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Abstract

In the present paper, we deal with the following Kirchhoff-Schr\”{o}dinger-Poisson system with logarithmic and critical non-

linearity: \begin{equation*} \begin{array}{ll} \left \{ \begin{array}{1l} \ds\B(a+b\int_\Omega|\nabla u|"2\mathrm{d}x

\B)\Delta u+V(x)u-\frac{1}{2}u\Delta (u"2)+\phi u=\lambda |u|"{g-2}u\In|u| "2+ |u| "4u, &x\in \Omega, \\ -\Delta \phi=u"2,&

x\in \Omega, \\ u=0,& x\in \R"3\setminus\Omega, \end{array} \right . \end{array} \end{equation*} where $\lambda,b>0,a>\frac{1}{4},4
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Abstract

In the present paper, we deal with the following Kirchhoff-Schrédinger-Poisson
system with logarithmic and critical nonlinearity:

1
(a + b/ |Vu]2dm>Au + V(x)u — iuA(uz) + ¢u = Nu|? 2uln [u)® + |u|*u, =€,
Q

—A¢ = u?, x € €,
u =0, rcR3\ Q,

where A\, b > 0,a > %, 4 < q < 6,Qis abounded domain in R? with Lipschitz boundary.
Combining constraint variational methods and perturbation method, we prove that the
above problem has a least energy sign-changing solution ug which has precisely two
nodal domains. Moreover, we show that the energy of ug is strictly larger than two
times the ground state energy.

Keywords: Quasilinear Kirchhoff-Schrédinger-Poisson; Critical problem; Logarithmic non-
linearity.
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1 Introduction and main results

In this paper, we consider the existence of a least energy sign-changing solution of the
following quasilinear Kirchhoff-Schrodinger-Poisson type systems:
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1
—(a+ b/ |Vul?dz)Au + V(z)u — iuA(UQ) + du = Nul|"?uln [ul® + |ul*u, x € Q,
Q
—A¢p = u?, x €,
u =0, reR3\ Q.
(1.1)

After the pioneer work of Lions [12], some researchers began to pay attention to the
following Kirchhoff Dirichlet problem:

—(a—l—b/ |Vu|2dx)Au = f(z,u), x€Q,
Q

U’ag =0.

(1.2)

Problem (1.2) is related to a model firstly proposed by Kirchhoff [7] as an existence of the
classical D’Alembert’s wave equations for free vibration of elastic strings, which is related to
the stationary analogue of the equation:
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Because problem (1.2) has nonlocal term ( [, |Vu|*dz)Au, there are some difficulties in the
study of the nonlocal problems by means of variational methods. In recently years, many
studied about positive solutions, multiple solutions, bound state solutions, semiclassical state
solutions and sign-changing solutions for (1.2) can be found in [1, 4, 16, 18, 26, 22, 25] and
the references therein.

By using the constraint variational methods and the quantitative deformation lemma,

Wang [5] obtained the existence of at least energy sign-changing solutions for the following
Kirchhoff-type equation with critical growth:

— (a + b/ \Vu\zd:c> Au = |ul*u + \f(z,u), inQ,
0
u =0, on 0f),

(1.3)

where A is large enough and f satisfy suitable conditions. Lately, Li and Wang [27] studied
ground state sign-changing solutions for Kirchhoff equations with logarithmic nonlinearity:

- <a + b/ |Vu]2dx) Au+V(x)u = |ulff 2ulnu? in Q,
0
u =0, on 0f2,

(1.4)

where 4 < p < 2%, they used constraint variational method, topological degree theory and
some new energy estimate inequalities to prove the existence of ground state solutions and
ground state sign-changing solutions. Recently, Liang [20] got a more general result about
problem (1.4) with critical growth.

Nevertheless, there are relatively few studies on quasilinear Schrodinger-Poisson system.
Hlner [19] first studied quasilinear Schrédinger-Poisson system. This quasilinear version of



the nonlinear Schrodinger equation arises in several models of different physical phenomena,
such as superfluid films, plasma physics, condensed matter theory, etc. (see [[2, 14]]).

By using the methods of perturbation and the Mountain Pass theorem, Feng [23] proved
the existence of non-trivial solution to the following quasilinear Schrodinger-Poisson equa-
tions:

—Au+ V(z)u+ ¢u — %uA(uQ) = f(z,u), inR3

. (1.5)
—A¢ = u?, in R3,

where V € C (R* R'"),limj; V(2) = 0o and V(z) > m > 0 for some constant m to
overcome the lack of compactness.

Lately, under suitable condition of f, Chen and Tang [11] applied some new analytical
techniques and non-Nehari manifold method investigated the existence of ground state sign-
changing solutions for the following quasilinear Schrodinger equations with a Kirchhoff-type
perturbation:

(1 + b/]R3 g*(u)|Vul? dx) [— div (¢°(w)Vu) + g(u)g'(v)|Vul?]

+V(x)u = K(x)f(u)

(1.6)

As we know, Figueiredo and Siciliano in [8, 9] paid close attention to two different critical
systems with 4-Laplacian operator in R? and a bounded domain in R?, they obtained the
existence and asymptotic behavior of nontrivial solutions. Wang [15] investigated nontrivial
solutions of quasilinear Schrodinger-Kirchhoff-type equation with radial potentials. Fu and
Zhu [6] considered the multiple solutions to a class of generalized quasilinear Schrodinger
equations with a Kirchhoff-type perturbation. However, there are relatively few achievements
on the so called quasilinear Kirchhoff-Schrodinger-Poisson type systems with critical growth,
furthermore, few studies have included logarithmic terms about quasilinear problem. It is
quite natural to ask: what is going to happen with logarithmic nonlinear terms for the
critical quasilinear Kirchhoff Schrédinger-Poisson system? In this paper, we will show that
there exists a least energy sign-changing solution.

According to the Lax-Milgram Theorem, for u € H, there is a unique ¢, € D%?(2) that
satisfies

—A¢, = u>.

The function is represented by

Pu(r) = = / Mdy, x € R3.

Cdn R [ — ]

Therefore, system (1.1) has an equivalent form

1
<a + b/ ]Vu|2da:> Au+V(z)u — éuA(UQ) + du = Aul|*%uln [ul* + |ul*u.
Q



So, the functional associated with system (1.1) can be defined by

By = gl + 3l + / Vululde 4 & / dutt?

/|u|qdm— —/ lu|?1n |u|*dz — —/ lu|®dz.

It is easy to see that I;)(u) € 01 H,R). Moreover, for any u, ¢ € H, we have

(1)) (u), @) = /aVuV@dx—l—b/ |Vu|2dx/Vquodx—l—/V(a:)uvdx—l—/(buugodx
0 0 0 0 0

+/(|Vu|2ug0+ |u|2Vqu0)dx—)\/ |u|q_2u<,01n|u|2da:—/ |u|*upda.
Q Q v

There are some difficulties in applying variational methods directly to the problem (1.1)
because of the quasilinear term [, u*[Vul?, it seems impossible to find a suitable space in
which the corresponding functional possesses both smoothness and compactness properties.
On the other hand, it is difficult to apply the dual approach since problem (1.1) exists
nonlocal term, In order to overcome the lack of compactness caused by the critical term,
we would employ the method from [21, 24]. In fact, we will use the approximation method
by adding a 4-Laplacian operator, i.e. we consider the sign-changing critical point of the
perturbed functional:

Rul) = ) + 2 /Q (1Vul* + ) de, (17)

where p € (0,1]. Then by using the approximation technique, we get the existence of
sign-changing solution of problem (1.1).
We first try to seek a minimizer of energy functional [ b{M over the following constraint:

My, ={u€ Hu® #0 and ((I;,) (w),u") = (L) (u),u”) = 0},
and consider a minimization problem of [, ,;\ L, on M@ 4
Here

u(r) =ut(z) +u (z), ut(xr)=max{u(z), 0} and v (z) = min{u(x), 0}.

