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Abstract

In this piece of research, our aim is to investigate the novel solitons solutions of non-
linear (4+1)-dimensional Fokas equation (FE) and (2+1)-dimensional Breaking soliton
equation (BSE) via new extended direct algebraic method. New acquired solutions
are bright, singular, dark, periodic singular, combined-dark bright and combined-dark
singular solitons solutions along with hyperbolic and trigonometric functions solutions.
The achieved distinct types of solitons solutions contain key applications in engineering
and physics. By taking the appropriate values of involved parameters, numerous novel
structures are also plotted. These solutions define the wave performance of the govern-
ing models, actually.
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1 Introduction

A large number of existing phenomena in science and engineering are connected to non-
linear partial differential equations (NLPDEs). These are much significant in explaining
everyday problems growing in science and nature such as waves, geology, population
ecology, solid-state physics, wave propagation, fluid dynamics, biology, computer science
and birefringent fibers, etc. Many mathematical approaches have been efficiently applied
to study the valuable results of NLPDEs [1-31]. Using these approaches, various novel
properties of wave behavior of these NLPDEs have been observed. The observed results
have much impact in many scientific phenomena such optics, optical fibers, long distance
high speed transmission lines and in optics as temporal or spatial optical solitons. In
this paper, we have constructed novel dark, singular, bright, periodic and mixed solitons
solutions to (4+41)-dimensional FE and (2+1)-dimensional BSE equations by applying
new extended direct algebraic method (EDAM) [32]. The (4+1)-dimensional FE is
given by [33]

A8y, — Bypay + Puyyy + 120,B, + 120, — 6B, = 0. (1)



Here, ® is a function of x,y,z,w and t. This model has been discovered from the
Kadomtsev-Petviashvili (KP) and Davey-Stewartson (DS) equations, which have been
frequently used to indicate internal and shallow waves in the canals [34]. One another
model, deliberated in this paper, (2+1)-dimensional Breaking soliton equation (BSE)
stated as which is used to explain the collaboration of propagating Riemann waves,
which was first introduced by Degasperis and Calogero in 1977. This model was explored
by considering HDM and so on [35-37].

D ppay — 20, By — 4D, B,y + By = 0. (2)

2 Description of the new EDAM

The steps of new EDAM [32] are, as follows

Step 1. Let the PDE
G(q)yq)anq)t,q)txuq)xwv(I);Btyqjtt;----) = 07 (3)

where ® = ®(x,t) is a function.
Put on the wave transformation

(I)(l',t) = P(£)7 §= M(l’ - Ct)v (4)

(3) converted into ODE as follows

H(P,P,P", .)=0. (5)

Step 2. Consider (5) has a solution as follows
N .
P(§) =Y FQ(€), Fx #0, (6)
=0

where Fj (0 < j < N) are constants and Q(§) admits the ODE, as follows

Q'(€) = Ln(A)(6 + ©Q(€) +<Q*(€)), A#1, 0. (7)

(7) gives the solution as

Family 1:When 602 — 46¢ < 0 and ¢ # 0,
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Qu(©) =~ + YT = tan (/87— aie) + VIO o (/67— aivle),

2§

Qule) =~ - ”_(G;fmwt,qw-(@z ~455J0) - M e (/67 ),

2¢

B \/ — 44¢) V — (02 — 44¢) v —(©2 — 44¢) v —(©2 — 44¢)
Qs5(8) = 2§ L‘anA( 1 §) — " cot a( 1 £).-

Family 2:When 02 — 46¢ > 0 and ¢ # 0,

o Vi, . i),
2¢ 2 ’

Qs(§) = 9

C) (02 — 449) (02 — 44¢)
Qr(e) =~ — YO0 oy (AT A,

5 coht 5

Qs(§) = o mtanh (V(©2 = 466)€) £ 1~ 9(6° — 4%) secha(y/(©2% — 466)¢),

26 2g

Qo(§) = 9 4& COthA \/745(5 /Pq(O° — 456) cschA \/74&5

2¢ 26

Quo(§) = —i - @tan@;(@) €) — \/(@24:74&)0075]114(\/(@2_74&)5)_

Family 3:When d¢ > 0 and © = 0,

Qui(§) = \/ftanA(\/Ef),

Q12(8) = —\/fcotA(\/&Oa

Q13(§) = \/ftanA(Q\/&ﬁ) + \/inSECA(Q\/&O,
Qua(§) = —\/fcotA(%/&&) + \/qucscfx(%/&é),

Qus(€) = 3y tama (Vo) — [ Ceoy (V).
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Family 4: When ¢ < 0 and © =0,

Q16(§) = —ﬁtanhA(mf),

Q17(§) = —\/jfcothA(VT&S),

Q18(§) = —1/ —ftanhA(Q\/—dgg) + L@S€Ch,4(2\/ —66€),

Q19(§) = —1/ —fCOthA@\/—ié@&) + @cschf;(%/—ég{),

Q) = 2/~ Stanna (%) 4 [ Leomna( o),

Family 5:When © =0 and ¢ = 4,

Q21(§) = tana(88),
Q22(§) = —cota(66),
Q23(§) = tana(26€) £ \/pgseca(26€),

Q24(&) = —cot 4(26€) £ \/pgcsca(20€).

Qu5(€) = — 3 (tana(3€) + cot.a(26).

Family 6:When © =0 and ¢ = —9,

Q26(§) = —tanha(5),
Q27(§) = —coth4(8§),
Q25(&) = —tanha(20€) + v/pgsech 4 (20€),

Q29(§) = —coth(268) £ \/pgesch a(20€),



Q30(§) = —%(tanhA(gf) + cothA(gg)).

