation, Green’s formula, and Holder’s inequality that :

Ally(un) —ymllia < A’ e¥) = A(e?, e¥ — ef) + A(e?, )
A(y(unp) = Ynp, ¥ — €7)
= A(y(uhp)7 eV — 6?) - A(yhpa e’ — eng

AllyCury) = ymollin < Y {/(f +div(aVyn)) (e’ —ef) — Z/a [(@Vynp)-nr] (e’ — 6?)}

T

+ Y [ (aluny — ywp))(e? — €Y)
e€po(T) /e
= (f + div(aVyn)) (e’ — ef) — [(aVynp).nel(e” — €f)
;T /T eeu(f)zuo(f) /e

* Z /<O‘(“hp — Ynp) — [aVy.ne])(e” — €Y)

e€po(r) * ¢
where we used (4.38) and (4.27), we have :

lly(un) = ympllia < C Y IIf + div(@Vym)llorlle’ = €fllor

TET

+ C Y @Vym)ndlloclle’ = €flloe

e€p(T)—pio(T)

+ O Y lalun = yip) = [aVy.nellloclle’ = €fllo.

e€io(7)

And using the Theorem(4.9), we have :

hr ,
cllyCury) —ymollia < C D —IIf +div(@Vym)llorlIVe!|lows

rer 7

h,
+ C ) —[(aVynp)-nellloe Ve [oe

eeu(r)—po(r) ¥ 57

h,
+ C Dy Fllaluny — ynp) — [@Vynellloe] Ve o

e€po(T)

IN

h2 .
Clo)) o I+ div(@Vu)I G

TeT 1T

o) Y v ndlR,

e€p(r)—po(r) 7

h,
+ Clo) > Tllelun — ) — [aVyne[l§. + olle’[} o

e€po(r)
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. C
Setting o = 5, Wecan have:

h? .
C>  —2|If + div(aVyw)I[5 .

TeT T

h,
+ 0y Y EH[(aVyhp)ﬂe]H%,e

TET ecp(T)— (

IN

1y(unp) = ynlli

+ Oy Y —Ha unp = Yp) — [aVy.ne] |G
TET e€po(T)
Hy(uhp) - yhp| ’%,Q S C 2(77%,7 + 77%,7’ + 77;7) (432)
TET
Then, O

Theorem 4.9. Let (u,y, p, \) and (Upnp, Ynp, Prps Anp) be the solution of optimality conditions (OC'P —
OPT) and (OCP — OPT)" respectively. Then we have that

u = unp|[§ 90 + 1y — ynpllT.0 + 1P — Prpl 1.0 < C0? (4.33)

Proof. Applying the lemmas(4.6)-(4.8), in summary we have the following estimate of u — w,, :
[lu = unpllope < [|y(unp) = Ynpllow < Cn
The next step of the proof is to estimate y — yy,,

ly — y(ump) e + [[y(unp) — Ynpllo
Cllu — unp|lo.00 + 1y (unp) — ynpl] < Cn

Ny — ympllio <
<

The final step of the proof is to estimate error p — py,, :

1P = pwllie < lp = punp)llra + |p(unp) = prpll0
< Clly = ylunp)lloo0 + [[p(unp) = prpll < Cn

4.2 A posteriori lower error estimates

In this part, we discussed lower a posteriori bounds, that means the efficiency of the error
estimates established in the Theorem 4.9.

Lemma 4.10. Let (y, p, u, A) and (Ynp, Php, Unp, Anp) be the solution of optimality conditions (OC'P —
OPT) and (OCP — OPT)" respectively. Then,

7. < c(piuy—yhpumpf e - fHUT) 43

12
N, < Cp”p (yr = ylle.+ + |77 (Ynp) — T2 (Ya) — Ynp + vall3 ;)

T

+Cp2lp — pwpl|3 (4.35)
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Where 7, is the L*-project operator on the space of polynomials of degree p, on the element 7,1/2 <
B < 1 and the constant C depends on c.

Proof. let ®, be the weight function defined before lemma4.8.
2

. hZ o
() Upper bound of . = {1y, — -+ div(a" Vi ),
Define w, = (7, (ynp) — T, (ya) + div(a*Vpp,)) P2, 2 < a < 1.