We will prove that the minimizer is a critical point of [ ,;\ ., and obtain the convergence property
as 1t — 0, thus we get the least energy sign-changing solution of problem (1.1). Since problem
(1.1) has nonlocal term and logarithmic nonlinearity, it is difficult to prove ngu # 0.
Inspired by [5], we combine modified Miranda’s theorem [3], quantitative lemma, topological
degree theory and perturbation method to prove that the minimizer of the constrained
problem is also a least sign-changing solution.

Our main results of this paper are as follows:

Theorem 1.1. There exists A\* > 0 such that for all A > X*, problem (1.1) possess one least
enerqy sign-changing solution ug which has precisely two nodal domains.

Theorem 1.2. There exists \** > 0 such that for all A > max{\*, A"}, ¢* := inf, ¢\ IMu) >
0 is achieved either by a positive or a negative function and I} (ug) > 2¢*, where N = {u €
H\{O}{((I}) (u),u) = 0} and ug is the least energy sign-changing solution obtained in The-
orem 1.1.



2 Framework

In this section, we introduce the variational framework associated with problem (1.1).
We first describe the working space. Let LP (€2) be the usual Lebesgue space with the norm
ull, = (g, lulPdz) Y7 and H'(Q) be the completion of C5°(Q2) with respect to the norm:

|ul|3: = / (|Vul® + v?) dz.
Q
Moreover, we denote the completion of C§° (§2) with respect to the norm:
Julf? =l = [ [VuPda.
Q
We assume that V € C(Q,R"), where

H = {u € H(Q) : /QV([E)UQdJZ < oo},

which is a Hilbert space endowed with the norm:
|ul|* = /Q(a\Vu\z + V(z)u?)dz.
In order to use perturbation method, we will use the space
E=w"Q)nNH(Q),
where W14(R3) endowed with the norm

ullw ::(/Q IVl + u4d;c)‘l‘.

Moreover, Holder inequality implies that

/Q\Vu\zzfdx§</Q\Vu|4>;</0]u\4da:>é < s

So the norm of E is denoted by

1
lullz = (el + [lul*)* -

Since Ip),(u) = I}(u) + § [ (IVul* + u') dz, we can easily get I}, € C'(E,R) for all p € E
and

(Ip,) (), ) = ,u/ﬂ(|Vu|2Vqu0+|u|2ugp) dx+/QaVuV<pdx+b/Q|Vu|2dx/QVquodx
+/V(x)u<pdw+/¢uug0dx+/(|Vu|2ug0+|u|2Vqu0)da:
0 0 Q
—)\/ |u|q2ug01n\u|2dx—/ |u|*upda.
0 0

5



It is noticed that if u* # 0, we have
A X (y+ Ny 1 P2~z 4 L +)2 1 —\2
By = Bty 4 Ry) + 2 BB+ [ o Pde 5 [ fus (e de,
Q Q
() (u), u™) = ((T7,) (), wh) + bllwt|[flu~1F +/Q¢u(u+)2d%
((I3) (w),u™) = (T, (w), u™) + bl [ lu|f? +/Q¢u+(u_)2d%

Our goal in this paper is to seek the least energy sign-changing solutions of problem (1.1).
Now, fixed v € E with u* # 0, we denote v, : [0,00) X [0,00) — R and mapping
T, : [0,00) x [0,00) — R? by

bu(a, ) = I, (au® + Bu”), (2.1)

and
T.(a,B) = (((Ig\’“)/(ozu+ + Bu”), au™), ((Ilj\#)'(oqur + pu”), Bu”)). (2.2)

Lemma 2.1. For any u € H, according to [13], we have

(1) there exist C' > 0 such that

/ puuidr < Ollull}, Yu € H;
Q

(2) ¢y >0, Yu € H;
(3) ¢ry = T3¢y, V7 >0 and u € H;

(4) If u, — w in H, then ¢,, — ¢, in DM*(R?).

3 Some technical lemmas

In this section, we give some sueful lemmas as which are critical to the proof of Theorem
1.1.

Lemma 3.1. For any u € E with u®™ # 0, then there exists a unique maximum point pair
(e, By) of the function ¢, such that a,ut + Su~ € /\/lg\#.

Proof. Our proof will be divided into three steps.
Step 1: For any u € E with u* # 0, in the following, we will prove the existence of a,
and [3,.
From sample computation, we have
7] 7 ?

lm ——— =0 and lim
7—0 ‘7” T—00 ‘7”7“*1

[T I

=0 (3.1)



for all r € (¢,6). Then for any € > 0, there exists C. > 0 such that
717 In |72 < elr| + Cor| (3.2)
Since 4 < ¢ < 6, it follows from (3.2) and the Sobolev embedding theorem that
<([,;\,H)’(04u+ + Bu~), au™)

= po{lut iy + o lut|? + bat ut] + ba? B2 |ut 3w + 2a2/ [Vt [Plu [Pdx
Q

+ /¢u+ 2dx+0z252/¢u )2dz — A /!au+|qln|au+l2dx—a6/ lu™|®da
Q 0
> a2||u+||2+ba4||u+||il+ba252||u+||%||u||%+2042/ [Vt P luPde

+ /¢u+ 2dx+(x2ﬁ2/¢u e — A 8/|u °da

—/\C’gof/ |u+|de—a6/ lut|®dx
Q Q

> a?|lut|? + batlut ||t = AaPeChlfut||* = ACea” Co||lut||” — Caa®[ut|®

= (1= xeC)a?|[ut|? + batJut |7 — ACea Co||ut||” — Caa®|[ut|®,
where (', Cy, C3 are positive constants. Choosing € > 0 such that 1 — A\eC'; > 0. Since
4 <r <6, we have ((I},) (au’ + pu~),au’) > 0 for a small enough and all § > 0.

Similarly, we obtain that ((Iliu)’(auJ“ +6u~), fu~) > 0 for B small enough and all > 0.
Therefore, there exists a; > 0 such that

<(I,i#)’(a1u+ + Bu”), aqu’t) >0, ((l'l;\ﬁ)'(om+ +au”),aqu”) >0 (3.3)

for all a, 5 > 0.

On the other hand, since u™ # 0, there exists a constants 6 > 0 such that meas{z €
Q,ut > 0}. Since ¢ > 4, we deduce that, for any M > 1, there exists T" > 0 such that
M > M for all 7 > T. Therefore, for o > L, we have

/\/ laut|?In |ou™ [*dz > Ma4/ (uh)*d.
Q {ut>0}
We can choose a = af > ay, if § € [a, ad] and of is large enough, it follows that

((Zp,)' (agu™ + pu”), asu™)
< p(az) [l + (03)?[[ut [ + blag)* lu* (1§ + b(az)* B2 [[u* (I lu~ |17

T 2(as)! / IVt Plut P+ (a3)" / bt (u)2de

e [ ow(whide = M(p)! [ (e = () [ ot o
{ut>6} 0



Similarly, we have that
(1) (ou* + a3u”), a3u™) < 0.