Family 7:When 62 = 44c,

ani) - a1

Family 8 When © =k, 6 = mk (m #0) and ¢ = 0,

Q32(8) = AR —m.

Family 9:When © =¢ =0,

Q33(§) = 66Ln(A).
Family 10:When © = =0,

Q34(§) = !

~ GELn(A)’
Family 11:When § = 0 and © # 0,
_ rO
Qs5(8) = ¢(cosha(OE) — sinhA(OE +p))’
Qso(6) = O(sinh(OE) + cosh(OE))

 ¢(sinha(©€) + cosha(O€ +q))
Family 12:When © =k, ¢ =mk, (m #0) and § =0,

__ pA¥
Q37(§) = o — mpAFE

Note: The generalized hyperbolic and triangular functions are given as [39]

, AS — gA—¢ A8+ qA~S
sinha(§) = %, cosha(€) = %,
pAS — gA~¢ pAS 4+ gA=¢

= 1 th - AT S
ta’nhA(f) pAg T qA,éw co A(f) pA£ — qug ,
ha(€) = —— ha€) = ————
sech g _pAE—i—qA*g’ csch _pAﬁ—quﬁ’
. pA% — gA—E DA% 4 g A~
SZTLA(f) = 2—[/7 COSA(g) = fa



_ pA® —gA® _ pA¥ 4 gAT«
tana(§) = —LW, cota(§) = LpAbﬁ——qA—Lf’
2 2t
secy (&) = DA€ A’ csca(€) = DAE A&
where p,q > 0.

Step 3: The integer N > 0 can be determined by balancing rule in (3). Inserting (4)
in (3), gets algebraic equations having powers of Q7(¢) (j = 0,1,2,.....) and equating
the coefficients of powers of Q(&) to zero, provides system of equations.

Step 4: Solve system of equations and putting results in (4) to retrieve the exact solu-
tions of (1).

3 Applications of the new EDAM
3.1 New EDAM for (4+1)-dimensional Fokas equation

Here, new EDAM is applied to discover some new solutions of (1).
O(z,y,z,t,w) = P(§) &=ax+yy+ xz+ 7w+ €t, (8)
into Eq. (1) the following ODE is obtained
(4o — 6x7)P" + (0’ — a®y)PW + 12a~(PP') = 0. (9)
Integration (9) and gets the following equation
(4ae — 6xT)P + (ay® — &) P" + 6ayP? = 0. (10)
Using balancing rule on (10), it gives N = 2, which converts (6) as
P(¢) = Fo + F1Q(€) + F2(Q(¢))?, (11)

where Fyy , F} and F; are constants. Substituting (11) into (10) and equating the coef-
ficients of polynomials of Q(&) to zero, we yield a set of equations in Fy, Fi, Fy and e.
On solving the set of equations, we get

Fy = 5((0* = 7?) (207 + ) Ln(AY,

Py = (® = ~*)0uLn(A)?,
Fy = (o —4*)0*Ln(A)?,

. 67x + ay(a® —y2)(40) — p?)Ln(A)?
o 4o '
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From Eqns. (4), (11) and (12), we build new solutions of the model as follows.

Family 1: When 02 —45¢ < 0 and ¢ =% 0, then

6 26 26

i 4‘5§>5>)2> 13)

/—(O2 — 4
Dy (z,y, z,w,t) = 1(052 —~*)Ln(A)? (29)\ +u? + 69,u< Vil Gt )]

— (62 — 45¢) 0 /—(0%—44)
2 5))+662(_2?_ 2%

tana( tany

— (02 _ 4
Do(x,y, z,w,t) = é(()a2 —~*)Ln(A)? (29)\ +u? + 69,u< B i G )]

26 26
_(92— 45()5)) —1—662(— ;9( B \/—(@22(— 44¢) (\/—(62—4&)5))2)’(14)

coto(

cot 4

1 © —(©2 — 45
O3(x,y, z,w,t) = 6(042 — 7?)Ln(A)? (29)\ + o+ 60u( e + (zgg)

xtana(y/—(02 — 46¢)€) £ -~ —pa(©® — 456) seca(y/—(02% — 45§)§))

2g

+692< _ O VRO ) (R d0)E)

2¢ 2¢

i\/@,sec/‘(\/mgf), (15)

1 © —(©2 - 40
Oy(z,y, 2z, w,t) = 6((12 —~%)Ln(A)? (29)\ +u? + 60/¢( o (Qgg)

ot 4(v/ (O ~459)¢) + V@ esea(v/=(67 — 1506))
vt~ O VTN (e ame
i@m(mﬂﬁ 1o




26 4¢

XtanA\/m‘f)_ \/m (\/Wg))
4 4c 4
(& O, O

— " cot( 1 f)) . (17)

— 2_4»
®5(2,y,2z,w,t) = é(oz2 — %) Ln(A)? (20)\ + o+ 60M( _9 . V(07— 4d¢)

cot 5

tan g

Family 2: When 02 — 46¢ > 0. and ¢ # 0, then

2¢ 2¢

tanhA(Mﬁ)) + 692( _9_ ”GZf‘k)mnhA(Wg)f), (18)

1 2— 46
Og(z,y, z,w,t) = 6((12 — %) Ln(A)? (29)\ +u? + 6(9,u( _ 5 _ v —4%)