T? 2

|, = / (e () — T () + div(a* Vpny) o,

T

= / (y — ya + div(a*Vpp,))w, + / (Ynp — y)wr + / (7 (Ynp) — T2 (Ya) — Ynp + Ya)wr

T

= A(w.,p) — { / (a"Vppp)wr + / ] aphpr] + / (Ynp — y)wr

+ / (77 (Ynp) — 77 (Ya) — Ynp + Ya)ws

T

= A(wT,p - php) + /(yhp - y)wr + /(WT(yhp) - 7T7-(yd) — Ynp + yd)wf

< COllp = pipllis Wl + 1(wnp — 9) @7 [lo w7 {0
+ ||(7TT(yhp) — 7 (Ya) — Ynp + yd)CI)EHO,T“wT(D;EHO,T (4.36)

Then we should estimate w, with the H' semi-norm. Using the inverse estimates (4.9)-(4.10)
with 3 = a,7 = 2(a — 1)(note that we have y = 2(a — 1) > —1 when a > 1), § = q, and the
affine transformation F,, we have :

el < Q/CI’?a\V(WT(yhp)—Wr(yd)eriv(a*Vphp))IQ

Lo / (s (o) — 0 (9a) + div(a*V pp) |22

2(2—a)
< CpTh2 /‘Pff(m(yhp) — 77 (ya) + div(a*Vpyy))?
- h% T<I>3<a—”(7r7(yhp) — 77 (ya) + div(a”Vpiy))?
2(2—a)
< CpTh2 /q)f(m(yhp) — 77 (ya) + div(a*Vppy))?
! QT a
_ Cp?_(lia)%HwT(I);EHg,T (4.37)

Therefore, it follows from (4.36) and (4.37) that :

e
[|wr @+ o+

o Pr -3 S
< Clpr 3=l = pullir + 11 (np = )@ *Hlo.r + 17 (yrp) = 7 (4a) = Yo + 9a) @7 [[o)

2—a
b
< C(h—||P — iyl 17+ ynp — Yllor + 1|7 (Wnp) — 77 (ya) — Ynp + allor)
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Furthermore, it follows from (4.38) and (4.9) with a = g and v = 0 that :

|77 (ynp) — 72 (ya) + div(a™Vpmy)|lo.-

8 _B
< CpllImeuny) = 7rl(ya) + div(a"Vpny) @2 o = CpZ| w07 o,
25
p;
< Cp§< h 1P = Prpllir + [ynp — Yllos + 7r (Ynp) — 7 (Ya) — Ynp + deO’T)
Thus,
) hz o 2
,'74’7_ — ]?Hyhp —_ yd + d'LU(a vPhp)”O,T
n? v(a’ e 2
< C?”W—r(yhp) — 7 (ya) + div(a*Vpy,)| |2, + O}?HWT(?/h}?) — 7 (Ya) — Ynp + Yallo -
zT 2 2517 2 T 0
< Cp:llp = pmlli - + Cp; p_;(Hyhp = yllo - + 17w (ynp) — 7+ (Ya) — Ynp + vallG )
, ) 9 h; 2 :
< Colllp = puollr +Cr 5 (lono = 91l + 117 () = 7 (50) = v + 3l
) hf - 2
77477— — FHyhp — yd + d@v(a vPhp)HO,T

IN

h?
C:llp — il - + C]ﬁﬁ};(Hyhp = Il + 17 (vnp) — 77 (Ya) — ymp + walli£)

2

3 h2 ,
(i) Upper bound of 77 | = 2 1f + div(aVyn)|[3 ,
Similarly, define v, = (7. f + div(aVyp,))P2. Then we have :

2
ot < CRE [ 02(nf 4 div(aVan,))

- C 2(1—a)ﬁ (D_% 2
b hQHUT T HO,T

Therefore

o2, = [t + divtaVa)e

T

— /(f + div(aVynp) ), + /(mf — fvs

T T

= /waT—l—/aTozuvt— |:/T<(lvyhp)vv7—+/87ayhp:| +/T(7Trf—f>UT
= A(y—yhp,vT)Jr/T(WTf—f)UT

1y — ynpl 17 |vr |1 + (|7 f = F)P2 ||o,r]|0:Pr 2 o,

IN

and hence

p27a
< O(z 1Yy — Ynp

1+ |7 f = fllos) (4.38)
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where, it follows from (4.38) and (4.9) with « = § and v = 0 that :

B _B
CP|(mr f + div(aVy)) 27 |lor = Cpf||wr Pz ? [los

|7 f + div(aVypp)|lor <
p’
< CPE(;L—H?J — Ynpl |1 + |17 f = fllor)
using similar techniques
I 2 2 . , 2
I+ div(aVyw)llo, < 5 lmef + div(aVyw)llos + C 5 lmf + fllo