Let ag > ab be large enough, we obtain that, for all «, 8 € [ay, as], we have
(([liu)'(agqu + Bu”), aput) <0, (([bfu)’((w+ + agu” ), agu”) < 0. (3.4)

Combining (3.3) and (3.4) with Miranda’s theorem, there exist (v, 8,) € (0, +00) x (0, +00)
such that T, (ay, 8.) = (0,0), i.e, au™ + Bu™ € Mb):;z

Step 2: In this step, we prove the uniqueness of the pair (a,, ,)-

Case 1: u € M;,,

If u € M;,,, we have

pll [l + HWHQ+bHu+Hi‘+bHu+HfHuH?+2/ [Vt [*lu [fdx
Q

+/¢u+(u+)2dx+/¢u(u+)2dx (3.5)
Q Q
:)\/\uﬂqlnmﬂ?dx—l—/ lu™|%da

Q Q

pllu” Nl + llu” 1+ blla 13 + bl 5w (1 + 2/9 [V [*lu” [*dz

—\2 —\2
—l—/quu(u )dx—{—/ggbw(u ) dx (3.6)
:)\/\u\qln|ul2dx+/ lu™|®dz.
0 Q

In the following we show that (a,, 5,) = (1,1).
Let (cw,B.) be a pair of numbers such that a,u™ + S,u~ € Mz);‘,u with 0 < o, < ..
Hence, one has that

and

(o) gl [l + () *Ju™[* + bew) [ (17 + blaw)*(Bu)* ™ 1 lu™ |17
T 2! /|Vu 2t 2da + () /% P + ()?(5) /¢u .
:)\/Q|Ozuu+|qln|auu+|2dx+/ﬂ|auu+|6dx
and
(Bu) pellu™ [l 4 (Bu) 2w (17 + 5(Bu) lu 117 + b ) (Bu)[lwt [ flu™ 117
+2(8)* [ 190 Pl Pde+ (80" [ o Pde + (@G [ o far g

:)\/ |ﬁuu|qln|ﬁuu\2dx—|—/ |Buu|d.
Q Q



According to 0 < a,, < 8, and (3.8), we have that
iy + 1T
B
+2/ IVu™ |?|u”|Pde + / Gu-(u™)?dz + / Gyt (u”)?dw (3.9)
Q

>>\/ |6u |qln|ﬁuu |2d +(6u)2/|u_|6dx.

Q

+ bl|u [l + ot

If B, > 1, by (3.6) and (3.9), one has that

( (ﬁi)Q 1)

Bou~|?1n | B, -2 Y B .

The left side of above inequality is negative, which is a contradiction because the right side

is positive. Therefore, we conclude that 0 < o, < 3, < 1.
Similarly, by (3.7) and 0 < a,, < ,, we have that

(7o = Dl I?

u

+a] 2
< )\/[|C¥uu | Il|405uU | B |u+‘q1n|u+|2 dx+((au)2—1)/ |u+|6dx.
Q (o) Q

This fact implies that «,, > 1. Consequently, o, = 3, = 1.
Case 2: u ¢ M;,
Suppose that there exist (ay, 51), (@, B2) such that

up = oqut + fuT € Mau and Uy = apuT + fou” € Ml/},u

Hence

5)u1 E./\/l

1

82yt + (2B = (S2yut +

By u; € /\/lf,‘w one has that

Hence, a; = o, 51 = 52.

Step 3: In this step we will prove that (a,, 3,) is the unique maximum point of 1, on
[0, 400) x [0, +00).

First, it is easy to see that

2p7 — qp?ln|p|*> < 2 for all p € (0,00). (3.10)



Let OF = {z € Q:u(z) >0} and Q™ = {z € Q: u(z) < 0},u € H with u* # 0, we have

/ lau™ + Bu~|?In |au™ + Bu”|*dr = / <]au+|qln lau™|? + |Bu~|?In |Bu‘\2>d$. (3.11)
0

Q

Combining (3.10) and (3.11), we get

c = [li#(au+ + fu™)

4 2 2 4 4
oy ppt . o -
=0 lut |y + —— 1 — "l + ||U+||2 + 7““ 1>+ Zb||u+||é11 + ZbHU [k

a262

4 4
e B+ % / |Vu+|2|u+|2dx+ﬁ— / VuPluPde
252 252
+—/¢u+ dx—i— /d)u d + /¢u+ 2d +—/¢u 2d:r:

+ = /(2|au+|q — qlau™|?In |aut|?)dz + — /(2|5u|q —q|pu|?In |Bu”|?)dx
q= Ja q~ Ja

6 6
—a—/\uﬂ(idx—ﬁ—/ lu™[°dx
6 Jo 6 Jao

4 4 2
pox pos, o
< T||U+||%v + THU I + 7||U+||2 +

ﬁQ B Oé4 4 B
o S et I

2 12 4 4
bl o+ & / VP Pz + / VuPluPde

252 252
+—/¢u+ )2da + /gbu )2 + /¢u+ 7)Pda +—/¢u 7)*da
—I——\Q\——/ |u+|6dx—ﬂ—6/\u|6dx
q 6 Jo 6 Jo 7

which implies that lim|(,,g)|—c Yu(e, ) = —00. So it is sufficient to check that a maximum

point can not be achieved on the boundary of [0, +00) x [0,+00). By contradiction, we
suppose that (0, 5,) is a maximum point of ¢, («, 8) with 3, > 0. Then, we have that

Yula, Bu)

4 4 2 2 4 4
pa (8.) o CA (5.)
= 5t + R R

7l Ju” Iy

2 2 4 4
# S b i+ 5 [ 9t P+ @/ AR

+— Gyt (u d+ﬁ“ e (0™ )2dz + & 6“ Pu—(
/ J J

6u /¢u 2dx+—/ (2lau™|? — glau™|?1In |out|?)dz
—-lq _ —1q -2 . +16 . ﬁu)fj -6
+—2 2|puu | = ¢q|fuu” | In|Buu” |F)de — — [ |uT|’de — —— [ |u"|"dx.

10




Therefore, it is obvious that

(Yule, Bu))a Z/Lag!l?ﬁll‘év+04Hu+!|2+ba3\lu+|\?+baﬁu\lu+|\?lluHf+2043/!Vu+\2!u+|2dx

—I—a3/¢u+(u+)2dx+M/¢u(u+)2d 5“ /(bu ~)2dw
—a?” 1>\/|u+|qln\au ?dz — /|u %dz
>0

if o is small enough, that is, v, is an increasing function with respect to « if « is small
enough. This yields the contradiction. Similarly, ¢, can not achieve its global maximum
point at (a,0) with a, > 0. O

Lemma 3.2. For any u € with u* # 0, such that ((/;,)'(u),u*) < 0, then the unique
maximum point of ¥, in [0, +00) x [0, +00) satisfies 0 < ay,, 5, < 1.

Proof. If a, =0 or B, = 0, according Lemma 3.1, ¢, can not achieve maximum. Without
loss of generality, let o, > 3, > 0. On the one hand, by a,u® + B,u~ € Mj '» We have

(o) pellu® [y + (o)l 1 + b)) Jut |17 + blaw)*(Ba) a1 llu |13
+ 2(ow) /\Vu 2|ut P dz + () /¢u+ 2dr + (aw)?(Ba) /qSu )2de (3.12)
= A/ |auu+|qln|auu+]2dx+(ozu)6/ lut|®dz.
Q Q
On the other hand, by ((13},)'(u), u*) <0, we obtain
plla Iy + 1112+ bl [l + bllu* 3 u~ |12
+(2), 42 2
+2/Q|Vu 2l |dx+/ﬂ¢u+ dx+/¢u de 3.13)
S)\/ |u+|qln|u+|2dx+/ lut|®dz.
Q Q

So, it follows form (3.12) and (3.13), we have

1
(—5 — Dlu*?
(O‘u)
(3.14)
> )\/[(au)q_4]u+|qln|auu+|2 | In [t e + ((w)? — 1)/ lu[Sdz.
Q Q
Since g > 4, we conclude that 0 < 5, < a, < 1,50 0 < ay, B, < 1. O

Lemma 3.3. Let ¢, = inf e 17, (), then we get limy oo ¢, = 0.