2 2¢

1 o 67 15
Pr(z,y, 2w, 1) = £ (0” =) Ln(A)” (29)\ 60— 2 - \/T

©2 = 45<)£)) N 692( e ,/(@22; 46¢) cothi(” /(@22_ 45§)£))2)7 (19)

th
cotha( 5 2

1 C) 02 — 45¢
Og(x,y, z,w,t) = 6(042 — 4?)Ln(A)? <29)\ +u? + 69,u( ~ o~ (2§)

xtanhs(y/(©2 — 46¢)§) £ 1~ pQ(@;g_ 45¢) secha(\/(©2% — 46§)§))
+692( - i - V(@;—‘l‘k)mnm(\/—(w T450)¢)

+1- Pq(O? — 4%) secha(y/ (©2 — 45§)§)>2> , (20)

2¢

q)9(mayasz7t) 2 2

é(oﬁ — %) Ln(A)? (m 1% + 60y 6 _ V(07— 45)

xcotha(y/(©2 — 466)€) + -~ pa(©2 — 495) cscha(y/(©2 — 45§)§)>

25

vor?( i B J(ng—wmm(m@
N pQ(@;g— 45<)CSChA(\/m§)>2>, (21)
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1 2 _
Dro(z,y,5w,t) = =(a? — ) Ln(A)? (w Y e

6 26 4¢
(02 — 449)

O C0)
+602( _9 @ta”hf‘(@f)

26
_V/(©% - 45§)cothA( (02 — 44) 5))2) 22

coth»4

xtanha(

4¢ 4

Family 3:When d¢ > 0 and © = 0, then
1 J
D11 (z,y, z,w, t) = 6(a2 —~?)Ln(A)? (29)\ + u? + GQM(\/ZtanA(\/Eﬁ)>

+692(\/§mm(\/&5))2>, (23)

O12(x,y, 2z, w,t) = é(oz2 — %) Ln(A)? (20)\ + 1 + 60,u( - \/fcotA(\/&f))

+692( - \/fcotA(\/&g)f) . (24)

6

:I:\/]EsecA@\/Ef)) + 662 (\/EtanA(Q\/&f) + \/];(SSGCA(Q\/&g))2> , (25)

1
13(x,y, 2z, w,t) = =(a® — v*)Ln(A)? <29)\ +u? + 66’#(\/§tanA(2\/&§)

6

i\/gzcscA@\/&?ﬁ)) + 662 ( - \EcotA(Q\/&f) + \/}?fcscA(2\/&§))2>, (26)

1 1 1)
(I)l5<aj7 Y,z,w, t) = 6(042 - Vz)Ln(A)2 (29A + /’LQ + 69M<2(\/:

tana (\2&5 - \/fcom(\/f)g)) + 692(;\/?@71,4(‘/;? ) — \/fcotA(\/;?)g)>2> (27)

1
Oiy(x,y, z,w,t) = =(a® — v*)Ln(A)? (29/\ + 1 + 69u< - \/fcotA(Z\/&Q




Family 4:When §¢ < 0 and © = 0, then

<

S

+602< - \/jfmnhA(\/—ng))z) . (28)

Di6(z,y, z,w,t) = é(a2 — ~%)Ln(A)? <26’)\ +u? + 69,u< =1/ —ftcmhA(\/—(sgg))

(o9

Oy7(z,y, 2, w,t) = é(oz2 — ~*)Ln(A)? (29)\ +u? + 69,u( — 4/ —fcothA(\/—5§§)>

+692( - \/:cothA(\/—ng))Z) . (29)

)

o9

Oi5(z,y, 2, w, t) = é(a2 —~%)Ln(A)? (29)\ +u? + 69u< = \/fcotA@\/&{))

14/ —qucscA(2\/57§§)) + 602( - \/fcotA(%/éigg) + 14/ —pqicscA(Q\/(Tgﬁ)y) , (30)

Dig(z,y, 2z, w,t) = %(052 — %) Ln(A)? (29/\ + i+ 69u< - \/fcotA(%/(Sigf

+4/ —qucscA(2\/57§§)> + 692< — \/fcotA(2\/&§ + \/—qucscA(Q\/ch§)>2>, (31)

1 1 1) v =0
Do (7, y, 2, w,t) = 6(042 — %) Ln(A)? (29/\ + P+ 69M< - 5(\/ —EtanhA( 5 gf)

—i—\/—»icothA(\/?é)) + 602( — ;(\/—»ftanhA(\/?ﬁ) + \/—»fCOthA(\/?f)>2> -(32)

Family 5:When © = 0 and ¢ = 9, then

Boy (2,1, 2, w, 1) = é(az — ) Ln(A)? (20)\ + 2 + 60y (tanA(ag)) + 662 (tanA(5§)>2> (33)

Boo (2, 2, w, 1) = é(cﬁ — ) Ln(A)? (20)\ 4l 69u< . cotA(ag)) + 692( - cotA(5§)>2> (34)
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Do3(z,y, 2, w, t) = é(a2 — %) Ln(A)? (29)\ +u? + 69,u<tan,4(25§) + /pq secA(Qéf))

2
1662 (tanA(25§) +/pq secA(25§)> >,(35)

Doy (z,y, z,w,t) = é(a2 — %) Ln(A)? <29)\ +u? + 69/1( — cotA(20€) £ \/pq cscA(25§)>

2
+692( — cot A(20€) + \/pq cscA(25§)) ) (36)

Do5(.y, 2, 0,8) = (07 1) Ln(A) (26» a2+ 60 (L (tama(26) — cota(56) )

+692(%(mm(gg) - cotA(g§)>2> . (37)