S OpTHy yhp||1’r+0p6 T||7T7'f f||OT

Therefore

o
e = Ilf +div(aVm)lE,

T

IN

(7Gﬂw—yme+%ﬂTHmf fm”) (439)

]

In order to obtain a local upper bound for the edge contribution 7y, 73, 15 and 7 we intro-
duce the sets

w, = {Ur" : 7" and 7 share at least one edge} and w, := {Ur : 97 N 9 = e}
We againsete =7 N7y and 7. =71 U T

Lemma 4.11. Let (y,p,u, \) and (Ynp, Php, Unp, Anp) be the solution of optimality conditions (OC'P —
OPT) and (OC P — OPT)" respectively. Then we have :

@Tgc(z%m %mw+ﬁ*;m< T

T

+ pL- i Z || f = fHoT)S (4.40)

' Cwr

€ Eh
i < C{p2p = pwll3 0, + 017 > hellapmllo.
™ een(r)—po(r)

h2
+ e > lymp = lle o + 17 (Ynp) — 7o (ya) — ymp + de%,w)) ; (4.41)
o T Cws

€ €h72'
@.sc(“wyymmfwwpum —un)lB

T

+ Z - 4€|! . f — fHoT>, (4.42)
TCWr bz
M, < ( 22 p — pipl ], + Z —(llyp — wlI2.
TCw-r
+ ||7T7(yhp) - WT(yd) — Ynp + yd| |077—)) . (443)
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Where h, is the length of the edge e, 7, is the L*-project operator on the space of polynomials of degree
p- on the element 7,0 < € < 1/4 is an arbitrary small positive number and the constant C' depends on
€.

Proof. To obtain an upper bound for the edge contribution, we will use weight functions as-
sociated with the edges and a suitable extension operator. For given element 7 with (interior)
edge e, we set 7, to be the union of all the elements sharing the edge e.

. h,
(i) Upper bound of 3, = > 5 [(aVynp) . nel|[5 -

e€p(r)—po(r) “Pr
We construct a function w, € H'(7.) with w.|. = [aVypyn]®’, 1 < § < 1, such that w, is an

e’ 9

affine transformation of v on the reference element and [aVy;,.n.] will be and ¢ in lemma 4.4.

g =9
[aVynp-ne]@e|ls, = |Jweds?
p b

’(2),6 = /[avyhp~ne]we

€

— /[av(yhp —y).neJwe + /a(u — Y)We

€ €

= A(ynp — Yy, we) + / (f + olz'@(aVyhp))w6 + /(au — WWYpp)We

Te e

< CHy_Z/thLTe‘we‘l,Te +C’|f+dw<avyhp)”0,‘re
+ Clla(u = ynp)llo.ellwelloe

we’ ’0,7’e

Using the equivalence affine transformation and lemma 4.4, we obtain the upper bounds for

9
|wel1,, and ||wel|o -, in term of ||[aVypp.ne] PE ||o.e-

1 0
welf,, < Ch—(epw’e) + e laVynpne @23,

T

0
[wello.r, < ChrelllaVynyne] |5,

0
lwell§.e < Chell[aVynp-ne]@¢[5..-

where € € (0, 1] is an arbitrary small positive number. Summing up, we have :

0 1 _ 1172
||[aVyhp.ne]CI>§||0,e < C((h_(€p2(2 9)+€ 1)) / Hy_ythl,TE

T

+ (hee) 2| f + div(@Vynp) o, + (he)*lla(u — yip)llo.e) -
Considering (4.39), we sum up all the edges e € ;1(7) — po(7) and then obtain that :

hy .
>, eV ez,

eep(r)—po(r) ©7

1 _ _ h? .
¢ (p—(epQ(2 D+ ey — ynpll +PT€Z§||f + div(aVyn)13 .,

T

IN

2 2
ot = mlR, ).