11



Proof. For any u € M},
pllu i+ 12+ bllu 1+ Dllu [ ]|u™1F

+ 2/ | VuE | |u®|?de + / Gyt (uF)da + / by (uF)?da
Q Q Q
:)\/ |ui|q1n|ui|2dx+/ e
Q Q
Then by (3.2) and the Sobolev inequalities, we get
|2 < )\/ |7 In [t 2da +/ Sz < AeCy|ul|? + ACCollut " + Cylu]|°.
Q Q

Thus
(1= AeO)|lu™ | < Collu™||” + Csflu=||°.

Choosing ¢ small enough such that 1 — AeC} > 0, since r > 4, there exists p > 0 such that

[u*|* > p for all u € Mj,. (3.15)
Thanks to u € My, we have ((13,)'(u),u) = 0. Then,
1
() = I, (u) — 5((1?,“)’(16), u)
1 1., ., 1 1., 1 1., .. 1 1 / -
— (- - . STy 20> — - d
ug = Pl + G = Dllull”+ (7 = Dbllully +2(7 = 2) [ [Vulul*dz

q q
1 1/ ) 2)\/ 1 1/ ;
+(-—- ppude + — [ |ulfde + (- — = u|’dx
( q)Q 7 Q|| o 6)Q||
1 1
> (- _ = 2
> (5= Dl

thus 7}, (u) is bounded below on M3 ,.
For any u € E with u® # 0, by using Lemma 3.1, for each A > 0, there exist {ay, 8}
such that ayu™ + Syu~ € Maw we have

0 <¢ =infI},(u) < I}, (aru™ + Bau™)

<

==

1 b 2
laxu® + Bu [y + §HO&U+ + B[] + leomﬁ + BT+ Z / lanu™ + Bau”|Ydx
Q

1 B _ 1 _
5 / IV (eout + Byu™) Plenu™® + Sy Pde + 1 / Garut+yu-(au™ + fru”)*dx
Q Q

ol T

< 5 (@) lutly + g<5x)4llu‘||‘év + (o) [t + (B lu |17 + 2b(en) [t Iy
208 I+ (@)* [ Vat Pl e+ (8)° [ [VuPlu P
Q Q
44,,+114 41,,— 14 2) +|q 2A —\q
—l-QC(Oc,\) Hu Hl +2C(ﬁ)\) Hu Hl + ? ‘Oé)\u | dr + ? \ﬁw ’ dzx.
Q Q

12



Next we will prove that ay — 0 and 8y, — 0 as A — oc.
Let Gy, = {(a, By) € [0,400) x [0,400) : T,,(ap, Bx) = (0,0), A > 0}, we have

(@) [ fu oo+ (8 [ fu[*da
0 0
+ /\(oz,\)q/ lut|?In [ayu™ |Pde + )\(ﬁ,\)q/ lu™|7In |Byu~ |*dz
Q Q
= pllanu™ + B[l + [lanu™ + Bru|* + bllaxu™ + Bu” [} + 2(04A)4/ [Vut[PlutPde
0

+2(ﬁ,\)4/ |Vu\2|u|2dx+/¢aw++5w— (ayu't —i—ﬁ)\u*)de
Q Q

< 2p(on)*lut Iy + 20(80) w4+ 2(a)?[[u* |
+2(B0)?lu|I* + 4b(on)*[lu* 17 + 4b(83)*lu” |1y
T 2(ay)! /Q IVt P + 2(@)4/Q IV Plu P
+20(an) [T + 20 (80 flu~ |11
Hence T, is bounded. Let {\,} C (0,00) be such that A, — 0o as n — co. Then there exist
ap and fy such that(ay,, By,) — (o, Bo) as n — oo.

Now, we claim oy = 5 = 0. Suppose, by contradiction, if ag > 0 or Sy > 0 by ay, ut +

B, u” € ./\/ll’,\’;, for any n € N, we have

pllo,ut + B u” |l + o, ut 4 By, u” ||> + bl|ax, ut + By, u” ||t

+ / [V (ay,u™ + By, u")|?|ax,u’ + By, u”|*de + / Do, ut+y,u- (a4 By, u”)?de.
Q Q

= /\n/ |y, u + By, u” | In oy, ut + By, u”|*dz + / la,u™ + By, u”|°da.
Q Q
(3.16)
Thanks to ay,ut — apu™ and By, u~ — Byu~ in E, (3.2) and the Lebesgue dominated
convergence theorem, we have

/ lan, ut + By, u” |9 |y, ut + B,\nu_|2dx — / lgu™ + Bou” |7In |puT + 60u_|2dx >0
Q Q

asn — oo. It follows from A, — oo and the boundness of {«,,u™+p,,u"} in E that we have
a contradiction with equality (3.16). Hence, oy = fy = 0, we conclude that limy_,, cg\’ u=
0. O

Lemma 3.4. There exists A* > 0 such that for all A > \*, the infimum c{,\’ i is achieved.

Proof. By the definition of ¢, = infye v I} (u), there exists a sequence {u,} C Mj,
) w0 )
such that

limy o0 I, (Un) = €3,

13



Obviously, {u,} is bounded in E. Then, up to subsequence, still denoted by {u,}, there
exists u € E such that uw, — u. Since the embedding E — LP(Q) is compact, for all
€ (2,6), we have

U, — u in LP(Q)and u, > u a.e z €.

Hence
u, T —ut in E,
£ — vt in LP(Q),
+ 54t inae x e

By Lemma 3.1, we have
I&M(auj{ + Bu,;) < I,i#(un)

for all a;, 8 > 0. On the one hand, the Vitali convergence theorem yields that
lim / | Tn [ 2z — / luf? In [u[2da. (3.17)

Then, by (3.17), Brézis-Lieb lemma and the weak semicontinuity of norm, we get

liminf 1, (cup ™ + Bu,, ")

n—oo
at B4 _ -
>Nz,}££}o (Hu —U+H3V+HU+H§V>+H4 Jim <||u — |y + || H@)
+ 2 i (= a2+ 1)+ (s = w2+ o)
2 n—oo n 2

bat /. 2 bty _ o\ 2
o+ 2 (im ey = w8+ o 13]) 4+ = (i sy =™ )3 + [l ||%])

4
—|—%liminf/|Vu+‘ |u+| dx—l—%hmmf/‘Vu | |u,, ‘ dx—i—— lim (b £ (u))?d

n—00 n—00 4 n—oo

252 2 2 5
+ lim qﬁ —(u )2da + lim ¢u+(u;)2dx + — lim ¢u7 (u;,)?dx
n—oo n—oo n 4 n
hm |u Jr|6dx+/ |u+|6dx — hm / lu, —u |dx+/|u |dx
n*}OO Q
+ ~|4 A + — |4 + —2
+ —2 law,, + Pu, |9dx — A law,; + Bu, |71n |aw,; + Su, |*de
qa° Ja
4 4 bad -
> Ryl + Bu) + B By gt -
s S+ Paz - L,
4 6
where

Ay = Jim o= oy As = B oy — -y Ay = B o — o, A= Jim = o P

As = lim [Juf —u™|?, As = hm |lu; —u=||?, By = hm lum —ut|S, By = hm lu, —u |8
n—00
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for all « > 0 and 8 > 0. So,

4 4 b b
@Mzme+mw+@%ﬁW5&+ © Ao+ 2 g2+ 2 2
6 2 4 6 (318)
a2 08" 0 B
—FB1+ — Ay + AH 17+ 1 A6_€32
Denote o := %S%, where S = inf,¢ & According to Lemma 3.3, there is A* > 0

SO uloan)d
such that ¢, < o for all A > \*.
Step 1: we prove that u* # 0. By contradiction, we suppose u™ = 0 (u~ = 0 is similar).
Case 1: B; =0.If Ay = A3 =0, that is, u;; — u™ in E. According to (3.15) in Lemma
3.3, we obtain [[u™|| > 0, which contradicts u* = 0. If A; > 0, A3 > 0, by (3.18), we get
%QAg < Cg\,u for all & > 0, which is a contradiction.