Family 6:When © = 0 and ¢ = —¢, then

Bog (2, y, 2, w, 1)) = %(a2 — ) Ln(A)? (29>\ ol 69u< - mnhA(ag)) + 692( - tanhA(ag))2> (38)
Dor(x,y, z,w,t) = é(a2 —~%)Ln(A)? (20)\ + i + 69,u< - cothA((Sf)) + 602( — cothA(5§)>2> ,(39)

1
Dog(z,y, z,w, t) = 6(a2 — %) Ln(A)? (29)\ + i + 69,u< —tanha(26€) + L\/]quechA(Q(%))

2
+602( — tanhA(268) + L\/ZquechA(26§)> ) ,(40)

Dog(x,y, 2, w,t) = é(a2 — %) Ln(A)? (29)\ 4+ + 69,u< — cotha(266) £ \/]chschA(25§)>
2
+602( — coth(26€) £ /pgcsch A(zag)) ),(41)
Lo o 2 2 1 0 0
Oa(z,y, 2, w,t) = 6(0‘ —~%)Ln(A) (20)\ +p”+ 69,u< — i(tanhA(§€) + cothA(§§)>
+692< — %(tanhA(gO + cothA(gf))Q) .(42)
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Family 7:When ©2 = 4§, then

—26(O¢Ln(A) + 2)>

1
O3y (1,y, 2, w,t) = 6(042 — +?)Ln(A)? (29)\ + p? + 60/1( 02 Ln(A)

_25(OELn(A) +2)\ 2
+60°( ((922Ln((/1))+ )) ) (43)

Family 8:When © =k, § = mk (m #=0) and ¢ = 0, then

1 2
s, y, 2w, 1) = £(o® =) Ln(A)? (m + 2 + 60y (Akf . m) + 662 (Akf - m)) ) .(44)

Family 9:When © = ¢ = 0, then

Ds3(x,y, z,w,t) = é(a2 — 4?)Ln(A)? (20)\ +u? + 60,u,<5§Ln(A)) + 66° (5§Ln(A)>2> .(45)

Family 10:When © = § = 0, then

1 -1 1 2
) = —(a? =~} Ln(A)?| 2 2 —_ 2—— .(4
Family 11::When § = 0 and © # 0, then

PO
(cosh4(O€) — sinh A (O + p))

pO 2
(cosh4(O&) — sinh (O + p))) ) ,(47)

1
@35(567 Y,z w, t) = 6(a2 - VQ)Ln(A)Q (20)‘ + /1,2 + 60:“’( - < )

+692(— :

1
®36($7 Y, z, w, t) = 6(a2 - 72)[’”("4)2 (29A + /’LQ + 69/'L

_ O(sinha(Of) + cosha(O€)) of  O(sinha(O€) + cosha(©)) |2
( ¢(sinha(OE) + coshA(@§+q))) +60 ( S(sinhA(OE) + cosh A (O€ + q)))> >'(48)

Family 12:When © =k, ¢ = mk, (m #0) and § = 0, then

1 A Ak 2
Dar(w,y, 2, w,) = (0?93 Ln(A)? (20)\ 2+ 69M(q_pmw) + 692(}?7)) ).(49)
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where
E=ar+yy+xz+TWH €l

3.2 EDAM for (241)-dimensional Breaking soliton equa-
tion

Here, (2+1)-dimensional BSE is used to build new solutions of (2), using following TWT

O(x,y,t) =P(), E=kx+ly—-ct, (50)
(2) converts to ODE as follows
KSIPW — 3k21((P')?) — keP" = 0. (51)
Integrating (51), we get
k3P — 3K%1(P™) — kP = 0. (52)
for simplicity, when we can consider
v=pP,6 V=P V'=pP" (53)
B3V — 3kAV? — keV = 0. (54)

Using balancing rule in (54), it yields N = 2, (6) converts to

P(&) = Fy + F1Q(¢) + F»(Q(9))?, (55)

Where Fy, F and F» are constants. Substituting (55) into (54) and equating coefficients
of polynomials of Q(&) to zero, get a set of equations in Fy, Fi, Fa, and c.
On solving the set of equations, we get

Fo = 2kOALn(A)?,
Fy = 2k6pLn(A)?,
Fy = 2k6%Ln(A)?,

c = —4k210NLn(A)? + klp?Ln(A)?. (56)

Using Eqns. (50), (55) and (56) the new solutions of (2) are obtained as follows
Family 1: When 02 —45¢ < 0 and ¢ = 0, then

®1(z,y,1) = 2k€Ln(A)2 (A + N( - ? + Jitcwy;(@g))
+9< © \/2*

- — 4+ ———Ftana

25

“—4&)><7>

13



By (w,y,t) = 2kOLn(A)? ()\+M< ot \/—_&com(@@)
2

®3(z,y,t) = 2kOLn(A)? ()\ + ,u< - 262 + _(622_4&)&171,4(\/ —(©2% — 46)¢)
j:\/—Pq(@2 44¢) seca(y/—(07 = 100)¢) ) +0(_ o +M

2¢

/ 2
tana(v/— (02 — 456)¢) + Y2 (Sg — 4) 5€CA(\/_(@2 - 45<)£)> >

By(z,y,t) = 2kOLn(A)> <>\ + u( _o + —V_@2_Ll‘k)com(\/—(@2 — 466)¢)

2¢ 2¢

+- —pq(92 45¢) csca(n/ — —466)¢) > +9<— —t — 4%)
cota(v/~(OF —430)¢) Y- “i ) s (v —4<s<>5>> )