1 P h2
C—(ep*™" + e I)Hy—ythin+CpTZ§Ha(u—yhp)H3,wT

r

IN

23



h? .
+ Cpre Y —Z|If +div(aVy)|[5,

T

T/C’UJT
[P 2 h? 2
< Cp—(ﬁp +e )y = ymlliw, + Cprﬁl\a(u = Ynp) 10,10,
p2
+ Cep? Y My —ymlll o + Cepl™ 2 3 |lmor f = fll
' Cwr T r'Cwr

where € is an arbitrary positive number, and ; < 4 < 1is defined in lemma 4.4.
Setting € = 1/p? yields that

h .
2. llavVyynd2e|l,

eep(r)—po(r) ©7
2

h2 h2
< Cpelly =l e, + CorZllatu =yl + O % D e f =l

T ' Cwsr

Using the inverse estimate in lemma 4.3 and setting § = § = 1/2+ e with 0 < e < 1/4, we
have that

h,
773,7 = Z 5 aVynp-ne| |8,6

eep(r)—po(r) T

hr [
< cp? Y Z[aVynnd 2[5,
ecp(T)—po(T)
20 20 lh2 2
< Cptly — yhplhwﬁCp *pTHa( ~ Ynp) 0,00

oyl 5 =S lmef — 1R

7—‘er

€ Eh’?—
o( 2l = gl + 52 ot = ),

+ 1 46 Z ||7T7'f f||07’)

TCUJ

IN

. he o
(11) Upper bound of 77?),7 = ZGG/L(T)f/Lo(T) %H[(a Vphp)‘ne] ’ ‘%,e'

Similarly we define v, = [a*Vpy,.n.| P’

;9
2 Hg,e = /[a*vphp-ne]ve

0
10"V ne]@E |5, = [Jve®s2
e

= /e[a*V(php — D) .Ne|Ve — /eozpve

= A(php - D, Ue) + / (y — Yd + di?)(a*v])hp))ve - /(aphp)ve

S CHp - pthlyTe‘/Ue|1yTe + OHy - yd + dzv(a’*vphp)HO,Te
+ OHO‘pthO,eHweHO,e

Ve ’ |0,‘re
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Using the equivalence affine transformation and lemma 4.4, we obtain the upper bounds

0
for |ve|1.-, and ||vel|or, in term of ||[a*Vppp.ne| PE |0 e

1 o 0
Vel -, < Ch—(€p2(2 D 4 e N[a*Vprpn 2[5

T

4
101167, < Cherellla™Vprpne] P2 1[5 e

[}
[|vellp.. < Chellla*Vppp-ne 2|[5..

where € € (0, 1] is an arbitrary small positive number. Summing up, we have :

1

* ¢ _ 10 1/2
0 Tndod o, < € (G ) o=,

+ (he©)Ply — ya + div(a*Vpuy)|lo,. + B epmplloe) -

1,7

Considering (4.39), we sum up all the edges e € ;1(7) — po(7) and then obtain that :

hT * % 2
> p—|l[a Vprpne] P2 |[5.c

eep(r)—po(r) ©7

IA

1 B B h? .
c (p—<ep2<2 O+ = il + pee 2 lly = v+ div(a ) .,

T T

h? 9

T pfp—gnaphpuo,wf).
L sp—e | -1 2 h2 2

O (@0 + o= gl + Cor'llal i,

T

IN

h? :
+ Cpye Z |y — ya + div(a x Vpuy)|[5

TICU)T T

IN

_ _ h2
O™+ lp = pulli . + Cre S llopnolli, + Ccpl > lp—pwllt
T T

T/C’LUT

h?
+ Cp? 2N (lywp — yllG 2 + 7o (Whp) — 7o (Ya) — Ynp + vall 1)

T r'Cwr

where ¢ is an arbitrary positive number, and § < § < 11is defined in lemma 4.4.
Setting e = 1/p? yields that :

hT * % 2
> p—H[a Vprpne| 2[5

e€p(T)—po(T)

2 w2
< CpTHp_pth%,wT+Cp7’]¥||aphp||(%,wT+Cp72'ﬁ 2 (lywe — w5

T 1'Cws

+ ||7T7—/(yhp) — Ty (yd) — Ynp + yd| |(2),7")

Using the inverse estimate in lemma 4.3 and setting = § = 1/2 4+ e with 0 < e < 1/4, we
have that :
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he o .
7752),7 = Z 2 Ha vphp'neH(%,e
Pr
e€p(r)—po(r)

he o )
oy Y etV @2l

ecp(r)—po(r) ©T

IN

2 )
< OOl =yl + Cr N I, +
h2 2 i 2
_; Z <||yhp - y”o,r’ + ||7TT’(yhp) — 7 (Ya) — Ynp + yd”o,r’)
pr ' Cwr
< C 2+42¢ _ 2 2+26h_3' 2
< Py = prpl 150, + 07 S DR [6 00,
h2 2 2
+ plj‘le Z (||yhp - y||0,7” + |7 (Ynp) — 70 (Ya) — Ynp + yd”o,r’)
T T Cwy