Case 2: B; > 0. According to definition of S, we obtain ¢ := %S% < %((BA?;%)%, by
direct calculation, we obtain
1/ As \3 a? a® pat bat ba*
_ — —_ _ < - - - + A2
3(Gr) max(% A~ OBy < max( M0, 1 Dy a4 a2 Uy,

Since c,’}w — 0 as A — oo, there exists A* > 0,C' > 0 such that for all A > \*| Cb/\,u < C'. Then,
without loss of generality, we can assume c; ', < 0, choose =0, it follows form (3.18)
o2 of o bt bt b
o< mggc{ —As — FBl} < max{—A1 —A3 + —A5||u+||1 —A2 Bl} < 0.

It is a contradiction, we have that u™ # 0. Similarly, we obtain u~ # 0.

Step 2: we prove that B; = 0, By = 0. We just prove B; = 0. By contradiction, we
suppose that By > 0.

Case 1: By > 0. Let a; and f; satisfy

= \4 =~ \2 b(a+)4 bl )4 > \6

lu(j:l) A1+ (a21) A3—|— (al) A5||U+||%+ (al) . (a61) Bl
4 b 4 N ba ) 6
—Igggi{—Al-i- A3+—A5||u ||1+_A 6 —Bi},
and R . e
4
M(il) A2—|— (61) A4—|— (61) A6H 7H1 (Bl) A2 (BG) B2
b3 b 4
— max(M 4, 1 A4+iA6H i+ az - Ly,

According to [0,@:] x [0, 1] is compact, there exist (au,ﬁu) € [0,d1] x [0, 1] such that
YulO, Bu) = max(, gepo,a,1x 0,3 Yul®: B)- ~

In the following, we will prove (a, 5,) € (0,a;1) x (0,51). Obvious, if 5 small enough ,
we have

Yu(a,0) < I (au®) + 1), (Bu™) < I (au™ + fu™) = (e, B), ¥ o € [0,a]
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Hence, there exists 8y € [0, 31] such that 1y, (c,0) < (v, Bo) for all a € [0,a;]. That is,
(v, Bu) ¢ 10,a1] x {0}. By similar discussion, we conclude that (a,, 3,) ¢ {0} x [0, 51].
Obviously, we get

bat bat o

“a K4+ 2 A3 + —Ag,||u+||1 A2 - FBl >0, a € (0,a], (3.19)
* b3 4 6 .
“ﬁ A, + A4+—A6|| IF+ ﬁ —%Bg>0 B e (0,4]. (3.20)

Then, for all a € (0, 041] and 5 € (0 ,51], we get

-~ \4 -~ \2 -~ \4 -~ \4 -~ \6
o < LIy ) A + b(O;l) Asllut]} + b(al) As - (a61) B

4 T !
4 2 b 4 b 4 6
+£A2+5A4+ ﬁAﬁH I+ 5‘42 66 2
and ; ;
a<ﬂA1+ A3+iA2|| +||1+i,44—FB1
~ 6
M(il) A2 + %A4 + (51) A || —||1 (ﬁl) AQ (ﬁG) Bz.

Together with (3.18), we obtain ¥, (a ﬁl) <0, Y (ar,B) <0 forall @ € [0,a4] and S €
0, A1]. That is, (v, Au) € [0,@1] x {81} and (, B) ¢ {081} x [0, 5]

In conclusion, we get (o, 8,) € (0,a;) x (0 Bl) Hence, a,ut + pS,u™ € M;,\M. So,
combining (3.18), (3.19) with (3.20), we have that

B )t ay)? b, )? b, )
Gy = I (ut + Buu )—l—'u<4) Al—l—( 2) As + <2) A5Hu+Hf+ <4>
2 6

au 'u u 'lL — 'lL u

6 4 2 6

> Ib*,u(auvﬁ + Buu”) > c,’)\yu.
Therefore, we have a contradiction.
Case 2: B, = 0. In this case, we can maximize in (0,a;) x (0,00). Indeed, it is

possible to show that there exists fy € [0, 00] such that I}, (cu™ + fu~) < 0 for all (a, B) €
[0, ;] x [Bo,00). Hence, there exists (a,, B.) € [0, 1] x [0,00) that satisfies
¢u(auaﬁu) = max ¢u(a75)

a€[0,a1]%[0,00)

Following, we prove that (ay, 8.) € [0,a1] x [0, 00).
Since ¥, (c,0) < Yy (a, ) for a € [0,a1] and § is small enough, we have (cv,, 3,) ¢
{0} x [0,00). On the other hand, for all 5 € [0, c0), it is obvious that

-~ -~ b(o 4 b 4 -~ \6
o< M<a ) Ap + ( ) Az + (al) A;,H?ﬁ“%—i— (041) Ag - (041) By
4 2 4 6
4 2 b 4 b 4
+ﬂA2+ﬁ A4—I—£A6H R 5

16



Hence, we have that ¢, (a1, 5) < 0 for all ﬁ € [0,00). Thus, (v, B.) ¢ {a1} x [0,00). And
so (o, By) € 10,a1] x [0,00). That is, au™ + Su~ € Mbw therefore, according to (3.19),
we have that

4 4
B 2 Ryl + par) + 2004, 0 >A3+b(O;“) A5||u+||§+b(oif)
6 4 9 4

> I,iu(auu+ + Buu~) > cau,
which is a contradiction.
Therefore, from above discussion, we have that By = By = 0.
Lastly, we prove that Cli\,u is achieved.
Since u* # 0, by Lemma 3.1, there exist ay,, 3, > 0 such that

U= aut + fu € ./\/lb):#
Furthermore, the norm in F is lower semicontinuous, it is easy to see that
((I3,) (u),u*) < 0.

