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Abstract

The first contribution of this paper is the extension of the non-iterative transformation method, proposed by T\”opfer more

than a century ago and defined for the numerical solution of the Blasius problem, to a Blasius problem with extended boundary

conditions. This method, which makes use of the invariance of two physical parameters with respect to an extended scaling

group of point transformations, allows us to solve numerically the Blasius problem with extended boundary conditions by solving

a related initial value problem and then rescaling the obtained numerical solution. Therefore, our method is an initial value

method. However, in this way, we cannot fix in advance the values of the physical parameters, and if we need just to compute

the numerical solution for given values of the two parameters we have to define an iterative extension of the transformation

method, which is the second contribution of this work.
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Abstract

The first contribution of this paper is the extension of the non-iterative

transformation method, proposed by Töpfer more than a century ago and de-

fined for the numerical solution of the Blasius problem, to a Blasius problem

with extended boundary conditions. This method, which makes use of the

invariance of two physical parameters with respect to an extended scaling

group of point transformations, allows us to solve numerically the Blasius

problem with extended boundary conditions by solving a related initial value

problem and then rescaling the obtained numerical solution. Therefore, our
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method is an initial value method. However, in this way, we cannot fix in

advance the values of the physical parameters, and if we need just to com-

pute the numerical solution for given values of the two parameters we have

to define an iterative extension of the transformation method, which is the

second contribution of this work.

Key Words. Blasius problem with extended boundary conditions; scaling in-

variance properties; non-iterative and iterative transformation methods; BVPs on

infinite intervals.

AMS Subject Classifications. 65L10, 34B15, 65L08.

1 Introduction

It was Prandtl [31] in 1904 who fixed the terms of validity of boundary layer the-

ory. Within this theory, the problem of determining the steady two-dimensional

motion of fluid flow past a flat plate placed edge-ways to the mainstream was

formulated in general terms and investigated in details by Blasius [1]. The engi-

neering interest was to calculate the shear at the plate (skin friction), which leads

to the determination of the viscous drag on the plate, see for instance Schlichting

and Gersten [35]). The Blasius problem is a boundary value problem (BVP) de-

fined on the semi-infinite interval [0,∞). It is possible to prove, see Weyl [37], that

the unique solution of the Blasius problem has a positive second-order derivative,

which is a monotone decreasing function on [0,∞) and approaches to zero as η

goes to infinity. The governing differential equation and the two boundary con-

ditions at the origin in the Blasius problem are invariant with respect to a scaling

group of point transformations and this has several consequences. From a numer-

ical viewpoint a non-iterative transformation method (ITM) reducing the solution

of the Blasius problem to the solution of a related initial value problem (IVP) was

defined by Töpfer [36]. From a theoretical point of view, applying the scaling

invariance properties, a simple existence and uniqueness Theorem was given by

J. Serrin, see Meyer [28, pp. 104-105]. Furthermore, let us note here that the
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mentioned invariance property is essential to the error analysis of the truncated

boundary solution due to Rubel [32], see Fazio [14] for the full details. Recently,

the Blasius problem was used, by Boyd [2], as an example, were some good anal-

ysis allowed researchers of the past to solve problems, governed by partial differ-

ential equations, that might be otherwise impossible to face before the computer

invention.

Non-ITMs have been applied to several problems of practical interest within

the applied sciences. First of all, a non-ITM was applied to the Blasius equa-

tion with slip boundary condition, arising within the study of gas and liquid flows

at the micro-scale regime [4, 27], see [15]. A non-ITM was applied also to the

Blasius equation with moving wall considered by Ishak et al. [23] or surface gasi-

fication studied by Emmons [5] and recently by Lu and Law [26] or slip boundary

conditions investigated by Gad-el-Hak [4] or Martin and Boyd [27], see Fazio

[17] for details. In particular, within these applications, we found a way to solve

non-iteratively the Sakiadis problem [33, 34]. The application of a non-ITM to an

extended Blasius problem has been the subject of a recent paper [20]. As far as

the non-ITM is concerned, a recent review dealing with all the cited problems can

be be found in [19].

Moreover, Töpfer’s method has been extended to classes of problems in bound-

ary layer theory involving one or more physical parameters. This kind of extension

was considered first by Na [29], see also the book by NA [30, Chapters 8-9] for

an extensive survey on this subject.