O (x,y,t) = 2k0Ln(A)> </\ + u( -+ Ji—&tam(@f)
_@COM(@SD +9<_ 2<+_(@42g_45g) X

tan 4(

—_(@2 — 45g§) - —_(@2 — 4%) 0075,4(—_(@2 — 45g)f)>2>
4 4q 4 '

Family 2: When 02 —45¢ > 0. and ¢ # 0, then

2g

/(02 — /(02 _ 2
+0< % + —2g 4% tanhA(4(® 24&)5)) ),

Og(z,y,t) = 2k0Ln(A)’ (A+u( Wtcmlu(@g))

®7(z,y,t) = 2kOLn(A)? ()\+M(_ o, \/7007% \/—46< )

25

+9<—S§+ NACHELD) cothA(”z_Mgg)> ),

14

, (58)

(62)



®g(z,y,t)) = 2kOLn(A)* ()\ + u( - i + (@)Z_ng)tanhA(\/(@Q — 466)¢)

/g — 40¢) — 40¢)
+ (@2g <) sech(/(©2% — 46¢)& ) +6 e <)

mnhwmﬁﬂT secmwmQ) ) o

g (z,y,t) = 2kOLn(A)? (A - u( _9 + Mcoﬂm(\/(@ﬂ — 466)¢)

2¢ 2¢
\/—_ —4
+ (@2§ a3 cscha(\/(©2 — 406)E ) + 9( -t 2 %)

cotha(y/ (0% — 466)§) £ - a(67 — 4%) cschA (V(©2 — 44¢6)¢ ) > (65)

2¢

© (02 — 44) (02 — 449)

1o(z,y,t) = 2kOLn(A)> ()\ + ,u( ~ o + 4—§tanh,4( 1 §)
B \/(624: 45¢) cothA(\/(®24_ 45§)§)> N 9(2 N (@24; 40) o

ey R Ty EAY e S\ 2
tanha( (@24_ 4&5)— (@24; 46g)cothA((®2_45§)§)> ) (66)

Family 3:When ¢ > 0 and © = 0, then

oS

2
Dy (x,y,t) :2k0Ln(A)2 (A—i—u(\/»tanA \Ff +(9< tcm,ﬂ/&f)) >, (67)

e

2
D19, y, t) = 2kOLn(A)> <A+u(\[com \Ff +9< cotA(\/&f)) ) (68)

E

®13(x,y,t) = 2kOLn(A)? ()\ + u(\/ftcm,q(%/gg) + qusecA(Q\/&ﬁ’))

+9<\/§mm(2x/&g> + \/Esm(m/&f))Q), (69)

1y, y,t) = 2kOLn(A)? <)\ + /L(\/fcotA(Q\/&&) + qufcscﬁZ\/&&))

+9<\/§c0m(2\/&£) + \/;ECSCA(N&QY), (70)

15



D1s(e,y.1) = 2k0Ln(A)? (A . u(;\/ftam(\/f@ _ \ffcotﬂf)s))
2
+9<;(\/§tam(\/§?§) - \/fcom(\/fm) ) (1)

Family 4:When §¢ < 0 and © = 0, then

®16(x,y,t) = 2kOLn(A)? <)\ + u( - ﬁtanh,ﬂ@é))

+e( _ \/jftanm(\/—*&s)f) , (72)

®i7(z,y,t) = 2kOLn(A)> ()\ + u( - \/jfcothA(\/—iécﬁw

+9< — ﬁcothA(JT&§)>2> , (73)

D13, y,t) = 2kOLn(A)? ()\ + ,u( - \/fcotA@\/&f) + 14/ —qu cscA(Q\/&§)>
2
+0< - \/fcotA(Q\/&f) + 14/ —qu cscA(2\/57§§)> ), (74)

Pig(x,y,t) = 2kOLn(A)? ()\ + u( - \/fcotA(Z\/&f +4/ qué cscA(Q\/&f)>
—1—0( - \/fcotA@\/&f + 1/—pq(S csea( 2\/>§

Poo(w,y, ) = 2k0Ln(A)* (A + M( N ;(\/Titcmh;x(\/?ﬁ) + \/:cothA(\/j ))

+9< - ;(\/jftanh/;(\/?ﬁ) + \/jfcothA(\/?g)>2> (76)

Family 5:When © = 0 and ¢ = 9, then

2
Boy (2,9, ) = 2kOLn(A)? ()\ + ,u(tanA(df)) +0 <tanA(5§)> ) , (77)
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Doo(z,y,t) = 2kOLn(A)> ()\ + u( - cotA(ag)) - 9( - cotA(5§)>2> ,

o3z, y,t) = 2kOLn(A)> ()\ + ,u(tcmA(25f) + \/]quecA(25§)>

2
+6 (tcmA(Q(Sg) + \/]TQSGCA(Q(%)) >>

Doy, y,t) = 2kOLn(A)? </\ + u( — cot5(26€) + \/]7qcsc,4(25§)>

2
+0< — cot 5 (26€) £ \/]TQCSCA(%@) ) ,

Bos(2,y,t) = 2kOLn(A)? ()\ + ,u(%(tan/;(g{) - cotA(gg)))

+-0 <;(tan,4(g§) — cotA(gf))) )

Family 6:When © = 0 and ¢ = —4, then

Bog(x,y,t) = 2kOLn(A)? ()\ + u( — tanhA(5§)> + 9( — tanhA(éf))2> ,

o7 (z,y,t) = 2kOLn(A)* ()\ + ,u< - cothA(5£)> + 9( - cothA(5£)>2) ,

Dog(z,y,t) = 2kOLn(A)> ()\ + u( — tanha(20€) £ 1t\/pq sechA(Qdf))