By Lemma 3.2, we obtain ay,, 5, < 1.
From u,, € Mj » according to Lemma 3.1, we get

I (oqut + Buuy) < I (ufh +uy) = 1) (un).
Thanks to B; = By = 0, we obtain

&, < (@) — (1)@, )

q
=<:1r$>” I+ G = DI+ (G = DI + (G - 2) [ [V i da
- — - /¢u~2dx—|——/|u|qu—l— - —= /|u|6d:p
= (3~ Dl + By + 5 = Dl + fa | + (G = o™ + G|
4 q 2 g 4
F(G = Do) [ Ve + (G = )@ (B [ u-(uh)de
T T
1 1 2 2 2 1 1 4 —\2
(G = D [ bl o+ (5= 20" [ 6 Pda

2 11
+ 2] o paz+ [ (a,rprae] + (= 9] [ Jawut Pzt [ (8,00
q Q Q q 671Jg Q
11 11 11 11
< (= = Iullfy + (5 = Hul?+ (5 — = u4—|————/Vu2u2dx
( )lullw +( q)H "+ q)H I+ q) Q\ | [ul

4 q 2

11 / oy 2)\/ 1 1/ )
+ (- — - o udr + — w|fdx + (= — = u| dx
(3 q)Q Z QH (q 6)QII

< liminf [ 12, (u,) ~ $<(Ib{u)/<un), un)].

n—oo

17



Therefore, o, = 3, = 1 and ci‘,u is achieved by up,, = vt +u” € /\/lau. O

4 Proof of Theorems
In order to obtain a sign-changing solution of problem (1.1), we firstly prove that uy, is

a sign-changing critical point of Ib):u.

Lemma 4.1. Fized p € (0,1], if up, € My, and I\, (up,) = ¢, then uy, is a sign-
changing critical point of ]5\,“- Moreover, w,,, has exactly two nodal domains.

Proof. Since u,, € My, for (a, 8) € (RT x R¥)\(1,1), we have
[l;\’“(au;fﬂ + Buy,,) < Iﬁu(u;fu +u,,) = Cl?,;r (4.1)

Arguing by contradiction, we assume that (1)’ (us,) 7 0, then there exist § > 0 and 7 > 0
such that
||(I,;\M)’(U)H > 7 for all ||v—uy,l > 36.

Choose 7 € (0, min{3, ﬁ||ib ”}), let

D=(1-714+7)x(1—=71,147)
and
9(a, B) = auy, + Bu,, for all (o, B) € D.
According to (4.1), we have that

R A A
Cy = r%%x(fb#) °0g < Cp, (4.2)

Let € := min{c;,, — cx, 2} and S5 = B(up,, 0), according to Lemma 2.3 in [11], there exists
a deformation n € C([0,1] x D, D) such that
(@) m(Lv) = vif v ¢ (1) (e, — 26, +25] 1 Sy,
() (L, (1,54 01 Ss) © (B,)%0 ™7,
(¢) I}, (n(1,0)) < I}, (v) forall ve H.
First, from (b) and Lemma 3.1, it is easy to see that
Ib):u(g(oz,ﬁ)) < cli\,u < Cg‘yu + €.
That is,
C>\ &

g(a7ﬁ) S ([li,u.) bute,

On the other hand, we have
lg(a, B) = wull® = ll(er = Dy, + (8 = Dy, |I°

< 2[(a — D2, |2 + (8 = 12y, I
< 272 up, |2 < &2,
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Hence, by (b), we have
Iy, (n(1,9(c, B)) < ¢, — € < 3 (4.3)
Next, we prove that (1, g(D)) N Mj,, # 0, which contradicts the definition of ¢; ,. Let
1o, 8) = (1, g(o, §)) and
Uo(er, B) : = (((T5,)' (9(v, B)), uy,) (Tg,) (9 (v, B)), )
(((23,) (g, + By, ), (T, ) (e, + Buy ) )
= (bula, B), gule, )

and

Wi, 8) - = (A (o B). (ol ), SR (e B), (e, )7 ).

1
B

Since up,,, € M;}W by the direct calculation, we have

Doy (e, B) _
O00DN =l + it P+ 30l I+ Dt Bl
+3/¢ ub# dx+/¢ de
—A(q—l)/gzlu;“|qln]u;fu\2dx—2)\/9\ugfu|qu—5/Q|u;ful6d:c
= (4 = @)l + (2 = Dl 1P +0(4 = @) [luy 1T + (2 = @bl M3 us,,~ 13
+(2—9q) /¢ L) dr 4+ (4—¢q /gb (ugf,)?dx
—2)\/ |u;M|qu—(6—q)/ i [odz,
Q Q
e 2040 )
Puly, ’ + 21— 112 + 32
Opul D)) _ g o[ o dz.
5 = Bl R 2 [ 6 )
Similarly,
9¢%(ar, B) _ _ - ~
5 luy = 3wyl + Nl 17+ 3bllwy, 17+ Ol 13 g, 17

+3 [ o 2o+ [ o ()00
— Mg — 1)/ |up,,~ |7 1n \u;M|2dx — 2)\/ ]u;”]qu — 5/ |u;u\6dx
Q Q Q

= (4= Dlluy,llw + 2 = Dlluy I+ 0(4 = @)y, 1T + (2 = @)bllug, 1wy, 17

+@2=0) [ o P+ (=) [ 6, (5,0

P / i~ % — (6 — g) / juy [6da,
0 Q



and )
v, (a, B)
Oa

2 — 12 - \2
= 2 Rl 42 [ 6 (0,

u(o (o
M= [ i o (T Bl RV ] '

Let

e (,8) | o2 (@,8) |
o 1(L1) op 111

Since g > 4, then,

I, (o, B)

02(0.8)]  _0e(0.8)
O

(1,1) op Il s

Since ¥y(a, 3) is a C* function and (1,1) is the unique isolated zero point of Wy, by using
the degree theory, we deduce that deg(¥y, D,0) = 1.
Hence, combing (4.3) and (a), we obtain

g(a, B) = y(a, B) on 9D.

Consequently, we obtain deg(WVq, D,0) = 1. Therefore, ¥y (g, By) = 0 for some («v, 5y) € D
so that

. ez (a, B)

detM =
¢ (1,1) Jda (1,1)

> 0.

77(179(0407 50)) = 7(a07ﬁ0) € Mli\,,u?

which is contradicted to (4.3).
Finally, we prove that u,, has exactly two nodal domains. To this end, we assume by
contradiction that
Up,, = U1 + ug + us

with
w; # 0,u1 > 0,us < 0 and suppt(w;) N suppt(u;) =0, fori#j, i,j=1,2,3
and
<(Il§\,u),(“b,u)v“i> =0, fori=1,2,3.
Setting v := u; + us, we see that vt = u; and v~ = uy,i.e.. v¥ # 0. Then, there exist a

unique pair of (v, 5,) positive numbers such that
ayuy + Byty € My,
Hence
I} (awuy + Byug) > ¢,
Moreover, using the fact ((Ié“)’(ub,u), u;) = 0, we obtain

() (), 0%) = —bl[o=2 ]2 — / fun (v )2z < 0.
Q

From Lemma 3.2, we get
(e, Bu) € (0,1] x (0,1].
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On the other hand, we obatin

1

0 = U3, (), us)

1 1 b b
= “llusllyy + Zllusl* + - luaFlluslT + Zlluallus]i + / Vs |?|us[*dz
4 4 4 4 o

b 1 1 A
s bl 5 [ oniar = g [ jupar = 3 [ ot in s
b b 1 1
< I () + P2 + 2o 2 g2 + 2 / G (3% + - / G 13)?.
4 4 1 Jq 1 Jq
Hence,

cg\,u < Il?:,u,(avul + Bqu)

1
Z<(Il?\,u)/<avul + Bytiz), apuy + Byus)

1
= 1ol + [8,0al) + 5[ [ jowattde + [ [3ualraa]

- Ili,u(avul + ﬁUUZ) -

1 1
+ (_ - _))‘[/ |Ozvu1|qln |O‘vu1|2dx +/ |Bvu2|q1n |5vu2|2dx}
4 q Q Q

1
+—[/|ozvu1|6d:c+/ ]ﬁvu2|6dx]
121/,

(all + el + 5[ [ frftde+ [ fusfiaz]
1
+(———))\ /|u1|q1n|u1|2dx+/|u2|q1n|u2|2dx}
Q