O

To obtain an upper bound for the edge contribution, we will use weight functions associated
with the edges and a suitable extension operator. For given element 7 with (exterior) edge e.

h,
(iii) Upper bound for 77%,7 = Z( 2 || (uny — ynp) — [(aVyhp).ne]Hae.
ecuo(T T
We construct a function w, € H'(7) with we|e = [(uny — ynp) — aVynp.ne|®?, 3 < 0 < 1, such

that w, is an affine transformation of v on the reference element and [a(up, — Ynp) — aVyny.ne]
will be and ) in lemma 4.4. Let e € 19(7), . Then we have :

0 0
o —tnp + ynp) + aVyrp e @E (5. = [|weD? [, = / [a(u =y = unp + Ynp) + AV Yp-ncfte

= Alyn, — v, we) + / (f + div(aVyp,))we + /a(u — Upp)We

< Clly = ympllrlwelir + ClIf + div(aVynp)lfor|welor
+ Clla(u = unp)lfoellwello.

Using the equivalence affine transformation and lemma 4.4, we obtain the upper bounds

0
for |we|1 » and ||wel|o.- in term of ||[a(—upnp + Ynp) + aVYnp-1e] PE||0 e

1 _ _ 4
’weﬁ,f < Ch_<€p2(2 O +e 1>H[O‘(_uhp + Ynp) + aVYpp.ne] P2 Hg,m

T

0
||w€||(2),7' < C’h76||[a(—uhp + Ynp) + avyhp'ne]q)62 ||8,e’

0
[|we|[5.e < Chellla(=uny + ynp) + aVypp-n] P[5 .

where € € (0, 1] is an arbitrary small positive number. Summing up, we have :

1

0
|’[a(_uhp + yhp) + avyhp-ne]q)g HO,e < C <(_

— _ 1/2
(e )y = gl
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+ (hee) (| f + div(aVyny) o + he'[au — uhp)Ho,e)-

Considering (4.39), we sum up all the edges e € 1o(7) and then obtain that :

h, [
Z — |l =unp + Ynp) + aVyppne|Pe Hg,e

T

e€po(T)

1 B B h? ,
< C(;&ﬁ@”+flmy—%Mim+%7§W4dwwV%Mﬁm
+ )
< Ci 2(2—-0) -1 . 2 C h‘_72' . 2
= % (ep +e My = ynplli e, + prgHO‘(u np) 10,5,

h2 | ,
+ CpTEI?Hf+dzv(avyhp)||0,u~)7—

1 _ -

< Cp (ep®® " + e M|ly — Z/thlmeCPrng@( — tnp) |13 .

+ O epllly— yhpn“wZepﬁﬁ Tl\mf f13

TCWr TCWr

where ¢ is an arbitrary positive number, and § < § < 11is defined in lemma 4.4.
Setting e = 1/p? yields that :

h, ]
>l —unp + yrp) + aVynp ] O[5
e€po(T)

e 2
< Cpelly = ol . + Corllau = )R, + Ce 3 o e = 411,

TC’U)T

Using the inverse estimate in lemma 4.3 and setting § = § = 1/2 + e with 0 < ¢ < 1/4, we have
that :

h,
M. = 3. o, o=y + yny) +aVynnelfs.
e€po(T)
20 h; 3112
< Cp; Z _||[O‘(_uhp+yhp)"‘avyhp-ne}q)@Ho,e
ecpo(r) 1T

IN

hz
C’pyge“y — Ynyp ’in + CPEQHP—HOZ(U - “hp)Hgﬂﬂr

T

+ CZW““ TH wf — fIi,

TCWr
2

€ EhT
c( 2y = gl . + 2 o = ),

+ Z pl 4€H Tf fHOT>

TCWr

IN
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. h )
(iv) Upper bound for 773,7 = Z( : gugphp + [(a vPhp)-ne]H%),e'
ecuo(T T

Similarly we define [apy, + (a*Vpp,).n.]®Y.
0 -0

lfopin + @ T 041, = 1007 12, = [lapn, + (@ Fmip)nl

= /[a*v(php - p)'ne]ve + /a<php - p)ve

= A(ppp — Dy ve) + / (y —Yq + div(a*Vp,m))v6
S CHP - pthl,T‘/Ueh,‘r + CHy — Ya + div(a*vphp)"O,THUeHO,T

Using the equivalence affine transformation and lemma 4.4, we obtain the upper bounds

6
for |ve|1 - and ||ve||o - in term of ||[apry + (a*VDry).1e] PE |0 e

’Ue‘%ﬂ'e < C

0
hT( 270 )| |[apny + (0" Viprp) e 2 (3.