2
+9< — tanha(26§) + v\/pq sechA(2(5§)) ) ,

Pog(z,y,t) = 2kOLn(A)* ()\ + ,u( — coth4(26§) = \/pq cschA(25§)>
2
+0( — coth(20§) = \/pq cschA(25§)> >,
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(78)

(79)

(81)

(82)

(83)

(84)



(tcmhA(gg) + coth,4(§5)>

N

Bao(x,y,t) = 2kOLn(A)? ()\ + u( -
2
+€< - %(tanhA(gf) + cothA(g§)> ) (86)

Family 7:When ©2 = 4§¢, then

2
D51 (@,,8) = 2H6Ln(A)? (A . M(—Q&(@an(A) + 2)> . 6(—25(@§Ln(A) + 2)> ) o

©2¢Ln(A) ©2¢Ln(A)

Family 8:When © =k, § = mk (m #=0) and ¢ = 0, then

By(z,y, 1) = 2k0Ln(A)? <)\ + u(A’fé . m) +0 <A’“5 ~ m) 2) . (88)

Family 9:When © = ¢ = 0, then

2
Bus(z,y, 1) = 2kOLn(A)? ()\ + ,u(d{Ln(A)) n <6§Ln(A)) ) . (89)

Family 10:When © = § = 0, then

o - 2
Bz, y,t) = 2k0Ln(A)? <)\ + “<g§Ln1(A>> + 9<g§Ln1(A)> ) . (90)

Family 11:When © = § = 0, then

pO )
(coshA(O&) — sinh (O + p))

B35(x,y,t) = 2kOLn(A)> ()\ + ,u( —

PO 2
+9< B ¢(coshA(©&) — sinha(©& +p))> )) (91)

O(sinha(OE) + cosha(OE)) )
(sinh (&) + cosha(O& + q))

O(sinhA(O€) + cosh4(0€)) \?
+9<  (sinha(OE) + coshs(OF + Q))> )

Dys(z,y,t) = 2k0Ln(A)? (A -
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Family 12:When © =k, ¢ = mk, (m # 0) and § = 0, then

_ 2 ]914%5 pAlCg 2
By (2, y,t) = 2kOLn(A) ()\ + M(iq - Ak&) + 9<q ) ) (93)

where
E=kx+ly—ct

4 Results and Discussions

In this study, we effectively construct novel solitons solutions along with hyperbolic and
trigonometric function solutions for the (4+1)-dimensional Fokas equation and (2+1)-
dimensional Breaking soliton equation using new extended direct algebraic method.
This technique is measured as most recent scheme in this field and that is not utilized
to these equations earlier. For physical analysis, 3-D, 2-D and contour plots of some
of these solutions are comprised with suitable parameters. The obtained solutions dis-
cover their application in communication to convey information because solitons have
the capability to spread over long distances without reduction and without changing
their forms. In this paper, we only included specific figures to avoid overloading the
document. All the developed results are novel and distinct from that reported results.
For graphical representation for (1), the physical behavior of (13) using the proper
values of parameters ag = 2.3, a =13, v =15 6 =13, X =04, p = 0.7,
w =2 p=098 ¢q=09, k=2 A=3 06=2 ¢=19 71 = 0.85,
c=4, z2=3, x =26, e=2, =05 y=26andt =1 are shown in Fig.1,
the physical behavior of (18) using the appropriate values of parameters ag = 2.2, a =
1.3, =16, ©=23, X=34, pu=37, w=22, p=098, ¢=0.95 k=2, A=
24, §=-2, ¢=19, 7=085, ¢=29, z=3, y=15, e=3, =16, y=2.5
and t = 1 are shown in Fig. 2, the physical behavior of (29) using the proper values of
parameters ag = 2.3, a=1.1, =15, 6 =21, A=34, pu=17, w=2, p=
098, q=095 k=2, A=23,0=2,¢=19, 7=085, ¢c=4, 2=3, x=2.6, e=
3, f=1.6, y=2.6andt=1 are shown in Fig. 3, the absolute behavior of (40) using
the proper values of parameters as = 2.2, a =14, =14, § =23, A=3.3, p= 1.7,
w=2 p=098 ¢q=095 k=2 A=26, b=2, 6 =-2, ¢=2, 7=0.82
c=31 z=3, x =18, e=19, =14, y= 2.7 and t =1 are shown in Fig.
4. For graphical representation for (2), the absolute behavior of (58) using the suitable
values of parameters § = 2.3, X=3.3, p =18 0 =15 p=0.98, ¢=0.95 k=
2, A=26, §=-2, ¢=2, ¢c=2, y=27, Il =15andt =1 are shown in Fig.
5, the absolute behavior of (63) with the suitable values of parameters § = 2.5, A\ =
31, pu=15 6©=14, p=098, ¢=095 k=21 A=28 06=-2, ¢ =2,
c=23, y=17 1 =19 and ¢t = 1 are shown in Fig. 6, the absolute behavior of
(71) using the proper values of parameters § = 1.5, A =22, p =29, 6 =17, p=
098, ¢ =095 k=22 A=29 6d=2, ¢=21, ¢c=31 y=27 1=38

19



and t = 1 are shown in Fig. 7, the absolute behavior of (82) using the proper values of
parameters § = 2.4, A =22 pu=12 0=17 p=098, ¢=095 k=24, A=
21, =2, ¢=2, ¢=33, y=2.8, l=1.1and ¢t =1 are shown in Fig. 8.