/|u1\ dx+/\uQ]6dx

Ibu(ul + ug) — 4(([1,“) (w1 + ug), uy + us)

»-lklb—‘

b
< I () + Iy (ua) + Iy, (us) + (sl + s [D) a1

b b
+ 2 leally + sl lualf + 3 (luallz + llua 1) uslly

—l—l/¢u1(u3)2dx+1/¢u2(u3)2dx+1/¢u1(u2)2da:
/¢u3 ug)?dz + = /¢u2 up)?dz + = /gb% uy)

- ]b ,u( ) = Cb N3
which is a contradiction, that is, uz = 0 and u, has exactly two nodal domains. O

Lemma 4.2. Let p, — 0 and {u,, } C E be a sequence of critical points of Ilf:#n satisfying
(Ip,,) (ug,) = 0and I}, (u,,) < C for some C independent of n. Then up to a subsequence
Uy, — up in B as n — oo and wy is a critical point of Ig\.
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Proof. We prove the lemma in three parts:
Claim 1. {u,,} is bounded in E.

1 !
O Z Igju(uﬂn) - 5((‘[;:/.1) (uﬂn)7uﬂn>

1 1, ., 1

— (5 = )l Iy + (5

q 2
1 1 )
+ (=) [ Su, dw+ qun|qu+ - == qunl da
4 q Q Hn
1 1

> (= _ = 2
> (= Dl + (G = )l

1 1 1 1 1
- —)Iluunll2 +(3 - —)blluunHi1 27— /Q [V, [, [*de

=)

which implies that {u,, } is bounded in E. Then up to a subsequence, we may assume

— ugp in E as n — oo.
Claim 2. {u,,} is bounded in L*>°. We will do this by using the Moser iteration. Re-

call that {u,, } satisfies the equation <([b{“n)’ (uy,), ) =0, for any ¢ € E, we have

uﬂn

un/Q (1Y, |* Vi, Voo + |ug, | w,, 0) do + /Q(a + g, )V, Vo + | Vuy, [Pu,, odz
+ b(/ |Vuun|2dx)(/ Vu,, Vedr) + / V(x)uy, pdx + / Pu,,, Up, A
0 Q 0 Q

= )\/ |uun]q_2uungpln |uun|2da: +/ |uun\4uungpdx.
Q Q

(4.4)

Now for any T > 0, we take ¢ = |u£n}2k u,, as test functions in (4.4) with k > k¢ for some

ko > 0, where !ugn{ = |uy, |, if |u,, | < T |u,,| =T;if |u,,| > T. By (4.4) and the Sobolev

embedding, for € € (0,1), we have

/{T< () [V P, [ o+ (2641 [ (aw) Va P [ do

k k
+/ |Vuun|2uun2‘uzn‘2 dm+/VoouMn2|ugn|2 dz
Q Q
k
< [ bl b [ 0 [ gl o Pl

Choose 0 < € < ‘%’", then there exists C' > 0 such that

/ |uun|6 }uZn ‘zk dx + /\/ [w, |y, In |u#n]2|ufn\2kdx
Q Q

gs/ |uun|6|u;‘fn}2kdx+6’a/ o | da
Q Q

Hence, It follows from the above estimates and the Sobolev imbedding theorem, let T" — oo,

(4.5)

we get
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S (/Q (uin ‘uZn k>6dx)é < /Q ‘V (uin ‘u/{n k)rdx

, (4.6)
k
< C(k+ 2)2/Q|uun|2 (uin ‘ugn > dx.
since |uy, [* € L* (Q) for some s C (2,3), then we have
1
2 |, T |k\2 2 |7 (k)" ’ 2 2 2 |, T [F\2
|(u:“'n |uﬂn ) |L3 - (9} <u:“‘n |uﬂn} ) dz S C(k T 2) |up‘” L (u/in ’uﬂn ) Ls'

where s’ = 7 < 3. Assume u,,, € LU+20)s" By the above estimate we have u,, € L4+2+)3

and
1
|ty | pavzrs < C(k 4 2)72 [y, | parons

Hence, Moser’s iteration implies |u,,, |- < C.
Claim 3. up € EN L™ () is a solution of problem (1.1). By Claim 1, we may assume
{u,, } converges to uy weakly in E. Taking ¢ = ¢e " where ¢ € C§°(2),1¢ > 0, we have

+ b(/Q \Vu#nIde)(/Q Vu,, (Vwefuun — qpetnn Vuun) dz
i /Q (a4 [, [*) Vg, (Ve — e Vuy, ) do + /QV(x)u/mwe_“#” dz
+ /Q |Vuun|2uun¢e_““ndx + /nguun uy, e Az
0 ol W P = [ e
<tin /Q (Vg * Ve Voo + [y, [* w,00) € de + /ﬂ (a + |y, |?) Vi, Vipe™n da
+ b(/Q |Vu,m]2das)(/Q Vuy, (Vipe ) dz + /Q V(x)uy,, e da
A Tl e b, Pl = [
Since a > }l, then a + uin — Uy, > 0 and

/ (a1 Lty — ) [Vt [2 e~ da
Q

Q
= / (CL + |uﬂn‘2 - uun) (2VU“nV’U,0 — |VU0|2) wefuundx_
Q
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Let v > 0,v € C° (2) . We choose a sequence of nonnegative functions {¢,,} C C§° () such
that 1, — ve™ in E, ¢, (z) — ve' (z) a.e. € Q and {¢,} is uniformly bounded in L* ().
By approximations, we may obtain for all v > 0, v € C§° (2), we have

0< / aVuoVu + V(z)ugvde + b/ |Vauo|* Ve Vodz + / Vo | uov + |uo|? Vi Voda
Q Q Q

+/¢uOu0vdx—)\/ |u0|q_21)1n|u0|2da:—/ |ug|* ugvda.
Q Q Q
Take ¢ = tpe*n in (4.4),

O>/aVu0Vv+V( )uovd:c—l—b/ V| VuOVvd:c—l—/ Vo |* uov + |uo|? Ve Vodz

/(buOuovdx— /|u0|q v 1n |ug)? dx—/ |ug|* ugvda.

Thus we have for all v € C§° (2), we have
/ aVugVu + V(z)ugvde + b/ ]Vu0]2 VugVudz
0 0
+/ Vo |* ugv + |uo|* Vg Vodz + / Guguovde
Q Q

:)\/ |u0|q_2vln|u0|2dx—l—/ |ug|* ugvdz.
0 0

Therefore, g is a critical point of I}*. The proof is completed. n

Proof of Theorem 1.1. By Lemma 3.4, we choose a sequence p,, — 0, there exists {u,, } C
E satisfying I}, (u,.,) = ¢, and (I, ) (u,,) = 0.
Claim 1. Problem (1.1) possesses one sign-changing solution .
Assume ¢ € C§° (Q2)) with ¢ # 0, there is a pair of positive numbers (ay, 3y) indepen-
dent of n such that

(I, (oo™ + Bo™), aoe™) < (I (o™ + Bow ™), ™) <0,
and

(I, (0™ + Bow™), Bow™) < (Ipy (o™ + Bop™), Bow™) < 0.