Finally, an iterative extension of the transformation method has been intro-

duced, for the numerical solution of free BVPs, by Fazio [21]. This iterative exten-

sion has been applied to several problems of interest: free boundary problems [21,

11, 12], a moving boundary hyperbolic problem [9], Homann and Hiemenz prob-

lems governed by the Falkner-Skan equation in [10], one-dimensional parabolic

moving boundary problems [13], two variants of the Blasius problem [15], namely:

a boundary layer problem over moving surfaces, studied first by Klemp and Acrivos

[25], and a boundary layer problem with slip boundary condition, that has found

application in the study of gas and liquid flows at the micro-scale regime [4, 27],
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parabolic problems on unbounded domains [22] and, recently, see [16], a further

variant of the Blasius problem in boundary layer theory: the so-called Sakiadis

problem [33, 34]. A recent review dealing with, the derivation and application of,

ITM can be be found, by the interested reader, in [18]. A unifying framework, pro-

viding proof that the non-ITM is a special instance of the ITM and consequently

can be derived from it, has been the argument of the paper [7].

2 The Blasius problem with extended boundary con-

ditions

The Blasius problem with extended boundary conditions is given by, see White

[38], Klemp and Acrivos [24] and Fang and Lee [6],

d3 f

dη3
+ f

d2 f

dη2
= 0

(1)

f (0) = 0 ,
d f

dη
(0) = P1 +P2

d2 f

dη2
(0) ,

d f

dη
(η)→ 1 as η → ∞ ,

where P1 =
Uw

U∞
, which for Uw > 0 is positive with the same direction as the free

stream velocity and for Uw < 0 is negative opposite to the free stram velocity, and

P2 =
Uslip

U∞
=

(

2
P3
−1

)

Kn,xRe
1/2
x is a dimensionless parameter with Kn,x =

1
x
, and

Rex =
U∞x
2ν . We notice here, that the problem (1) when P1 = P2 = 0 reduces to the

celebrated Blasius problem.

2.1 The non-ITM

In this section, we assume that we need to find the behaviour of the missing initial

condition with respect to the variation of the values of the involved parameters,

that is P1 and P2 should get several different values but these values are not fixed in

advance. The applicability of a non-ITM to the Blasius problem is a consequence

of both: the invariance of the governing differential equation and the two boundary

conditions at η = 0, and the non-invariance of the asymptotic boundary condition,
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as η goes to infinity, under the scaling group of point transformations. In order to

apply a non-ITM to the BVP (1) we investigate its invariance with respect to the

extended scaling group

f ∗ = λ f , η∗ = λ−1η , P∗
1 = λ δ1P1 , P∗

2 = λ δ2P2 . (2)

We find that the Blasius problem with extended boundary conditions (1) is invari-

ant under (2) if

δ1 = 2 , δ2 =−1 . (3)

Now, we can integrate the Blasius equation in (1) written in the starred variables

on [0,η∗
∞], where η∗

∞ is a suitable truncated boundary, with initial conditions

f ∗(0) = 0 ,
d f ∗

dη∗
(0) = P∗

1 +P∗
2

d2 f ∗

dη∗2
(0) ,

d2 f ∗

dη∗2
(0) = 1 , (4)

in order to compute an approximation d f ∗

dη∗ (η∗
∞) for d f ∗

dη∗ (∞) and the corresponding

value of λ according to the equation

λ =

[

d f ∗

dη∗
(η∗

∞)

]1/2

. (5)

Once the value of λ has been computed by equation (5), we can find the missed

initial condition by the equation

d2 f

dη2
(0) = λ 2δ−1 d2 f ∗

dη∗2
(0) , (6)

and the values of P1 and P2 by the relations

P1 = λ−2
1 P∗

1 , P2 = λ2P∗
2 . (7)

Moreover, the numerical solution of the original BVP (1) can be computed by

rescaling the numerical solution of the IVP. In this way, we get the solution of a

given BVP by solving a related IVP.

2.2 The ITM

In this section, we assume that we need to compute the numerical solution for

given values of the involved parameters, that is P1 and P2 are now fixed. We need
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now to consider the invariance of the initial conditions with respect to the extended

scaling group of point transformations

f ∗ = λ f , η∗ = λ−1η , h∗ = λ σ h . (8)

This new scaling group involves the scaling of the fictitious parameter h that will

be used to force the initial conditions to be invariant. Now, we can integrate

the Blasius equation in (1) written in the star variables on [0,η∗
∞], where η∗

∞ is a

suitable truncated boundary, with initial conditions

f ∗(0) = 0 ,
d f ∗

dη∗
(0) = h∗2/σ P1 +h∗−1/σ P2

d2 f ∗

dη∗2
(0) ,

d2 f ∗

dη∗2
(0) = 1 , (9)

in order to compute an approximation d f ∗

dη∗ (η∗
∞) for d f ∗

dη∗ (∞) and the corresponding

value of λ again by equation (5). Once the value of λ has been computed by

equation (5), we can find the missed initial condition again from equation (6).