AT

Figure 1: (A) 3D graph of (13) with ap =2.3, a =13, 12 =15 6 =13, A=
04, p=07 w=2, p=098, ¢=095, k=2, A=3, §d=2, ¢=19, 7=
085, c¢=4, z2=3, x=26, e=2, =05 y=26. (A-1) 2D plot of (13)
with ¢ = 1.(A-2) Contour graph of (13).
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(B-2)

Figure 2: (B) 3D graph of (18) with ap =2.2, a =13, 75 =16, 6 =23, A=
34, =237 w=22 p=098 g=095 k=2 A=24 =2 ¢=
1.9, 7=085 ¢=29, 2=3, x=15 e=3, =16, y=25. (B-1)2D
plot of (18) with ¢ = 1.(B-2) Contour graph of (18).

21



Figure 3: (C) 3D graph of (29) with ap =2.3, a=1.1, 7n =15, 6 =21, A=
34, p=17 w=2 p=098, ¢=0095 k=2 A=23, 0=2, ¢=19, 7=
085, c¢c=4, z=3, x =26, e=3, =16, y=26. (C-1) 2D plot of (29)
with ¢ = 1.(C-2) Contour graph of (29).
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5 10 15

Figure 4: (D) 3D graph of (40) with ay =22, a=14, =14, 6§ =23, A=
33, =17, w=2 p=098, ¢g=095 k=2 A=26 b=2 6=-2 ¢=
2, 1 =082, c=31 =3 yx=18 e=19 =14, y=27 (D-1)2D
plot of (40) with ¢ = 1.(D-2) Contour graph of (40).
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Figure 5: (E) 3D graph of (58) with # =2.3, A=33, u=18, 6 =15 p=
0.98, =095, k=2, A=26, §=-2, ¢=2, c¢=2 y=27, =15 (E1)
2D plot of (58) with ¢ = 1.(E-2) Contour graph of (58).
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Figure 6: (F) 3D graph of (63) with 6 = 2.5, A =31, u=15 © =14, p=
098, =095 k=21, A=28 6=-2 ¢=2 ¢=23, y=17, [ =19
(F-1) 2D plot of (63) with ¢ = 1.(F-2) Contour graph of (63).

25



Figure 7: (G) 3D graph of (71) with 6 = 1.5, A =22, n =29, 6 =17 p=
098, =095 k=22 A=29 6§=2 ¢=21, c=31, y=27, [ =38
(G-1) 2D plot of (71) with ¢t = 1.(G-2) Contour graph of (71).
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Figure 8: (H) 3D graph of (82) with § =24, A =22, p=12 6 =17 p=
098, q=095 k=24, A=21 0=2 ¢=2 c¢=33 y=28 [=11.
(H-1) 2D plot of (82) with ¢ = 1.(H-2) Contour graph of (82).

5 Conclusion

In this paper, we constructed new solitons solutions for two different models via the new
EDAM, in the form of bright, dark, mixed bright-dark solitons as well as hyperbolic and
trigonometric functions solutions. By choosing the suitable values of parameters and
to better understand the physical structures of the solutions, 3-d and 2-d graphs have
been plotted. From the acquired results and figures, it is observed that all solutions
demonstrated wave behavior. Also, these solutions yield traveling dark wave behaviors
to the considered models, physically.

27



References

1]

2]

[10]

[11]

Bansal A, Biswas A, Zhou Q, Babatin MM. Lie symmetry analysis for cubic-quartic
nonlinear Schrodinger’s equation. Optik 2018;169:12-5.

Biswas A, Triki H, Zhou Q, Moshokoa SP, Ullah MZ, Belic M. Cubic-quartic optical
solitons in Kerr and power-law media.Optik2017;144:357-62.

Biswas A, Kara AH, Ullah MZ, Zhou Q, Triki H, Belic M. Conservation laws for
cubic-quartic optical solitons in Kerr and power-law media. Optik 2017;145:650-4.

Biswas A, Arshed S. Application of semi inverse variational principle to
cubic-quartic optical solitons having Kerr and power law nonlinearity. Optik
2018;172:847-50.

Das A, Biswas A, Ekici M, Khan S, Zhou Q, Moshokoa SP. Suppressing inter-
net bottleneck with fractional temporal evolution of cubic quartic optical solitons.
Optik 2019;182:303-7.

Gongzalez-Gaxiola O, Biswas A, Mallawi F, Belic MR. Cubic-quartic bright optical
solitons with improved Adomian decomposition method. J Adv Res 2020;21:161-7.

Kohl RW, Biswas A, Ekici M, Zhou Q, Moshokoa SP, Belic MR. Cubic-quartic
optical soliton perturbation by semi-inverse variational principle. Optik 2019; 185:
45-9.

Blanco-Redondo A, Sterke CMD, Sipe JE, Krauss TF, Eggleton BJ, Husko C.
Pure-quartic solitons. Nat Commun 2016;7:10427.

Blanco A, Redondo, Sterke CMD, Sipe JE, Krauss TF, Eggleton BJ, Husko C.
Erratum: pure-quartic solitons. Nat Commun 2016;7:11048.

Tahir M, Awan A U, Rehman H U. Dark and singular optical solitons to the Biswas-
Arshed model with Kerr and power law nonlinearity. Optik 2019;185:777-783.