Let ¢ = agpt + o™, according to Lemma 3.1 that there exists a unique pair of positive
numbers (a, 8,) C (0,1] x (0, 1] such that ) + Bupy € Mj, , we have that
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1
Cosin. i (@l + Brpr) = 7{(I5,) (gl + Bupr ) s cnipl + Buipy)

—1 (@R et I+ @R e ) + 55 | (@) Lot + (80 lei ) da

A A B 1 1
+—2/ Ianwflqdw+—2/ |Bupr |%dx + (= — —)/ (Jomeet | In e [?) da
q° Jo q° Ja 4 q Ja

1 1
+G=0) [ (Bl ) do

<3 (et 1P+ et ) + 53 | (let "+ b dx+_/|¢1|q+,%>
1

+ (G- Dratimiere) ae+ [ (G- Diermlep) o

(Ton) (1) 1)

Therefore { a L } is bounded, according to Lemma 4.2, there exists a critical point ug of [

NN

:[b):l (¢1) —

such that u,, — up in F.
Now we prove ui # 0. Since u,, € M., we have that

po iy + Ml I +b!luun|!4+2/|Wi\ e, | do

A AR R AR (4.7)
Q Q

:/ }ufn‘6daz+)\/ ‘uiﬂ‘qln\uiﬁdx.
Q Q
So, for u,, — 0 and (3.2), we have that
o < /|u \de+>\/ U7 n [ 2da

< Csllug |I® + AeCollug |* + AC-Chol|ug [

Thus, we get
(1= AeCy) ||ug || < Cs |[uit]|® + AC-Cro |||

Choosing e small enough such that (1 — ueCy) > 0, since r > 4, there exists uy such that

Juo* 12 = p > 0.

Therefore, up™ # 0. Then we obtain that ug is a sign-changing solution of (1.1).
Claim 2. wuy has also exactly two nodal domains.
Since ug is a nonzero critical point of I;', we have that

2
a/ Vauo|* + V (z) |u0|2d$~|—b(/ |Vu0|2dx> —|—2/ |Vo|* |uo| dz

+/¢uo\u0]2dx—)\/ ]u0|qln|u0\2dx—/|u0\6dx:0_
Q Q Q
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On the other hand, (13, )’ (uu,) ,u,) = 0 implies that

2
Q Q Q

42 [V Pl Pt [ 0, e =0 [ i 10 P = [ [ do =0,
Q Q Q Q

According to (3.2), we have that

lim )\/ ([t 1%) In |1, [2dz — A/ (Juto|?) In [ug 2l (4.9)
Q Q

n—oo

S V(@) |y,

Moreover, according to the proof in Lemma 3.4 that B; = By = 0, we have

lim/\uun\de:/\udex:O. (4.10)
Q Q

n—oo

Then, combining (4.7)-(4.10) and using Fatou’s lemma and weak semicontinuity of norm, up
to a subsequence, we get that

2
/a\vU0|2+v<x) |u0\2dx+b</ (Vo dr )
QO Q

2
<t [ (olVu, P+ V@) ) do o+ 5 [ [V, o)
Q Q

n—oo

=t (3 [ il P [ o2 [ 90, Pdo = [ 6, T, o)
n—00 Q Q Q Q
2
:/(a|Vu0|2—|—V(x) |u0|2)dx—|—b</ |Vu0|2dx> +2/ |Vu0|2|u0|2d:76+/qbuO |u0|2dx
Q Q Q Q

— lim (2/ |Vu“n|2 |uun|2 dx—/(ﬁuun |u,m]2 dx)

< 2 2 2 2

< | (a|Vuol + V(@) uo| )dx+b< V20| da:) .
Q Q

So that lim,, e |1, ||> = [|uol|®. According to Brzis-Lied Lemma [17] that u,,, — ug strongly
in £ as n — oco. That means that uy has also exactly two nodal domains.

Claim 3. ug is a least-energy sign-changing solution. By Lemma 3.1 it is easy to see
that there exists a unique pair (ay,, 8,,) € (0,00)x (0, 00) such that a,,, ug +8,,u; € My, .
Then we have

pn, N [y + et e+, I+ b 2, s
v, [ [Vl de s o, [og il ar ot g2, [ o iy
:/\/ |aunuar|qln|au0u0|2dx+0z2n/ |uf|” da,
and ' ’
g i [+ 55 e I+ 982, N 1+ 55, i 1 e
2l [ Vil fug e+ 8, [ o sl ae v 82, [ oy ulPar (g

_ _ _ 16
A B 0 B P+ B [ g
Q Q
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According to p, — 0 as n — oo, {a,,} and {8,,} are bounded. Up to a subsequence,
suppose that «,, — o9 and S, — fo, then it follows from (4.11) and (4.12) that

o [l |I* + b [ Iy + badd [l 11 [lua I
+2ag/ﬂ|vugyz|ug|%1x+ag/Q%T yugfdﬁaggg/ggb% wilfdr g
:)\/ |a0u§|qln|a0u§|2daz+ag/ |u8“|6dx,
Q Q
and
88 o I+ 08 llwg ||y + beigss [ug |1 [l Il
+25§/Q|Vuo\2|uo|2dx+53/0¢u0 |uo|2d$+a353/9¢ug jug | da (4.14)
[ (B l7) 5 P+ 58 [ Ju " e
Because ug is a sign-changing solution of problem (1.1), there holds
e 1+ 0 flu 1+ s 1 o |1
+2/Qmgf|u;;|2dx+/ﬁ¢%+ |u§|2dx+/g¢u0 g de (415)
:)\/ (Jug|?) ln|u(ﬂ2dx—|—/ |u§|6dx,
Q Q

and 12 4 N2 -2
(N (7 (M T T

-|—2/Q {VUE‘Z {ua|2dx+/ﬂ¢% |ug}2dx—|—/ﬂ¢uar |u5}2dx (4.16)
:)\/ (Jug]?) ln\uO\deJr/ |ug |° da.
Q Q

Hence, in view of (4.11)-(4.16), we can easily obtain that («ag, 5y) = (1,1).
According to Fatou’s lemma and weak semicontinuity of norm, we get

72 (o) — 3 (12 (o) o)
1w, 1

1 1 2\
< 2, = 6 - [ q 2 } an q

.. 1
<timinf |2, (1) = 5 () (00.) )

n—oo

R E A 1 A A
=lminf I, (u,,) = lm ¢, = ¢

Moreover,

So I}M(ug) = liminf, o I}, (,) = ¢4, The proof is completed. O
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By Theorem 1.1, we obtain a least-energy sign-changing solution uq of problem (1.1).
Next, we prove that the energy of ug is strictly larger than two times the least energy.

Proof of Theorem 1.2. Similar to the proof of Lemma 3.4, there exists A** > 0 such that
for all A > A\** and when p — 0, there is v, € N} such that Iliu (v,) = ¢* > 0. By standard
arguments (see Corollary 2.13 in [10]), the critical points of the functional I, on N} are
critical points of I}, in E.

For all A > \*, according to Theorem 1.1, for each u — 0, we know that the problem
(1.1) has a least-energy sign-changing solution ug which changes sign only once. Let Ay =
max {\*, \**}. Suppose that ug = ut+u~. As the proof of Lemma 3.1, there exist a,+, 8,- €
(0,1) such that a,+u® € N, B,-u~ € M. Therefore, in view of Lemma 3.1, we have that

2¢* < hgl_)i(l)lf [[l;\,u (Ozu+u+) + [l;\,u (ﬁu—ufﬂ
NPIESY + - c e (4 -\ _ 1A
< hIMIl_)l(I)lf I, (ru™ 4 By-u~) < hin_}(l)qf Iy, (ut +u ) =1 (uo).-
which shows that I} (ug) > 2¢* and ¢* > 0 cannot be achieved by a sign-changing function
in F.
O
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