0
10ello. < Cheelllapny + (0" Vi) 1e] 9E|[5 .

where € € (0, 1] is an arbitrary small positive number. Summing up, we have :

1

X g _ 1w 1/2
|[opnp + (@*Vppp).ne| e o < C ((h_(€p2(2 0 4 ¢ 1)) / 1P = Pall1r

+ (hee) 2 (|ly = ya + div(a*Vpup)|lo-)) -

Considering (4.39), we sum up all the edges e € 1(7) and then obtain that :

h, ) 0
Y lllapny + (@ Vipr,)ne @15

e€po(T)
1 _ _ h? .

< C <_(€p2(2 0 4 ¢ YHllp — pthi@T —i—pTe]?Hy —yq + div(a Vphp)||§?m)

1 2(2—6) -1 2 i hf . 2
< O (@ +eNllp—plll o, + Cpre > ly = ya + div(aVp)|I12

T TC’lII‘r T

1 ~ _
< Cp—(ezf@ Dt e — ot +C Y edllp—pmlli .

T ~
TCWr

+ C Z 6p36+1_2 |[Yhp — ?/H(z)r + |77 (Ynp) — mr(Ya) — Yy + yd”(%,r)

TC”LUT

where € is an arbitrary positive number, and 1 < 3 < 1 is defined in lemma 4.4.
Setting € = 1/p? yields that :

h . )
> lllaps, + (" Vony)n] 22115,

e€uo(T)

< Cpellp—pllie, +C D 02 1p (lynp = Yl15 .~ + 1707 (ynp) — 72 (ya) = ynp + val 3 )

TC’U)T T
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Using the inverse estimate in lemma 4.3 and setting = § = 1/2 4+ e with 0 < e < 1/4, we
have that :

h, .
or = D 5 lllapm + (@ Von)nellls,
e€po(r) T
h, . 0
< sze Z —||[apnp + (a Vphp)-ne]q)gH(z),e
ecpo(r)
< CP?%HP pthle%-C Z p2ﬁ+29 1
TCWr
h2

p_;(Hyhp - y||%,7’ + ||7T7(yhp) — 7 (Ya) — Ynp + yd||(2),r)

( 22 p — pipll} 5, + Z

TCWr

IN

- (llyp = wllG +

T

+ Hﬂf(yhp) - Wf(yd) — Ynp + yd”o,r>)
]

Theorem 4.12. Let (y, p, u, \) and (yhp,php, Unp, Anp) be the solutions of (OC'P — OPT) and (OCP —
OPT)" respectivelyt. Let n; ., i = , 6 defined by (4.38)-(4.38). Assume that all the conditions in
Lemmas 4.10-4.11 are valid. Then we have

N < Czp2+2€<l|p ol 3w, + 115 = Ynpl o + 112 = Pl 1} . + 11y — Ul [3

TET

+h—3(F2 + Fy + E2))
2 1 2

T

where 0 < € < i is a small positive number and

Fo= 3 (e f = TR 1o (0hg) = o (9a) =+ il
T/Cw'r

FP o= > (e f = FllG - + 17 (yap) = 72(Ya) = ynp + vall3 )
TCWr

E* = la(u = yup)l[g.w, + llapm| 5w, + ol — )l 5,

Proof.
6
D) DL
TET =1
< X (v =i+ limes - 113, )
TET

h?
+CY ]ﬁ(H%p —ylI5., + N7e(ynp) — 7 (Ya) — ynp + vall?,)

TeT =T
2

€ 6hT
+Czp3|1p—php!\?,7+02< A A s 1 (e Tl

TET TET T
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IN

Z |7 f — fHoT)

1— 46
p ' Cwsr
242 2 2+2 h'2 2
e (p: = ol .+ 72 .,
TET T

2
+ e 3 (lam = ll + llmolune) = 7o) = o + yd||3,7,))

T 7' Cwr

E 2
+O S (521l = il + 52 =

TET T
+ ) 14€|r o f — f|\07>
TCWr
+C> (p?”EHp Prolli, + Z 3 (lyme — yll5.+
TET TCWr