Ullah N, Rehman H, Imran MA, Abdeljawad T. Highly dispersive optical soli-
tons with cubic law and cubic-quintic-septic law nonlinearities. Results in Physics
2020;17:103021.

Rehman H, Jafar S, Javed A, Hussain S, Tahir M. New optical solitons of Biswas-
Arshed equation using different techniques. Optik 2019;163670.

Tahir F, Younis M, Rehman HU. Optical Gaussons and dark solitons in direc-
tional couplers with spatiotemporal dispersion. Optical and Quantum Electronics
2017;49:422.

28



[14]

[15]

[17]

18]

[24]

[25]

Rehman HU, Ullah N, Imran MA. Highly dispersive optical solitons using
Kudryashov’s method. Optik 2019;199:163349.

Osman MS, Tariq KU, Bekir A, Elmoasry A, Elazab NS, Younis M, Abdel- Aty
M. Investigation of soliton solutions with different wave structures to the (2 +
1)-dimensional Heisenberg ferromagnetic spin chain equation. Communication in

Theoretical Physics 2020;72:035002.

Lu D, Tarig KU, Osman MSD, Younis M, Khater MMA, New analytical wave
structures for the(3 + 1)-dimensional Kadomtsev-Petviashvili and the generalized
Boussinesq models and their applications. Results in Physics 2019;14:102491.

Hosseini K, Bejarbaneh EY , Bekir A, Kaplan M. New exact solutions of some
nonlinear evolution equations of pseudoparabolic type. Opt. Quantum Electron
2017;49:241.

Osman MS. Nonlinear interaction of solitary waves described by multi-rational
wave solutions of the (2+1)- dimensional Kadomtsev-Petviashvili equation with
variable coefficients.Nonlinear Dyn. 2017;87:1209-16.

Ghanbari B, Osman MS, Baleanu D. Generalized exponential rational function
method for extended Zakharov-Kuzetsov equation with conformable derivative
Mod. Phys. Lett. A 2019;34:1950155.

Kudryashov NA. A generalized model for description of propagation pulses in op-
tical fiber. Optik 2019; 189: 42-52.

Kyudryashov NA. First integrals and general solution of the traveling wave reduc-
tion for Schrodinger equation with anti-cubic nonlinearity. Optik 2019;185:665-71.
Kudryashov NA. Traveling wave solutions of the generalized nonlinear Schrodinger

equation with cubic-quintic nonlinearity. Optik 2019;188:27-35.

Kudryashov NA. The PainlevA approach for finding solitary wave solutions of
nonlinear nonintegrable differential equations. Optik 2019;183:642-9.

Kudryashov NA. Solitary and periodic waves of the hierarchy for propagation pulse
in optical fiber. Optik 2019;194:163060.

Kudryashov NA. Construction of nonlinear differential equations for description of
propagation pulses in optical fiber. Optik 2019;192:162964.

Wazwaz AM. A variety of optical solitons for nonlinear Schrodinger equation with
detuning term by the variational iteration method. Optik 2019;196:163169.

29



[27]

[31]

[32]

[35]

[36]

[37]

[38]

[39]

Wazwaz AM. Bright and dark optical solitons for (241)-dimensional Schrodinger
(NLS) equations in the anomalous dispersion regimes and the normal dispersive
regimes. Optik 2019;192:162948.

Xu G. Extended auxiliary equation method and its applications to three generalized
NLS equations. Abstract Appl Anal 2014;2014:541370.

Zayed EME, Alurrfi KAE. Solitons and other solutions for two nonlinear
Schrodinger equations using the new mapping method. Optik 2017;144:132-48.

Triki H, Biswas A, Zhou Q, Liu W, Ekici M, Alshomrani AS, Belic MR.. Propagation
of chirped optical similaritons in inhomogeneous tapered centrosymmetric nonlin-
ear waveguides doped with resonant impurities. Laser Phys 2019;29(8):085401.

Yan Y, Liu W. Stable transmission of solitons in the complex cubic-quintic
Ginzburg-Landau equation with nonlinear gain and higher-order effects. Appl Math
Lett 2019;98:171-6.

H. Rezazadeh, S. M. Mirhosseini-Alizamini, M. Eslami, M. Rezazadeh, M. Mirza-
zadeh, S. Abbagari, New optical solitons of nonlinear conformable fractional
Schrodinger-Hirota equation, Optik, 172 (2018) 545-553.

M. O. Al-Amr and S. El-Ganaini, New Exact Traveling Wave Solutions Of The
(441)-dimensional Fokas Equation, Comp. Math. Appl. 74, 1 (2017). 2050152-15

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and
Inverse Scattering (Cambridge University Press, Cambridge, 1991).

X. J. Yang and F. Gao, A new technology for solving diffusion and heat equations,
Thermal Sci. 21, 133 (2017)

M. S. Osman,On multi-soliton solutions for the (2+1)-dimensional breaking soliton
equation with variable coefficients in a graded-index waveguide, Comput. Math.
Appl. 75, 1 (2018)

S. Ting, G. X. Guo and M. Y. Ling, Wronskian Form Of N-Soliton Solution For
The (2+1)-Dimensional Breaking Soliton Equation, Ch. Phys. Lett. 24, 305 (2007)

X. Geng and C. Cao, Explicit solutions of the (2 + 1)-dimensional breaking soliton
equation, Chaos Soliton Fract. 22, 683 (2004)

Ren Y, Zhang H. New generalized hyperbolic functions and autoacklund transfor-
mation to find new exact solutions of the (2 + 1)-dimensional NNV equation. Phys.
Lett. A 2006;357:438-448.

30