In the ITM we proceed as follows: we set the values of P1, P2, h∗, σ and η∗
∞ and

integrate the IVP on [0,η∗
∞]. Naturally, choosing h∗ arbitrarily we do not obtain the

value h = 1, however, we can apply a root-finder method, like bisection, secant,

regula-falsi, Newton or quasi-Newton root-finder, because the required value of h

can be considered as the root of the, implicit defined, transformation function

Γ(h∗) = λ−σ h−1 . (10)

Of course, any positive value of σ can be chosen, and in the following, for the

sake of simplicity, we set σ = 10. Moreover, as a termination criterion for our

root-finder we used |Γ(h∗)|< Tol with Tol = 10−5.

3 Numerical results

In this section, we report the numerical results computed with our non-ITM and

ITM. To compute the numerical solution, we used the eighth order Runge-Kutta

method, see Butcher [3, p. 180] for details, with constant step size.

First of all, we start with the results obtained by the non-ITM. In table 1 we

report the chosen parameter values, the computed values of the involved parame-

ters and the missing initial condition d2 f

dη2 (0). As it is easily seen from the results

6



Table 1: Numerical data and results.

P∗
1 P∗

2 P1 P2
d2 f

dη2
(0)

0.25 0.25 0.140225769 0.333807506 0.42007973468

0.5 0.5 0.241979004 0.336675506 0.33667550559

0.75 0.75 0.309184205 1.168108665 0.26468787856

1 1 0.353764405 1.681291175 0.21041233684

1.5 1.5 0.405947260 2.883381325 0.14078861396

2 2 0.433836425 4.294197226 0.10102852811

2.5 2.5 0.450478633 5.889425257 0.07648940496

5 5 0.481068451 16.119500068 0.02984388156

listed in table 1 we are not in the position to plot the data by fixing one of the two

parameters, usually P1, and plotting the missing initial condition versus the other

parameter. Of course, this is a drawback of our non-ITM. However, when we are

required to do just these kinds of plots we can apply the described ITM.

We report now, the numerical results obtained by the ITM. As a root-finder we

applied the simple bisection method with the termination criterion |Γ(h∗)| < Tol

with Tol = 10−5. In table 2 we report a sample iteration of the bisection method.

In figure 1 shows the behaviour of the missing initial condition versus P1 with

three values of the other parameter, namely P2 = 0,1,2.

As an example, figure 2 shows the solution of the Blasius problem with ex-

tended boundary condition in the particular case when we set P∗
1 = P∗

2 =1. For the

results shown in this figure we used ∆η = 0.001 and η∗
∞ = 10. Let us notice here

that, by rescaling, we get η∗
∞ < η∞, and this is convenient for the user because it

means that we need to make less computational effort to get the wanted numerical

solution.

As mentioned before, the case P1 = P2 = 0 is the Blasius problem. In this par-
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Table 2: Bisection method iterations for P1 = 0.5 and P2 = 0.

h∗ λ Γ(h∗)

0.75 −0.424804078

1.75 0.118076477

1.25 1.389163618 −0.100177989

1.5 1.466575876 0.022790586

1.375 1.425023536 −0.035103656

1.4375 1.445108710 −0.005265147

1.46875 1.455672550 0.008983786

1.453125 1.450347802 0.001914850

1.4453125 1.447717501 −0.001661237

1.44921875 1.449029969 0.000130281

1.447265625 1.448373064 −0.0007646088

1.4482421875 1.448701349 −0.0003169467

1.44873046875 1.448865617 −0.0000932785

1.448974609375 1.448947782 0.0000185148

1.4488525390625 1.448906697 −0.0000373785

1.44891357421875 1.448927239 −0.0000094310

ticular case, our non-ITM reduces to the original method defined by Töpfer [36],

and the computed skin friction coefficient value, namely 0.469599988361, ob-

tained with ∆η = 0.0001 and η∗
∞ = 10, is in very good agreement with the values

available in the literature, see for instance the value 0.469599988361 computed

by Fazio [8] by a free boundary formulation of the Blasius problem.
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Figure 1: Numerical results of the missing initial condition versus P1, here P2 =

0,1,2.

4 Concluding remarks

The main contribution of this paper is the extension of the non-ITM, proposed by

Töpfer [36] and defined for the numerical solution of the celebrated Blasius prob-

lem [1], to a Blasius problem with extended boundary conditions. This method,

that makes use of the invariance of two physical parameters, allows us to solve

numerically the Blasius problem with extended boundary conditions by solving

a related IVP and then rescaling the obtained numerical solution. However, in
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Figure 2: Numerical results of the non-ITM for (1) with P1 = P2 = 1. The

starred variables problem and the original problem solution components found

after rescaling.

this way, we cannot fix in advance the physical parameters, and if we need just to

compute the numerical solution for given values of the two parameters we have to

apply an iterative extension of our TM.
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