17 () = 7 () — i + yd||3,7>)

TET

(ZPME 1P = Prpllt o, + 1y = 9ol 3o, + 110 = D1l 5, + 11y =yl 5,)

+y o TQE > e f = FUIG oo+ e (g = 700 (90) = g + vall§.11)

TET ' Cws

+ ) (e f = FIR - + e (np) — 7o (ya) — vy + wall3 )

TCWr

1 Z 2+2¢ T HO‘ yhp)“%,wf + ||ogphp||g’w7 + |Ja(u — Uhp)”?),qbf))

TET

we note that 0 < e < 1, wehave 3 —2¢ > 2,3 —2¢ — (24 2¢) = 1 — 4e.

< CZPME( (lp = ol o, + 11y = Yol T, + 112 = Prol L, + 1y = oll3.,)

TET
h?
+=2( D (lmef = IR + 7 (Ynp) — 7o (Ya) = Ynp + yallo 1)
T rCwsr
> e f = Flls- + e (unp) — 72 (Ya) — ynp + valls )
TC’!IJT

(et = ynp)lI6 o, + Nwprpll6 u, + [lex(u — uhp)llﬁ,m)))

Remark 4.13. It follows from Theorems 4.12 and 4.9 that :

u — unpllg 00 + 1y — ympl 10 + 1P — Prpl 10 < O (4.44)
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and

o< Oy pit <|Ip — Prpl T, 1Y = Ul o, + 10 = Pl T, + 1Y =yl £,
TET

h72— 2 2 2
JFE(F1 + F5 + E?)

T

where FE, Fy and E7 are defined in Theorem 4.12 which are all higher order terms under some regularity
conditions. Then we obtain the a posteriori error estimates with the upper and lower bounds, although
there is a gap of order p* between the upper and lower bounds.

5 Discussions

In this paper, we discussed a priori and a posteriori error estimates of the 7 — p-finite element
method for boundary convex optimal control problem governed by the elliptic partial differ-
ential equations. It is shown that the a posteriori error estimators derived in this paper provide
both upper and lower bounds for the approximation errors, although the lower bound is sub-
optimal in the sense that there is a gap of order p* between the upper and lower bounds. In this
area there are many important issues that still need to be addressed. For example, studies for
more complicated control problems for instance using state constraints instead of control con-
straints. Furthermore many computational issues have to be addressed. For example, adaptive
refinement strategy should be investigated for efficiently implementing adaptive h — p-finite
element method for optimal control problems.

Acknowledgements : This research is supported by the African Union Commission under the
Pan African University Program (PAUISTI).

31



References

[1] T. Apel, A. Rosch, and G. Winkler. Optimal control in non-convex domains: a priori
discretization error estimates. Calcolo, 44(3):137-158, 2007.

[2] I. Babuska and W. C. Rheinboldt. Error estimates for adaptive finite element computa-
tions. SIAM Journal on Numerical Analysis, 15(4):736-754, 1978.

[3] I. Babuska and T. Strouboulis. The finite element method and its reliability, volume 298. Ox-
ford University Press, 2001.

[4] 1. Babuska and M. Suri. h-p version of the finite element method with quasiuniform
meshes. Mathematical Modelling, 1987.

[5] W. Caoa and D. Yang. Ciarlet-raviart mixed finite element approximation for an optimal
control problem governed by the first bi-harmonic equation. Journal of Computational and
Applied Mathematics, 233:372-388, 2009.

[6] E. Casas. Control of an elliptic problem with pointwise state constraints. SIAM Journal on
Control and Optimization, 24(6):1309-1318, 1986.

[7] E. Casas, M. Mateos, and F. Troltzsch. Error estimates for the numerical approximation
of boundary semilinear elliptic control problems. Computational Optimization and Applica-
tions, 31(2):193-219, 2005.

[8] E. Casas and F. Troltzsch. Second-order necessary optimality conditions for some state-
constrained control problems of semilinear elliptic equations. Applied Mathematics and
Optimization, 39(2):211-227, 1999.

[9] Y. Chen, X. Lin, Y. Huang, and Q. Lin. hp spectral element approximation for integral
state constrained optimal control problems governed by harmonic equations. Journal of
Computational and Applied Mathematics, 371:112716, 2020.

[10] Y. Chen and Y. Lin. A posteriori error estimates for hp finite element solutions of convex
optimal control problems. Journal of Computational and Applied Mathematics, 235:3435-3454,
2011.

[11] Y. Chen, N. Yi, and W. Liu. A legendre-galerkin spectral method for optimal control prob-
lems governed by elliptic equations. SIAM |. NUMER. ANAL., 46(5):2254-2275, 2008.

[12] Y.Chen,]. Zhang, Y. Huang, and Y. Xua. A posteriori error estimates of hp spectral element
methods for integral state constrained elliptic optimal control problems. Applied Numerical
Mathematics, 144:42-58, 2019.

[13] K. Chrysafinos and E. N. Karatzas. Error estimates for discontinuous galerkin time-
stepping schemes for robin boundary control problems constrained to parabolic pdes.
SIAM Journal on Numerical Analysis, 52(6):2837-2862, 2014.

32



[14] W. Gong, W. Liu, and N. Yan. A posteriori error estimates of hp-fem for optimal control
problems. International Journal of Numerical Analysis & Modeling, 8(1):48-69, 2011.

[15] D. W. Hahn and M. N. Ozisik. Heat conduction. John Wiley & Sons, 2012.

[16] M. Hinze, R. Pinnau, and M. U. S. Ulbrich. Optimazation with PDEs constraints, Mathemati-
cal Modelling, Theory and applications, volume 23. Springer, New York, 2009.

[17] A.Kroner and B. Vexler. A priori error estimates for elliptic optimal control problems with
a bilinear state equation. Journal of computational and applied mathematics, 230(2):781-802,
2009.

[18] D. Leykekhman and B. Vexler. Optimal a priori error estimates of parabolic optimal con-
trol problems with pointwise control. SIAM Journal on Numerical Analysis, 51(5):2797-2821,
2013.

[19] J. L. Lions. Optimal Control of Systems Governed by Partial Differential Equations. Springer-
Verlag, Berlin, 1971.

[20] W. Liu and T. Tang. Error analysis for a galerkin-spectral method with coordinate trans-
formation for solving singularly perturbed problems. Applied Numerical Mathematics,
38:315-345, 2001.

[21] W. Liu and N. Yan. A posteriori error estimates for distributed convex optimal control
problems. Advances in Computational Mathematics, 15:285-309, 2001.

[22] W. Liu and N. Yan. A posteriori error estimates for control problems governed by stokes
equations. SIAM . NUMER. ANAL., 40(5):1850-1869, 2002.

[23] W. B. Liu and N. N. Yan. Adaptative Finite element Methods for Optimal Control Governed by
PDEs. Scientific Press, 2008.

[24] D. Meidner and B. Vexler. A priori error estimates for space-time finite element discretiza-
tion of parabolic optimal control problems. SIAM |]. CONTROL OPTIM., 47(3):1150-1177,
2008.

[25] J. M. Melenk. hp-interpolation of nonsmooth functions and an application to hp-a poste-
riori error estimation. SIAM Journal on Numerical Analysis, 43(1):127-155, 2006.

[26] ]J. M. Melenk and B. I. Wohlmuth. On residual-based a posteriori error estimation in hp-
tem. Advances in Computational Mathematics, 15(1-4):311-331, 2001.

[27] C. Ortner and W. Wollner. A priori error estimates for optimal control problems with
pointwise constraints on the gradient of the state. Numerische Mathematik, 118(3):587-600,
2011.

[28] K. Pieper and B. Vexler. A priori error analysis for discretization of sparse elliptic optimal
control problems in measure space. SIAM Journal on Control and Optimization, 51(4):2788—
2808, 2013.

[29] A. Rosch and S. Steinig. A priori error estimates for a state-constrained elliptic optimal
control problem. ESAIM: Mathematical Modelling and Numerical Analysis, 46(5):1107-1120,
2012.

[30] E. Troltzsch. Regular lagrange multipliers for control problems with mixed pointwise
control-state constraints. SIAM Journal on Optimization, 15(2):616-634, 2005.

33



[31] E Troltzsch. Optimal control of partial differential equations: theory, methods, and applications,
volume 112. American Mathematical Soc., 2010.

[32] R. Verfurth. A Review of Posteriori Error Estimation & Adaptive Mesh-Refinement Techniques.
Wiley, 1996.

34



	Introduction
	Optimality of the optimal control problem and its finite element approximation
	Optimality of the problem
	H-p finite element method

	A priori error estimates
	A posteriori error estimates
	A posteriori upper error estimates
	A posteriori lower error estimates

	Discussions

